Stability patterns in the cohomology of $SL_n(\mathbb{Z})$ and its congruence subgroups

Jeremy Miller (Purdue)

10/4/2021

Jeremy Miller (Purdue University) Stability for $H_*(SL_n(\mathbb{Z}))$ and $H_*(\Gamma_n(L))$

10/4/2021 1/26

Let
$$\Gamma_n(L) = ker \Big(SL_n(\mathbb{Z}) \to SL_n(\mathbb{Z}/L) \Big).$$

< (17) > < (27 >)

Let
$$\Gamma_n(L) = ker \Big(SL_n(\mathbb{Z}) \to SL_n(\mathbb{Z}/L) \Big).$$

Example

$$\begin{bmatrix} 4 & -3 \\ 3 & -2 \end{bmatrix} \in \Gamma_2(3).$$

< 1 k

Let
$$\Gamma_n(L) = ker \Big(SL_n(\mathbb{Z}) \to SL_n(\mathbb{Z}/L) \Big).$$

Example

$$\begin{bmatrix} 4 & -3 \\ 3 & -2 \end{bmatrix} \in \mathsf{\Gamma}_2(3).$$

Goal

Study the asymptotic behavior of $H^*(SL_n(\mathbb{Z}))$ and $H^*(\Gamma_n(L))$ as n gets large.

< /⊒ ► < Ξ ► <

```
H^{i}(SL_{n}(\mathbb{Z})) and H^{i}(\Gamma_{n}(L)).
```


★ Ξ >

< 行

There are group homomorphisms: $SL_n(\mathbb{Z}) \to SL_{n+1}(\mathbb{Z})$ and $\Gamma_n(L) \to \Gamma_{n+1}(L)$ given by:

$$\begin{bmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{bmatrix} \mapsto \begin{bmatrix} a_{1,1} & \cdots & a_{1,n} & 0 \\ \vdots & \ddots & \vdots & \vdots \\ a_{n,1} & \cdots & a_{n,n} & 0 \\ 0 & \cdots & 0 & 1 \end{bmatrix}$$

Question

Do these maps induce stability?

.

Theorem (Borel, Charney)

The induced map $H_i(SL_n(\mathbb{Z})) \to H_i(SL_{n+1}(\mathbb{Z}))$ is an isomorphism for $i \leq \frac{n}{3} - 1$.

Theorem (Borel, Charney)

The induced map $H_i(\Gamma_n(L); \mathbb{Z}[1/L]) \to H_i(\Gamma_{n+1}(L); \mathbb{Z}[1/L])$ is an isomorphism for $i \leq \frac{n}{2} - 5$.

Relevant paper of Charney.

Theorem (Borel)

Let $\Gamma \subset SL_n(\mathbb{Z})$ be finite index. Then there is a map $\bigwedge(x_5, x_9, x_{13}, \ldots) \to H^*(\Gamma; \mathbb{Q})$ which is an isomorphism for $* \leq \frac{n}{2} - 5$.

Theorem (Borel)

Let $\Gamma \subset SL_n(\mathbb{Z})$ be finite index. Then there is a map $\bigwedge(x_5, x_9, x_{13}, \ldots) \to H^*(\Gamma; \mathbb{Q})$ which is an isomorphism for $* \leq \frac{n}{2} - 5$.

Corollary

In the stable range, $H_*(\Gamma_n(L); \mathbb{Q}) \to H_*(SL_n(\mathbb{Z}); \mathbb{Q})$ is an isomorphism.

イロト イヨト イヨト イヨ

Theorem (Lee–Szczarba)

For $n \geq 3$, $H_1(\Gamma_n(L)) \cong \mathfrak{sl}_n(\mathbb{Z}/L) \cong (\mathbb{Z}/L)^{n^2-1}$.

→ ∃ →

Theorem (Lee–Szczarba)

For
$$n \geq 3$$
, $H_1(\Gamma_n(L)) \cong \mathfrak{sl}_n(\mathbb{Z}/L) \cong (\mathbb{Z}/L)^{n^2-1}$.

Corollary

$H_1(\Gamma_n(L)) \to H_1(\Gamma_{n+1}(L))$ is not eventually surjective.

< ロト < 同ト < ヨト < ヨ

 $SL_n(\mathbb{Z})$ acts on $\Gamma_n(L)$ via conjugation and this action on homology factors through $SL_n(\mathbb{Z})/\Gamma_n(L) \cong SL_n(\mathbb{Z}/L)$.

Heuristic: A sequence $\{M_n\}$ of G_n -representations has *representation stability* if M_n has "a description that does not depend on n" for n sufficiently large.

Example (Lee–Szczarba)

For $n \ge 3$, $H_1(\Gamma_n(L))$ is the group of trace zero mod L matrices.

Theorem (Putman, Church–Ellenberg–Farb–Nagpal, Church–Ellenberg, Church–M.–Nagpal–Reinhold, Gan–Li)

For $i \leq \frac{n}{4} - 3$, $\operatorname{Ind}_{\operatorname{SL}_{n-1}(\mathbb{Z}/L)}^{\operatorname{SL}_n(\mathbb{Z}/L)} H_i(\Gamma_{n-1}(L)) \to H_i(\Gamma_n(L))$ is surjective.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Putman, Church–Ellenberg–Farb–Nagpal, Church–Ellenberg, Church–M.–Nagpal–Reinhold, Gan–Li)

For
$$i \leq \frac{n}{4} - 3$$
, $\operatorname{Ind}_{\operatorname{SL}_{n-1}(\mathbb{Z}/L)}^{\operatorname{SL}_n(\mathbb{Z}/L)} H_i(\Gamma_{n-1}(L)) \to H_i(\Gamma_n(L))$ is surjective.

Corollary

For fixed *i* and field \mathbb{F} , dim $H_i(\Gamma_n(L); \mathbb{F})$ agrees with a polynomial in *n* of degree $\leq 2i + 3$ for $n \geq 8i + 11$.

Theorem (Borel-Serre)

Let $\Gamma \subset SL_n(\mathbb{Z})$ be finite index and assume that the torsion primes of Γ are invertible in R. Then $H^i(\Gamma; R) \cong 0$ for $i > \binom{n}{2}$.

Question

Call $H^{\binom{n}{2}-i}(\Gamma)$ the codimension-*i* cohomology of Γ . Does the codimension-*i* cohomology of $SL_n(\mathbb{Z})$ or $\Gamma_n(L)$ stabilize as *n* tends to infinity?

Conjectural high dimensional stability for $SL_n(\mathbb{Z})$

Conjecture (Church–Farb–Putman)

 $H^{\binom{n}{2}-i}(\operatorname{SL}_n(\mathbb{Z});\mathbb{Q})\cong 0 \text{ for } n\geq i+2.$

→ ∃ →

Conjectural high dimensional stability for $SL_n(\mathbb{Z})$

Conjecture (Church-Farb-Putman)

 $H^{\binom{n}{2}-i}(\operatorname{SL}_n(\mathbb{Z});\mathbb{Q})\cong 0 \text{ for } n\geq i+2.$

Remark

Church–Farb–Putman conjecture would follow if one could show $H^{\binom{n}{2}-i}(SL_n(\mathbb{Z});\mathbb{Q}) \to H^{\binom{n}{2}-i}(SL_{n+1}(\mathbb{Z});\mathbb{Q})$ is surjective for $n \geq i$.

*日を *日を *日

Theorem

- $H^{\binom{n}{2}}(SL_n(\mathbb{Z}); \mathbb{Q}) \cong 0$ for $n \ge 2$ [Lee–Szczarba].
- **2** $H^{\binom{n}{2}-1}(SL_n(\mathbb{Z});\mathbb{Q}) \cong 0$ for $n \ge 3$ [Church–Putman].
- $H^{\binom{n}{2}-2}(SL_n(\mathbb{Z});\mathbb{Q}) \cong 0$ for $n \ge 4$ [Brück–M.–Patzt–Sroka–Wilson].
- Codim 2 case uses computers.
- See Wilson's talk for more details and generalizations to other number rings.

Theorem (Lee–Szczarba)

$$H^{\binom{n}{2}}(\Gamma_n(3))\cong \operatorname{St}_n(\mathbb{F}_3)\cong \mathbb{Z}^{3^{\binom{n}{2}}}$$

Remark

Complete answer also known for L = 2 and 5. $H^{105}(\Gamma_{15}(5)) \cong \mathbb{Z}^{2350867829470159774034814041007591566603522538519291648712545382850352884817741}$

• See Patzt's talk for more details.

10/4/2021 14/26

Conjectural stability for high-dimensional cohomology of congruence subgroups

Conjecture (Church-Farb-Putman, M.-Nagpal-Patzt)

 $\operatorname{Ind}_{\operatorname{SL}_n(\mathbb{Z}/L)}^{\operatorname{SL}_{n+1}(\mathbb{Z}/L)} H^{\binom{n}{2}-i}(\Gamma_n(L)) \to H^{\binom{n}{2}-i}(\Gamma_{n+1}(L)) \text{ is surjective for } n \geq 2i+2.$

Conjectural stability for high-dimensional cohomology of congruence subgroups

Conjecture (Church–Farb–Putman, M.–Nagpal–Patzt)

 $\operatorname{Ind}_{\operatorname{SL}_{n}(\mathbb{Z}/L)}^{\operatorname{SL}_{n+1}(\mathbb{Z}/L)} H^{\binom{n}{2}-i}(\Gamma_{n}(L)) \to H^{\binom{n}{2}-i}(\Gamma_{n+1}(L)) \text{ is surjective for } n \geq 2i+2.$

Theorem (M.–Nagpal–Patzt)

The conjecture is true for i = 0 or i = 1 and L = 3.

Corollary

$$\dim_{\mathbb{F}} H^{\binom{n}{2}-1}(\Gamma_n(3);\mathbb{F}) \leq 227340 \frac{3^{\binom{n-4}{2}}|\operatorname{GL}_n(\mathbb{F}_p)|}{|\operatorname{GL}_n(\mathbb{F}_p)||\operatorname{GL}_4(\mathbb{F}_p)|}.$$

< ロト < 同ト < ヨト < ヨト

For \mathbb{F} a field, let $T_n(\mathbb{F})$ denote the realization of the poset of proper, nonzero subspaces of \mathbb{F}^n .

Theorem (Solomon-Tits)

 $T_n(\mathbb{F})\simeq\bigvee S^{n-2}.$

Definition

$$\operatorname{St}_n(\mathbb{F}) = \widetilde{H}_{n-2}(T_n(\mathbb{F})).$$

< ∃ > <

Theorem (Borel–Serre)

Let $\Gamma \subset SL_n(\mathbb{Z})$ be finite index and assume that the torsion primes of Γ are invertible in R. Then $H^{\binom{n}{2}-i}(\Gamma; R) \cong H_i(\Gamma; St_n(\mathbb{Q}) \otimes R)$.

Theorem (Borel–Serre)

Let $\Gamma \subset SL_n(\mathbb{Z})$ be finite index and assume that the torsion primes of Γ are invertible in R. Then $H^{\binom{n}{2}-i}(\Gamma; R) \cong H_i(\Gamma; St_n(\mathbb{Q}) \otimes R)$.

Corollary

Then $H^{i}(SL_{n}(\mathbb{Z});\mathbb{Q}) \cong H^{i}(\Gamma_{n}(L);\mathbb{Q}) \cong 0$ for $i > \binom{n}{2}$.

Remark

Lee–Szczarba's results can be rephrased as: $(St_n(\mathbb{Q}) \otimes \mathbb{Q})_{SL_n(\mathbb{Z})} \cong 0$ for $n \ge 2$ and $St_n(\mathbb{Q})_{\Gamma_n(3)} \cong St_n(\mathbb{F}_3)$.

- 4 目 ト - 4 日 ト

Apartments

•
$$T_n(\mathbb{F}) \simeq \bigvee S^{n-2}$$
.

- Fix L₁ ⊕ ... ⊕ L_n = ℝⁿ. Let S_L be the subposet of T_n(ℝ) of subspaces which are sums of subsets of {L₁,..., L_n}.
- Let $A_{\vec{L}} = [S_{\vec{L}}] \in \widetilde{H}_{n-2}(T_n(\mathbb{F})) = \operatorname{St}_n(\mathbb{F}).$

Theorem

 $\operatorname{St}_n(\mathbb{F})$ is generated by $\{A_{\vec{L}}\}$.

< ∃ > <

Proposition

The association

$$(A_{L_1,\ldots,L_n},A_{L'_1,\ldots,L'_m})\mapsto A_{L_1,\ldots,L_n,L'_1,\ldots,L'_m}$$

gives a well-defined $GL_n(\mathbb{F}) \times GL_m(\mathbb{F})$ -equivariant map $St_n(\mathbb{F}) \otimes St_m(\mathbb{F}) \to St_{n+m}(\mathbb{F})$ which makes $\bigoplus_n St_n(\mathbb{F})$ into an associative ring.

Remark

 $\bigoplus_n \operatorname{St}_n(\mathbb{F})$ is not (skew) commutative.

・四・・ヨ・・ヨ・

A GL(R)-module is a sequence $M = \{M_n\}$ with M_n a GL_n(R)-representation.

Definition

If $M = \{M_n\}$ and $N = \{N_n\}$ are GL(R)-modules, let $M \otimes_{GL} N$ be the GL(R)-module with

$$(M \otimes_{\mathsf{GL}} N) = \bigoplus_{a+b=n} \mathsf{Ind}_{\mathsf{GL}_a(R) \times \mathsf{GL}_b(R)}^{\mathsf{GL}_n(R)} M_a \otimes N_b.$$

< ∃ > <

Definition (Fancy)

A GL(*R*)-ring is a monoid object in the category of GL-rings with monoidal structure \otimes_{GL} .

Can also make sense of modules over GL-rings, tensor products, Tor-groups, etc.

Definition (Fancy)

A GL(*R*)-ring is a monoid object in the category of GL-rings with monoidal structure \otimes_{GL} .

Can also make sense of modules over GL-rings, tensor products, Tor-groups, etc.

Definition (Concrete)

A GL(*R*)-ring is a sequence $A = \{A_n\}$ with A_n a GL_n(*R*)-representation and with GL_n(*R*) \otimes GL_m(*R*)-equivariant maps $A_n \otimes A_m \rightarrow A_{n+m}$ satisfying certain unitality and associativity conditions.

< ロト < 同ト < ヨト < ヨト

Proposition

The association

$$(A_{L_1,\ldots,L_n},A_{L'_1,\ldots,L'_m})\mapsto A_{L_1,\ldots,L_n,L'_1,\ldots,L'_m}$$

makes $\mathsf{St}(\mathbb{F}):=\{\mathsf{St}_n(\mathbb{F})\}$ into a $\mathsf{GL}(\mathbb{F})\text{-ring.}$

< □ > < □ > < □ > < □ > < □ > < □ >

Proposition

The maps

 $H_i(\Gamma_n(p); \operatorname{St}_n(\mathbb{Q})) \otimes H_j(\Gamma_m(p); \operatorname{St}_m(\mathbb{Q})) \to H_{i+j}(\Gamma_{n+m}(p); \operatorname{St}_{n+m}(\mathbb{Q}))$

make $\{H^{\binom{n}{2}-i}(\Gamma_n(3))\}$ into a $St(\mathbb{F}_3)$ -module.

This uses $St(\mathbb{F}_3) = \{H_0(\Gamma_n(3); St_n(\mathbb{Q}))\}$ and Borel–Serre duality.

| 4 回 ト 4 三 ト 4

Theorem (M.–Nagpal–Patzt)

 $\{H^{\binom{n}{2}-1}(\Gamma_n(3))\}$ is generated in degree ≤ 4 as a $St(\mathbb{F}_3)$ -modules

Theorem (M.–Nagpal–Patzt)

 $\{H^{\binom{n}{2}-1}(\Gamma_n(3))\}$ is generated in degree \leq 4 as a St (\mathbb{F}_3) -modules

Key lemma:

Theorem (M.–Nagpal–Patzt)

 $St(\mathbb{F})$ is Koszul.

See Patzt's talk at next week's workshop for more information.

・ロト ・四ト・ モン・ モン

12

25 / 26

10/4/2021

The end.

Image: Image:

イロト イヨト イヨト イヨト