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Unitary groups

• G = GLN , a complex group

• G (R) = U(N/2,N/2) for even N

• G (R) = U((N − 1)/2, (N + 1)/2) for odd N

• LG = ∨GLN o 〈∨δ0〉

∨δ0(g) = J (g−1)ᵀJ−1, g ∈ ∨GLN

J =

[
0 1

−1

. .
.

(−1)N−1 0

]
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A-parameters

Fix
ψG : WR × SL2 → LG

• 1→ C× →WR → Gal(C/R)→ 1 is the real Weil group

• ψG |WR is a tempered L-parameter

• ψG |SL2 is a finite-dimensional representation



Overview Definition of ΠMok
ψG

Results from ABV ΠMok
ψG

= ΠABV
ψG

A-packets
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• Each type of packet ΠψG
is defined here as the irreducible

representations occurring in a stable virtual character ηψG
.

• [Mok 2015] follows [Arthur 2013] in using twisted endoscopy.

• [Adams, Barbasch, Vogan 1992] gives intrinsic definition using
sheaf theory. It works for any real reductive group.

• The equality of packets is ongoing joint work with Arancibia.
We follow [Adams, Arancibia, M.]
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Strategy of Mok/Arthur

• Express G (R) as a twisted endoscopic group of a nice group
H(R).

• Use ψG to define an A-parameter ψ for H.

• Define ΠMok
ψG

as the preimage of Πψ under endoscopic transfer.

The nice group H for the unitary group G satisfies

H(R) = GLN(C)
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Twisted endoscopic data I

• GLN(C) is the real form of

RC/RGLN = GLN ×GLN

• GLN(C) = (RC/RGLN)(R)

• LRC/RGLN = (∨GLN × ∨GLN) o 〈∨δ1〉, ∨δ1 = swap

• Define the involution ϑ ∈ Aut(RC/RGLN) by

ϑ(g1, g2) = (J(g−1
2 )ᵀJ−1, J(g−1

1 )ᵀJ−1), g1, g2 ∈ GLN

• GLN(C) o 〈ϑ〉 is a disconnected group with non-identity
component GLN(C) o ϑ.
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Twisted endoscopic data II

• We identify ϑ with its dual automorphism

ϑ(g1, g2) = (J(g−1
2 )ᵀJ−1, J(g−1

1 )ᵀJ−1), g1, g2 ∈ ∨GLN

•

(∨RC/RGLN)ϑ = {(g1, J(g−1
1 )ᵀJ−1)} ∼= ∨GLN = ∨G

• ε : LG ↪→ LRC/RGLN , with ε(∨G ) = (∨RC/RGLN)ϑ and
ε(∨δ0) = ∨δ1.

• In this way G is an endoscopic group for the pair
(RC/RGLN , ϑ).
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A-parameters and endoscopy

• Composing ψG with ε : LG ↪→ LRC/RGLN yields an
A-parameter

ψ := ε ◦ ψG

•
Πψ = Πφψ = {πψ}

is a single representation of GLN(C).

• The ϑ-stability of ψ implies πψ ◦ ϑ ∼= πψ.
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Twisted characters

• If π is an irrep of GLN(C) such that π ◦ ϑ ∼= π then there are
two inequivalent extensions of π to GLN(C) o 〈ϑ〉.
• Fix a Whittaker datum for GLN(C). Then we obtain a

preferred extension π+ of π.

• The twisted character Trϑπ is defined by

Trϑπ(f ) := Tr

∫
GLN(C)

π+(gϑ) f (gϑ) dx , f ∈ C∞c (GLN(C)oϑ)
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Character decompositions

• Let KΠ(GLN(C)) be the Grothendieck group of admissible
representations of GLN(C).

• The set of irreducible representations {π} is a Z-basis for
KΠ(GLN(C)).

• The set of standard representations {M} is also a Z-basis for
KΠ(GLN(C)).

• Both irreducible and standard representations have preferred
extensions to GLN(C) o 〈ϑ〉.
• It follows that

Trϑπψ =
∑
j

nj TrϑMφj

where Mφj are standard representations indexed by
L-parameters.
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The definition of ΠMok
ψG

• Trϑπψ =
∑

j nj TrϑMφj

Theorem (Mok, AMR, M.)

Trϑπψ = Trans

∑
j

nj TrΠ̃φG ,j


where φj = ε ◦ φG ,j and Π̃φG ,j is the pseudo L-packet of φG ,j .

• Trans denotes the endoscopic transfer map from stable virtual
characters of G (R) to virtual characters of GLN(C).

• ηMok
ψG

=
∑

j nj TrΠ̃φG ,j is stable and ΠMok
ψG

is the set of
irreducible representations occurring in it with non-zero
multiplicity.
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Two themes in ABV

In this section G is any connected reductive algebraic group
defined over R.

1. Pair representations of G (R) with sheaves on a topological
space X .

2. Do interesting work on the sheaves and transport back to
representations using the pairing.
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The space X of geometric parameters

• X =
∐
λ X (λ)

• λ ∈ ∨g are representatives of infinitesimal characters

• X (λ) is a smooth complex variety

• ∨G acts on X (λ) with finitely many orbits

• The ∨G -orbits on X (λ) are in natural bijection with ∨G -orbits
of (quasisplit) L-parameters with infinitesimal character λ
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Complete geometric parameters

• Let x ∈ X , S = ∨G · x ⊂ X , and τ be an irrep of ∨Gx/(∨Gx)0.

• The pair (S , τ) is a complete geometric parameter.

• Let Ξ(LG ) = {(S , τ)} be the set of complete geometric
parameters.

• The local Langlands correspondence takes the form of a
bijection

Ξ(LG ) oo // Π(G/R)

ξ = (S , τ) � // π(ξ)

• The irreducible representation π(ξ) is the Langlands quotient
of a standard representation M(ξ).
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Sheaves on X

• ξ = (S , τ) defines a ∨G -equivariant local system of C-vector
spaces on S ⊂ X .

• Extend this local system by zero to S̄ and take the direct
image to obtain an irreducible equivariant constructible sheaf
µ(ξ).

• Alternatively, take the intermediate extension to S̄ and the
direct image to obtain an irreducible equivariant perverse
sheaf P(ξ).
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Grothendieck groups again
• The Grothendieck group of the equivariant constructible

sheaves is isomorphic to the Grothendieck group of the
equivariant perverse sheaves.

• Identify the two Grothendieck groups and denote them by
KX (LG ).

• KX (LG ) has two Z-bases: {µ(ξ)} and {P(ξ)}.
• KΠ(G/R) also has two Z-bases: {π(ξ)} and {M(ξ)}.

Theorem (ABV)

There is a perfect pairing

KΠ(G/R)× KX (LG )→ Z

such that for representations of the quasisplit form

〈M(ξ), µ(ξ′)〉 = δξ,ξ′ and 〈π(ξ),P(ξ′)〉 = (−1)dimSξ δξ,ξ′
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The ϑ-twisted pairing

• Here take G = RC/RGLN .

• ϑ acts on the reps of GLN(C) and the sheaves on X .

• One may define Z-modules for the twisted characters on
GLN(C), and “twisted sheaves”,

KΠ(GLN(C), ϑ) and KX (LRC/RGLN , ϑ)

Theorem (Adams, Arancibia, M.)

There is a natural pairing
KΠ(GLN(C), ϑ)× KX (LRC/RGLN , ϑ)→ Z such that

〈M(ξ)+, µ(ξ′)+〉 = δξ,ξ′ and 〈π(ξ)+,P(ξ′)+〉 = (−1)dimSξ δξ,ξ′

(Depends on choices of extensions.)
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Endoscopic transfer à l’ABV

• Now take G (R) to be a quasisplit unitary group again. Recall
ε : LG ↪→ LRC/RGLN .

• Let ε∗ : KX (LRC/RGLN , ϑ)→ KX (LG ) be the inverse image
functor.

• Define ε∗ : KΠ(G (R))→ KΠ(GLN(C), ϑ) by

〈ε∗M(ξ), µ(ξ′)+〉 = 〈M(ξ), ε∗µ(ξ′)+〉

• The endoscopic transfer map is the restriction of ε∗ to the
stable virtual characters.

• It agrees with Trans.
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A big leap

• ABV define stable virtual characters ηABV
ψG

and ηABV
ψ in terms

of characteristic cycles.

• These define ΠψG
and Πψ = {πψ}.
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Comparison of the two stable virtual characters

• Recall that ΠMok
ψG

are the irreps occurring in the stable virtual

character ηMok
ψG

=
∑

j nj TrΠ̃φG ,j

•

ε∗(ηABV
ψG

) = η+
ψ Deep theorem in ABV

= Trϑπψ

=
∑
j

nj TrϑMφj

= ε∗
(
ηMok
ψG

)

• Injectivity of ε∗ ⇒ ηABV
ψG

= ηMok
ψG
⇒ ΠMok

ψG
= ΠABV

ψG


	Overview
	Definition of GMok
	Results from ABV
	MokG = ABVG

