Endoscopy and Stabilization for Symmetric varieties

Spencer Leslie

Duke University

Basic Functions, Orbital Integrals, and Beyond Endoscopy

Spencer Leslie (Duke University)

idoscopy for Symmetric varieties

Casselman's 80th Birthday 1/22

4 A N

- First case: twisted base change
- Unitary FJ periods and Xiao–Zhang RTF
- Endoscopic symmetric spaces
- Local results for unitary FJ periods

- B

Let *F* be a number field and let G be a classical group (eg: Sp_{2n}, U_n, O_n) with $H \subset G$ a (spherical) subgroup. <u>Getz-Wambach:</u> Let $\theta^2 = 1$ be such that $GL_N^{\theta} = G$, and let $\sigma^2 = 1$ be an involution on G.

- Set $H = G^{\sigma}$.
- $\tau = \sigma \circ \theta$ is involution on GL_N . Set $H_1 = GL_N^{\sigma}$ and $H_2 = GL_N^{\tau}$.

General Principle (coarse form)

Let π be a cuspidal rep of $G(\mathbb{A})$ and let Π be its functorial lift to $GL_N(\mathbb{A})$. TFAE

- Π is H₁ and H₂-distinguished
- 2 there exists π' nearly equivalent to π which is H-distinguished

Strategy: compare the **stabilized relative trace formula** of G encoding $\overline{\text{H-periods}}$ with the appropriate twisted relative trace formula for GL_N

Example (biquadratic case, Getz-Wambach)

Let E/F and M/F be two quadratic extensions such that ME/F is biquadratic. Consider $H = U_n$ associated to M/F and $G = \text{Res}_{E/F}(H_E)$. Let σ such that $G^{\sigma} = H$. Then if $G' = GL_{n,ME}$,

$$H_1 = GL_{n,M}$$
 and $H_2 = U_{n,L}$ $(L = (ME)^{\theta})$.

Then relates H-periods on G to Asai *L*-functions for base change to ME/F.

Rely on simple trace formula to avoid instability issues

Unitary Friedberg–Jacquet periods

Let E/F be quadratic extension of number fields, and take $G = U_{2n}$. Let σ fix $H = U_n \times U_n$. Then if $G' = GL_{2n,E}$,

- $H_1 = GL_{n,E} \times GL_{n,E} \qquad \text{and} \qquad H_2 = U_{2n}' \quad (\text{an inner form of G})$
- H₁-dist. cuts out symplectic type (i.e. $L(s, \pi, \wedge^2)$ has a pole at s = 1),
- H₂-dist. cuts out the image of base change from GL_{2n,F},

Conjecture

Let π be tempered cuspidal on $GL_{2n}(\mathbb{A}_F)$ of symplectic type and $\Pi = BC(\pi)$. TFAE:

● $L(\frac{1}{2},\Pi) \neq 0$,

2 there exists an (G, H) and cusp form π_G on G(\mathbb{A}_F) such that $\Pi = BC(\pi_G)$ and π_G is H-distinguished.

Partial Results: Pollack–Wan–Zydor ('19), Chen–Gan ('21)

Xiao-Zhang relative trace formula

Propose a RTF

$$I(f',\Phi,s) := \iint_{[\mathsf{GL}_n \times \mathsf{GL}_n]_F^2}^* K_{f'}(x,y) \eta_{E/F}(x) |xy|^s E_{\Phi}(y) dxdy$$

designed to detect symplectic-type cusp forms on $GL_{2n,F}$, encoding base change *L*-function $L(s + \frac{1}{2}, \Pi)$

Set $X = U_{2n}/U_n \times U_n$ and consider the distribution

$$TF_{\mathsf{X}}(f) := \int_{[\mathsf{H}]}^{*} \left(\sum_{x \in \mathsf{X}(F)} f(h^{-1}x) \right) dh = \sum_{x} \operatorname{vol}([\mathsf{H}_{x}]) O_{x}(f) + \dots$$

with $f \in C_c^{\infty}(X(\mathbb{A}_F))$ and x ranges over H(F)-orbits on $X^{ell}(F)$.

We have a matching of stable regular semi-simple orbits

$$\begin{array}{c} \operatorname{GL}_{n}(\overline{F})^{2} \setminus \operatorname{GL}_{2n}(\overline{F}) \times \overline{F}^{n} / \operatorname{GL}_{n}(\overline{F})^{2} \\ \downarrow \\ \operatorname{H}(\overline{F}) \setminus \operatorname{X}(\overline{F}) \end{array}$$

- This does not descend to orbits over *F*.
- Conjecture: ∃ f ↔ f' ⊗ Φ with matching (stable) orbital integrals at s = 0.

• J.Xiao-W. Zhang (in progress): prove fundamental lemma for unit. Need to stabilize $TF_X(f)$ to compare with $I(f', \Phi, 0)$.

不同 とうきょうき

Stable comparison and Prestabilization

Using techniques of Labesse, we first prestabilize:

Proposition (L)

The elliptic part of the RTF admits a prestabilization:

$$TF_{\mathsf{X}}^{\textit{ell}}(f) = STF_{\mathsf{X}}^{\textit{ell}}(f) + \sum_{[x]} \sum_{\kappa
eq 1} \prod_{\nu} \mathrm{O}_{\mathsf{X}}^{\kappa}(f_{\nu})$$

where

[x] is over stable H-orbits on X^{ell}(F) (relative elliptic locus)
 κ ∈ H¹(A_F, H_x)^D ranges over certain characters.

The stable part

$$STF_X^{ell}(f) = \sum_{[x]} \prod_{v} O_x^{st}(f_v)$$

may be compared to Xiao-Zhang's RTF.

Stabilization of the elliptic part

For each a + b = n, we introduce the **endoscopic symmetric variety**

$$X_{a,b} = (U_{2a}/U_a \times U_a) \times (U_{2b}/U_b \times U_b).$$

Theorem (L, '19; '20; in preparation)

For "regular" $f \in C^{\infty}_{c}(X(\mathbb{A}_{F}))$,

$$TF_{\mathsf{X}}^{ell}(f) = \sum_{n=a+b} \iota(a,b) STF_{a,b}^{\mathsf{X}-ell}(f^{a,b}).$$

with $f^{a,b} \in C^{\infty}_{c}(X_{a,b}(\mathbb{A}))$.

- analogous to stabilization of elliptic part of Arthur-Selberg trace formula (Langlands, Shelstad, Kottwitz, Waldspurger, Ngô,...)
- Each of the endoscopic terms may be compared with lower-rank versions of Xiao–Zhang's RTF

κ -Orbital Integrals

• Now let F be a local field of characteristic 0

• For $x \in X^{rss}(F)$ and $f \in C^{\infty}_{c}(X(F))$, the κ -orbital integral is

$$O_{x}^{\kappa}(f) = \sum_{x'} \langle \operatorname{inv}(x, x'), \kappa \rangle O_{x'}(f)$$

where $inv(x, x') \in H^1(F, H_x)$ and $\kappa \in H^1(F, H_x)^D$. Here,

$$O_x(f) = \int_{H_x(F)\setminus H(F)} f(h^{-1} \cdot x) dh.$$

Endoscopic symmetric variety

I now want to explain how the character κ determines an associated endoscopic variety

$$X_{a,b} = (U_{2a}/U_a \times U_a) \times (U_{2b}/U_b \times U_b).$$

Dual group of X (Nadler–Gaitsgory, Knop–Schalke)

If X = G / H is a symmetric variety^{*}, then there is a dual group \check{G}_X , equipped with a morphism φ_X such that

• if $T \subset G$ is a maximal torus generically acting through the quotient $T \to A_X$,

commutes. In our case, $\check{G} = GL_{2n}$ and $\check{G}_X = Sp_{2n}$.

In our setting, there is a complex dual symmetric variety (Nadler)

$$\check{X}=\check{G}_{X,\textit{as}}/\check{G}_X$$

where \check{G}_X is the dual group of X and $\check{G}_{X,as} \subset \check{G}$.

• We'll assume for simplicity $\check{G}_{X,\textit{as}}=\check{G}.$

Dual symmetric variety of X

• The centralizer of $x \in X^{rss}(F)$ sits in an exact sequence

$$1 \longrightarrow H_X \longrightarrow T \longrightarrow A_X \longrightarrow 1.$$

• We have the dual SES

$$1 \longrightarrow \check{A}_X \longrightarrow \check{T} \longrightarrow \check{H}_x \longrightarrow 1.$$

and a diagram

- \check{T} acts on \check{X} through \check{H}_x
- Tate-Nakayama duality: $\kappa \in H^1(F, H_x)^D \cong \pi_0(\check{H}_x^{\Gamma})$
- ranging over possible embeddings, obtain \check{G}_X -orbit $[\kappa] \subset \check{X}$.

Descendents at Semi-simple points

 We thus obtain semi-simple elements κ ∈ X and a descent diagram

Theorem (L)

Suppose that $x \in X^{rss}(F)$ and $\kappa \in H^1(F, H_x)^D$. There exists a *F*-rational symmetric variety $X_{\kappa} = G_{\kappa} / H_{\kappa}$ (unique up to isomorphism) of the quasi-split endoscopic group G_{κ} such that the top row is dual to X_{κ} .

- Gives us a notion of endoscopic space
- Existence over *F* is straightforward. Rationality of X_κ is not obvious.

Point comparison and Pre-stabilization

Proposition (L)

Suppose that X = G / H and $X_{\kappa} = G_{\kappa} / H_{\kappa}$ as before. There is a matching of stable semi-simple orbits

$$\phi_{\kappa}: (\mathsf{X}_{\kappa} // \mathsf{H}_{\kappa})(F) \longrightarrow (\mathsf{X} // \mathsf{H})(F).$$

- This allows us to compare stable orbits of X with those on endoscopic variety X_κ.
- (In preparation) Can effect the pre-stabilization

$$\mathit{TF}^{ell}_{\mathsf{X}}(f) = \mathit{STF}^{ell}_{\mathsf{X}}(f) + \sum_{\mathcal{E}} \prod_{\mathsf{v}} \mathrm{O}^{\kappa}_{\mathsf{x}}(f_{\mathsf{v}})$$

with sum over elliptic relative endoscopic data.

Needed for stabilization: a general theory of transfer factors and local harmonic analytic results

Transfer factors and smooth transfer

Now let's return to $X_n = U_{2n}/U_n \times U_n$ and $X_{a,b} = (U_{2a}/U_a \times U_a) \times (U_{2b}/U_b \times U_b)$.

Proposition (L)

- There is a good notion of **transfer factor** Δ on the regular ss locus.
- ② (smooth transfer) For "regularly supported" test functions $f \in C_c^{\infty}(X_n(F))$, there exists $f^{a,b} \in C_c^{\infty}(X_{a,b}(F))$ such that

$$\mathrm{SO}_{(x_a,x_b)}(f^{a,b}) = \Delta(x,(x_a,x_b))\mathrm{O}_X^\kappa(f).$$

- Requires some pure inner forms the varieties $X_a \times X_b$ and X_n .
- Regular support constraint comes from the definition of Δ: uses morphism

$$X_n \longrightarrow \mathcal{H}erm_n$$

3

・ロト ・ 四ト ・ ヨト ・ ヨト …

Theorem (L)

For any $x \in X_n^{rs}(F)$ and $\kappa \in H^1(F, H_x)^D$, there is a decomposition n = a + b such that

$$\mathrm{SO}_{(x_a,x_b)}(\mathbf{1}_{\mathsf{X}_a(\mathcal{O}_F)}\otimes\mathbf{1}_{\mathsf{X}_b(\mathcal{O}_F)})=\Delta(x,(x_a,x_b))\mathrm{O}_x^\kappa(\mathbf{1}_{\mathsf{X}_n(\mathcal{O}_F)}).$$

Follows from reduction to the "Lie algebra" $T_e X_n(F) \cong Mat_{n \times n}(E)$

Theorem (L)

For any $x \in Mat_{n \times n}(E)^{rss}$ and character κ , there exists a + b = n such that

$$\mathrm{SO}_{(x_a,x_b)}(\mathbf{1}_{\mathsf{Mat}_{a\times a}(\mathcal{O}_E)}\otimes \mathbf{1}_{\mathsf{Mat}_{b\times b}(\mathcal{O}_E)}) = \Delta(x,(x_a,x_b))\mathrm{O}_x^\kappa(\mathbf{1}_{\mathsf{Mat}_{n\times n}(\mathcal{O}_E)}).$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We prove this by reducing to the fundamental lemma for the full Hecke algebra associate to the stabilization of the trace formula

$$\mathbf{Y}_n = \mathrm{GL}_{n,E} \,/ \, U_n$$

with respect to the endoscopic symmetric varieties

$$\mathbf{Y}_{a,b} = \operatorname{GL}_{a,E} / U_a \times \operatorname{GL}_{b,E} / U_b.$$

 Series of reductions of orbital integrals via limiting process and uncertainty principle.

• ultimately reduce to a new comparison of RTFs.

< ロ > < 同 > < 回 > < 回 >

Using the map

$$\begin{array}{c} \mathsf{GL}_{n,E} \stackrel{r}{\longrightarrow} \mathrm{Y}_n \subset \mathcal{H}\textit{erm}_n, \\ X \longmapsto X \overline{X}^T, \end{array}$$

we can analyze

 $\mathrm{O}^{\kappa}_{X}(\mathbf{1}_{\mathsf{Mat}_{n \times n}(\mathcal{O}_{E})})$

via orbital integrals of the non-compactly supported $r_{I}(\mathbf{1}_{Mat_{n \times n}(\mathcal{O}_{F})})$.

- has additional $GL_n(\mathcal{O}_E)$ -invariance
- Study κ -orbital integrals for functions in $C_c^{\infty}(Y_n)^{\operatorname{GL}_n(\mathcal{O}_E)}$.

→ ∃ →

Endoscopy for Hermitian symmetric space

We introduce a weighted parabolic descent of spherical Hecke algebra which sits in a diagram

$$\begin{array}{ccc} \mathcal{H}(\mathsf{GL}_n(E)) & \xrightarrow{\xi_{a,b}} \mathcal{H}(\mathsf{GL}_a(E)) \otimes \mathcal{H}(\mathsf{GL}_b(E)) \\ & & & \downarrow^{r_1} & & \downarrow^{r_{a,b,1}} \\ \mathcal{C}^{\infty}_{\mathcal{C}}(\mathbf{Y}_n)^{\mathsf{GL}_n(\mathcal{O}_E)} & & \mathcal{C}^{\infty}_{\mathcal{C}}(\mathbf{Y}_a \times \mathbf{Y}_b)^{\mathsf{GL}_a(\mathcal{O}_E) \times \mathsf{GL}_b(\mathcal{O}_E)}. \end{array}$$

Theorem (L)

For each $\phi \in \mathcal{H}(GL(V_n))$ and for every matching $(x_a, x_b) \in Y_a \times Y_b$ and $x \in Y_n$

$$\mathrm{SO}_{(X_a,X_b)}(r_{a,b,!}(\xi_{a,b}(\phi))) = \Delta(x,(x_a,x_b))\mathrm{O}_{X}^{\kappa}(r_!(\phi)).$$

where Δ is the Langlands–Shelstad transfer factor on $\mathcal{H}erm_n \cong \text{Lie}(U_n)$. This implies the previous theorem.

<u>Result 1:</u> (J. Xiao '19): Endoscopic transfer for $\mathcal{H}erm_n$ occurs as a limit of Jacquet-Rallis transfer

$$\mathcal{H}erm_n \times V_n \longleftrightarrow \mathfrak{gl}_n(F) \times F^n \times (F^n)^*.$$

We show how the FL on Y_n follows from novel explicit transfer statements in Jacquet-Rallis transfer.

<u>Result 2</u>: Using a result of Beuzart-Plessis, we use the Weil representation of $SL_2(F)$ on $C_c^{\infty}(F^n \times (F^n)^*)$ to reduce to a comparison of orbital integrals

$$\mathcal{H}erm_n \longleftrightarrow \mathfrak{gl}_n(F)$$

イロト イヨト イヨト イヨト

Final reduction and globalization

Theorem (L)

Consider the Jacquet-Rallis transfer between the spaces

 $C_c^{\infty}(\mathcal{H}erm_n)$ and $C_c^{\infty}(\mathfrak{gl}_n(F))$.

For any $\phi \in \mathcal{H}(GL_n(E))$, the functions $r_1(\phi)$ and $BC(\phi)$ are transfers of each other.

Prove this fundamental lemma via a new comparison of RTFs, relying on the results of Feigon–Lapid–Offen on unitary periods.

THANK YOU!!

Spencer Leslie (Duke University)

indoscopy for Symmetric varieties

Casselman's 80th Birthday 22/22

2