A formula for the kernel of the ρ-Fourier transform

Bill Casselman's goth birthday conference, Nov. 2021

No Baa Chain, University of Chicago report on work in progress with Z. Lao

Langland' automorphic L. function
G reductive group over global field k $P:{ }^{L} G \longrightarrow G L\left(V_{e}\right)$ finite dimil rep. π automorphic rep. of $G, \pi=\bigotimes \underset{v \in(k)}{ } \pi_{u}$

$$
\begin{aligned}
& L(s, \pi, \rho)=\prod_{v} L\left(s, \pi_{v}, \rho\right) \\
& \text {. defined as a Euler product }
\end{aligned}
$$

ranging at unramified place
Conj . admit meromorphic contimation

- admit functional equation after inserting "right" local factors at the remaining places.
- follows from Langland' functoriality conj. and Godement-Jacquet's theory of principal L-function.
Converse the rem.

Godement - Jacque - Tate theory
$G=G L_{1}, \quad P: G L_{1} \xrightarrow{i \alpha} G L_{1}$ Tate's thesis

$$
G=G L_{1}, \quad P: G L_{1}, \quad P L_{n} \operatorname{id} G L_{n} G o d e m e n t-J a c q u e t
$$

Ingredients

- $G L_{n} \subset M_{n}$ space of $n \times r$ matrices
- $J\left(M_{n}(F)\right) \Rightarrow 1_{M_{n}(0)}$
- Fourier transform on $J\left(M_{M}(F)\right)$
- Poisson summation formula
\downarrow
Mellon transform

Principal L-functions

Braverman. Kazhdan proposal

$$
G \text { red group } / k, p: L G \rightarrow G L\left(v_{e}\right)
$$

- Define a monoid $M^{e} \supset G$ as an open subset of invertible elements.
. Define a space of function $y^{P}(G(F))$ of smooth function on $G\left(K_{\alpha}\right)$ with relatively compar support in $M(F)$ + extra conditions.

$$
F=k_{v}
$$

- Define a basic function $\beta_{v}^{P} \in \mathcal{J}^{P}(G(F))$ defining unraninfied L-factor.
(IC-function on the arc space $\mathcal{L} M^{P}$ - Banthier-Ngo-Sakellarrdis)
- Define the P- Fourier transform
- Poisson summation formula

P-Fourier transform: expectation
$\varphi \longmapsto K^{l} \nLeftarrow \varphi \quad K^{e}$ kernel

- K^{p} stably invariant distribution
- K^{e} essentially ulatively compact support in $M^{e}\left(k_{v}\right)$
- Kerr giver by integration of some algebraic functions. K^{e} arts on matrix coefficient by scalar multiplication by Γ_{p}-factor. \Rightarrow compatible with parabolic descent
- involutive and unitary
- satisfy Poisson summation formula

Torm case (nst recessarily split)

$$
G=T \text { torm, } \underset{\hat{T} \times \Gamma}{\hat{T}_{\infty}^{\prime} T \longrightarrow G L\left(V_{p}\right)}
$$

ΓG multiset of weights of \hat{T} in V_{e}
\Rightarrow induced torm c induced offine space

$$
\begin{aligned}
& D^{p} \longrightarrow A^{p} \xrightarrow[t r]{ } \\
& \rho^{v} \|^{\downarrow} \mathbb{A}^{1} \\
& \\
& \\
& \\
&
\end{aligned}
$$

Monoid $M^{e}=A^{p} / D_{1}^{p}$
toricvariety $\quad D_{1}^{p}=\operatorname{ker}\left(D^{P} \rightarrow T\right)$
$J_{T}^{\rho}(t)=\int_{\rho^{v-1}(t)} \psi(\operatorname{tr}(x)) d^{r} x$
for appropriate choice of invariant meanure $d^{x} x$ on $p^{v-1}(t)$.
J_{t}^{p} is defined by an "algebraic integration", (with exponential $\psi)$

- It acts on irreducible representation by the correct r-factor.
- It has essentially relatively compact support in M^{e} It satisfies the Poisson summation formula.

Conclusion, $K_{T}^{P}=J_{T}^{P}$ in the torn case.
$\frac{J \text { - function on the stemberg base }}{\text { split }}$
$G \underset{\text { reductive group }}{\text { slit }}, P: L G \rightarrow G L\left(V_{e}\right)$ To maximal torus
W arts on the nultikt of weights of T in $V_{e} \Rightarrow W$ arts on D^{P}

$$
\begin{gathered}
D^{p} \longrightarrow D / / w \\
\\
\\
T_{0} \longrightarrow T_{0} / / w
\end{gathered}
$$

$$
\longrightarrow \text { function } J_{T / / w}^{p} \text { on } T / / w(F)
$$

which interpolates function J_{T}^{e} for all maximal tori T of G. \longrightarrow stably invariant function on G Question: $K^{P}=J_{T / I W ?}^{P}$

Compatibility with parabolic descent
$K^{e} \neq J_{T / / w}^{e}$ for the latter is not compatible with parabolic descent
L. Lafforgue : how to correct this defect when $G=G L_{2}$

$$
\begin{aligned}
g \in G L_{2}, & a_{1}(g)=\operatorname{tr}(g) \\
& a_{2}(g)=\operatorname{det}(g)
\end{aligned}
$$

$J_{T / / w}^{l}$ car be seen as function
of variable a_{1}, a_{2}
Fourier transform on variable a_{1}

$$
\begin{aligned}
& \hat{J}_{T / / W}^{P}\left(\alpha_{1}, a_{2}\right)=\int_{F} J_{T / W}^{P}\left(a_{1}, a_{2}\right) \\
& K^{P}\left(a_{1}, a_{2}\right)=\int_{F}\left|\alpha_{1}\right| \hat{J}_{\left.T / / \alpha_{1} a_{1}\right) d a_{1}}^{\left(\alpha_{1}, a_{2}\right)}
\end{aligned}
$$

(Lafforgue's formula involves $\left|a_{2}\right|^{d i n}\left(v_{c}\right)$
"Pseudo - differential" operator
(joint work with Zhilin Lug)

We expect that
$J_{T / l w}^{P} \sim \sim \sim \sim K^{P}$
invariant operator independent of P
psendo-differential
We write down a formula for this invariant psendo-differential operator for $G=G L_{n}$.

$$
g \in G L,, a_{i}(g)=\operatorname{tr}\left(\lambda^{i} g\right)
$$

Fourier transform on variable $a_{1}, \ldots, a_{n} \rightarrow$ dual variable $\alpha_{1}, \ldots, \alpha_{n}$

The Fourier transform on Steimberg base was considered in Frenkel Langland - $N \hat{g}^{\circ}$.

$$
\begin{array}{r}
\hat{J}_{T / / w}^{p}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\int_{F^{n}} J_{T / / w}^{P}\left(a_{1}, \ldots, a_{n}\right) \\
\Psi\left(-\left\langle a_{1}, \alpha\right\rangle\right) d a
\end{array}
$$

$$
\begin{aligned}
& K_{G L_{n}}^{P}\left(a_{1}, \ldots, a_{n}\right)= \\
& \int_{F^{n}} \hat{J}_{T / / w}^{P}(\alpha)\left|D_{n}(a, \alpha)\right| \psi(\langle a, \alpha\rangle) d \alpha
\end{aligned}
$$

$D_{n}(a, \alpha)$ is a polynomial of variable n $a_{1}, \ldots, a_{n}, \alpha_{1}, \ldots, \alpha_{n}$ defined as
follows $\Leftrightarrow W_{n}$-invariant polynomial $D_{n}(t, \alpha)$ where $t=\operatorname{diag}\left(t_{1}, \ldots, t_{n}\right)$

$$
\begin{aligned}
& D_{n}(t, \alpha)=\prod_{I \in I_{n-2}(n)}\left(\sum_{i=1}^{n-1} \alpha_{i} \operatorname{tr}\left(\Lambda^{i-1} t_{I}\right)\right) \\
& I=\left\{i_{1}<\ldots<i_{n-2}\right\}<\{1, \ldots, n\} \\
& t_{I}=\operatorname{diag}\left(t_{i_{1}}, \ldots, t_{i_{n-2}}\right)
\end{aligned}
$$

Provisional recult

$$
\left(K^{P} * \varphi\right)_{N}=J^{P} * \varphi_{N}
$$

for φ srooth compartly supported in the bigcell.

Descent formula $G L_{n} \rightarrow G L_{n-1} \times G_{m}$

$$
\begin{aligned}
& x=\left(\begin{array}{cc}
1_{n-1} & 0 \\
v- & 1
\end{array}\right)\left(\begin{array}{cc}
x_{n-1} & v \\
0 & t_{n}
\end{array}\right) \\
& v_{1} v^{-} \in F^{n-1} \\
& \int_{F^{n-1}} \int_{F^{n-1}} K_{n}^{P}(x) \varphi\left(v^{-}\right) d v^{-d v} \\
& =\left|t_{n}\right|^{-(n-1)} K_{n-1}^{P}\left(x_{n-1} t_{n}\right) \varphi(0)
\end{aligned}
$$

Key calculation

$$
\begin{array}{r}
K_{n}^{p}(a)=\int_{F^{n}} \hat{J}_{T / W}(\alpha)\left|D_{n}(a, \alpha)\right| \\
\Psi(\langle\alpha, a\rangle) d \alpha .
\end{array}
$$

Calculate

$$
\int_{F^{n-1}} \int_{F^{n-1}} \psi\left(\sum_{i=1}^{n} \alpha_{i} a_{i}(x)\right) \varphi\left(v^{-}\right) d v^{-} d u
$$

Calculate $x \in G L_{n}, a_{i}^{[n]}(x)=\operatorname{tr} \Lambda^{i} x$

$$
\begin{aligned}
& x \in G L_{n}, a_{n-1}^{i n-1}\left[(x)=\operatorname{tr} \Lambda_{n-1}^{i} x_{n-1}, a_{n-1},\right.
\end{aligned}
$$

$$
x=\left(\begin{array}{cc}
1_{n-1} & 0 \\
v- & 1
\end{array}\right)\left(\begin{array}{cc}
x_{n-1} & v \\
0 & t_{n}
\end{array}\right)
$$

$$
a_{i}^{[n]}(x)=a_{i}^{[n]}\left(\begin{array}{cc}
x_{n-1} & 0 \\
0 & t_{n}
\end{array}\right)
$$

$$
+\underbrace{c_{i-1}\left(x_{n-1}, v, v^{*}\right)}
$$

(12)
bilinear function on v, v^{*} nomogenom of degree $i-1$ on X_{n},

$$
\begin{aligned}
& \sum_{i=1}^{n} \alpha_{i}^{[n]} a_{i}^{[n]}\left(\begin{array}{cc}
x_{n-1} & 0 \\
0 & t_{n}
\end{array}\right) \\
&= \alpha_{1}^{[n]} t_{n}+\sum_{i=1}^{n-1}(\underbrace{\alpha_{i}^{[n]}+t_{n} \alpha_{i+1}^{[n]}}_{\alpha_{i}^{[n-1]}}) a_{i}^{n-1}\left(x_{n-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{det}\left(\sum_{i=1}^{n} \alpha_{i} \frac{\left.\tilde{c}_{i-1}\left(x_{n-1}, v, v^{*}\right]\right)}{1_{n}} D_{\text {Matrix with }}^{\text {entries function }}\right. \text { ingln-1 } \\
& D_{n-1}^{[n]}\left(a^{[n]}\right)
\end{aligned}
$$

What's next: . complete descent tho

- iurolutivity, unitarity
- Poisson summation formula
- other groups.

Happy goth birthday, Bill.
Looking forward to your goth birthday

