# Iterated monodromy groups of conservative polynomials



August 17, 2021, Banff International Research Station (online) Totally Disconnected Locally Compact Groups via Group Actions

## Note

Most results are due to two groups of people, one involving Grigorchuk, Nekrashevych, and the speaker,

and another, involving a large group of undergraduate students, participating in Polymath Jr 2021 (NSF supported summer initiative, online collaboration open to students all over the world) and the speaker.

| Name                 | Affiliation   | Name                | Affiliation |
|----------------------|---------------|---------------------|-------------|
| Ibrahim Abdelaziz    | AU Cairo      | Edisher Kipiani     | St Andrews  |
| Moaaz Alqady         | AU Cairo      | Juntao Lu           |             |
| Tyler Campos         | Yale          | Risitha Nambuwasam  | Colombo     |
| Alexander Cernei     | CUNY          | Nicholas Pandelakis | Carleton    |
| Matthew Cohen        | College NJ    | Jaewoo Park         | Michigan    |
| John Connell*        | South Florida | Micah Pietraho      | Harvard     |
| Sanjit Dandapanthula | UCLA          | Soumyadip Sanyal    | Duke/China  |
| Gabriel Diraviam     | Vanderbilt    | Jeremy Sorkin       | Wooster     |
| Arthur DressenWall   | Macalester    | Jack Stade          | Cambridge   |
| Mrinmoyee Guha       | Yale          | Andy Wang           | Princeton   |
| Shalini Hewage       | Colombo       |                     |             |

\* Graduate Student Mentor

I will also mention one result with Garrido.

The backward iterates of a randomly chosen point, generation 0

The backward iterates of a randomly chosen point, generation 1



The backward iterates of a randomly chosen point, generation 2



The backward iterates of a randomly chosen point, generation 3



The backward iterates of a randomly chosen point, generation 4

f(z)



The backward iterates of a randomly chosen point, generation 5



The backward iterates of a randomly chosen point, generation 6



The backward iterates of a randomly chosen point, generation 7



The backward iterates of a randomly chosen point, generation 8



The backward iterates of a randomly chosen point, generation 9











Let  $f: M_1 \to M_0$  be *d*-to-1 covering map, *t* any point in  $M_0$ , and  $t_0, t_1, \ldots, t_{d-1}$  the *d* preimages of *t* under *f*. Any loop *a* based at *t* lifts to *d* paths starting at  $T = t_0, t_1, \ldots, t_{d-1}$ . The loop *a* induces a (bijective) transformation  $a: T \to T$  given by

 $a(t_x) =$  the end point of the lift of a starting at  $t_x$ 

This is the **monodromy action** (monodromy transformation) of the loop *a*.

The **monodromy group** of f is the subgroup of Sym(T) consisting of the monodromy transformations induced by the fundamental group of  $M_0$  based at t.





(01)(2)(3)(4657)

### A 3-to-1 covering

## (take t = 1 and lift $a^2, ab^2a$ )





$$aa(10) = 11$$
  $aa(11) = 10$   $aa(12) = 12$   
 $ab^2a(10) = 11$   $ab^2a(11) = 12$   $ab^2a(12) = 10$ 











#### Definition (Nekrashevych)

Each loop based at t in  $M_0$  induces an automorphism of the tree of pre-images of t. The group of all these tree automorphisms is called the iterated monodromy group of f. Thus,

 $IMG(f) = \pi_1(M_0)/Ker$ (action of  $\pi_1$  on the tree of preimages)

Lift twice

## (take t = 1 and lift $ab^2a$ )



 $ab^2a:100 
ightarrow 110 
ightarrow 121 
ightarrow 101 
ightarrow 111 
ightarrow 000 
ightarrow 120 
ightarrow 102 
ightarrow 112 
ightarrow 122$ 

# Post-critically finite polynomials

f = a post-critically finite polynomial of degree d $f(z) = 2z^3 - 3z^2 + 1/2$ f'(z) = 6z(z-1) so critical points 0 and 1 with orbits



$$\begin{split} M_0 &= \mathbb{C} - \mathsf{PCV}(f) \text{ (the post-critical value set removed)} \\ M_1 &= f^{-1}(M_0) = \mathbb{C} - f^{-1}(\mathsf{PCV}(f)) \text{ (the post-critical value set removed along with its preimages)} \\ M_0 &= \mathbb{C} - \{1/2, -1/2, 0\} \text{ and } M_1 = \\ \mathbb{C} - \{1/2, -1/2, 0\} \cup \{\text{two preimages of } 0\} \cup \{\text{one preimage of } 1/2\} \\ \text{Then } f \text{ restricted to} \end{split}$$

$$f: M_1 \rightarrow M_0$$

is a *d*-to-1 covering.

. .

Moreover,  $M_1 \subseteq M_0$  and we can keep taking preimages and lift loops forever.

$$. \xrightarrow{f} M_4 \xrightarrow{f} \longrightarrow M_3 \xrightarrow{f} M_3 \xrightarrow{f} M_2 \xrightarrow{f} M_1 \xrightarrow{f} M_0$$

#### Definition (Smale)

A polynomial is conservative if all of its critical points are fixed (in particular, such polynomials are post-critically finite).









# Near 0, the term $15z^4$ in $15z^4 - 24z^5 + 10z^6$ dominates ...

... and everything looks more and more like  $z \mapsto z^4$ 



#### We have

$$f(z)-1 = 5z^4 - 4z^5 - 1 = 20(z-1)^3 + 45(z-1)^4 + 36(z-1)^5 + 10(z-1)^6$$

Near 1, the term  $20(z-1)^3$  dominates, things wrap around 1 thrice and behave like  $z \mapsto z^3$ 

#### *r*-ary odometer, corresponding to $z \mapsto z^r$



Applying f deletes the last digit. The loop a acts by "adding 1" on the tree of preimages of t = 1.

$$a(0w)=1w$$
  $a(1w)=0a(w)$ 

*r*-ary odometer, corresponding to  $z \mapsto z^r$ , as a transducer

Ternary odometer (adding 1 ternary)

(012)

$$\mathsf{a}(\mathsf{0}w) = \mathsf{1}w \qquad \mathsf{a}(\mathsf{1}w) = \mathsf{2}\mathsf{a}(w) \qquad \mathsf{a}(\mathsf{2}w) = \mathsf{0}\mathsf{a}(w)$$



# Parametrization by bi-colored trees



# Parametrization by bi-colored trees



## Parametrization by bi-colored trees



## From bi-colored trees to finite transducers

$$\begin{array}{ll} \alpha_4 = (0,1,2,3,4) & \alpha_5 = (05) & \alpha_7 = (6,7) & \alpha_8 = (6,8) \\ \alpha_{10} = (9,10) & \alpha_{12} = (0,6,9,11,12) & \alpha_{14} = (0,13,14) \end{array}$$



#### From transducers to group actions



 ${\it G}=\langle {\it a},{\it b}
angle$  acts on words over  ${\it X}=\{0,1,2\}$  as follows

$$a(0w) = 1w \qquad b(0w) = 2w$$
$$a(1w) = 0aw \qquad b(1w) = 1w$$
$$a(2w) = 2w \qquad b(2w) = 0bw$$

They act as binary odometers over two binary alphabets that share the 0 digit, but not not the nonzero digit.

. . .

Rooted ternary tree  $X^*$   $X = \{0, 1, 2\}$ 

 $X^*$  is the set of all words over the 3-letter alphabet  $X = \{0, 1, 2\}$ .

 $X^* = \{\epsilon, 0, 1, 2, 00, 01, 02, 10, 11, 12, 20, 21, 22, \dots\} = X^0 \cup X^1 \cup X^2 \cup \dots$ 



## Schreier graph = graph of the action of a and b



## Schreier graph = graph of the action of a and b

Level 3



## The sequence of Schreier graphs approximates the Julia set



# The topological closure of IMG(f)

#### Theorem

Let f be a conservative polynomial and G = IMG(f). If all critical points of f have even multiplicities, then

$$G = \operatorname{Alt}(d) \wr_X G = \operatorname{Alt}(d) \ltimes \underbrace{G \times G \times \cdots \times G}_d$$

(the even case)

and, consequently, G is a finitely generated, self-replicating, regular branch group, branching over itself.

#### Corollary

The group G is dense in the iterated permutational wreath product

 $\operatorname{Alt}(d) \wr_X (\operatorname{Alt}(d) \wr_X (\operatorname{Alt}(d) \wr \dots$ 

In other words, the closure of G consists of all tree automorphisms whose local permutation at every vertex is even.

#### Theorem

Let f have at least one odd multiplicity. Denote by E the subgroup of index 2 in G consisting of the elements whose top permutation is even. Then G is a finitely generated, self-replicating, regular branch group, branching over E. Moreover,

$$G \leq_2 \operatorname{Sym}(d) \wr_X G = \operatorname{Sym} \ltimes \underbrace{G \times G \times \cdots \times G}_d$$

consisting of the elements  $\alpha(g_0, \ldots, g_{d-1})$  for which the product of the top permutations in  $g_0, \ldots, g_{d-1}$  has the same parity as  $\alpha$ .

In other words, the closure consists of all tree automorphisms for which the parity of the local permutation at every vertex agrees with the total parity of the local permutations of its d children.

## On closures of branch groups



parity of  $\alpha = \text{sum of the parities of } \alpha_0, \alpha_1, \dots, \alpha_{d-1}$ 

#### Theorem (Garrido-Š)

Let G be a self-similar, self-replicating, regular branch group of tree automorphisms in  $Aut(X^*)$ . Then its closure in  $Aut(X^*)$  is finitely constrained (a group tree-shift of finite type).

## The semigroup generated by the odometers

#### Theorem

Let f be a conservative polynomial, G = IMG(f), with the standard generating set S coming from the bi-colored tree. The semigroup generated by S is the free partially commutative semigroup on S (called trace in CS), with the commuting (called independence in CS) relations

 $a_x a_y = a_y a_x \iff a_x$  and  $a_y$  share a digit



Zoran Šunić, Hofstra University

# Group presentations (we have one for every G = IMG(f))

#### Theorem

The map

$$a\mapsto a^2 \qquad b\mapsto b^2$$

extends to an injective homomorphism  $\phi : G \to G$ . A presentation for G(2; 2) is given by

$$\langle a, b \mid R \cup \phi(R) \cup \phi^2(R) \cup \dots \}$$

where

$$R = \{(aba^{-1}b^{-1})^3, \\ aba^{-1}b^{-1}abab^{-1}aba^{-1}b^{-1}a^{-2}, \\ bab^{-1}a^{-1}baba^{-1}bab^{-1}a^{-1}b^{-2}, \\ ab^{-1}a^{-1}baba^{-1}b^{-1}(a^{-1}b^{-1}a^2ba^{-1}bab^{-1}a^{-1})^{-1}\}$$

# The spectrum of G(r; k)

(G(3;5))

k = # of odometers = # of critical points = the rank of  $\pi_1$  r = the odometer arity = local degree near critical pts = multiplicity +1 d = the degree of the polynomial = # fixed points = # vertices =k(r-1) + 1

The k odometers share the digit 0 but none of the other digits.



# The spectrum of G(2,2)



# Spectrum of G(2;2)

$$P_{n+1}(x) = (x-2)^{3^n} \cdot P_n(x^2 - 2x - 4)$$
  
Denote  $q(x) = x^2 - 2x - 4$ .

$$P_0(x) = x - 4$$

$$P_1(x) = (x - 2)(q(x) - 4)$$

$$P_2(x) = (x - 2)^3(q(x) - 2)(q(q(x)) - 4)$$

$$P_3(x) = (x - 2)^{3^2}(q(x) - 2)^3(q(q(x)) - 2)(q(q(q(x))) - 4)$$

So, the spectrum on level n is

$$q^{-n}(4)\cup\bigcup_{i=0}^{n-1}q^{-i}(2)$$

# Spectrum of G(r;k)

Fix k and set  $k_0 = k - 1$ . Let  $p_r$  and  $q_r$ , be the polynomials recursively defined by

$$\begin{aligned} p_0(x) &= 1, & q_0(x) &= 2k, \\ p_1(x) &= x - 2k_0, & q_1(x) &= x, \\ p_r(x) &= (x - 2k_0) \cdot p_{r-1}(x) - p_{r-2}(x), & q_r(x) &= (x - 2k_0) \cdot q_{r-1}(x) - q_{r-2}(x). \end{aligned}$$

When k = 2,

. . .

$$p_0(x) = 1 q_0(x) = 4 p_1(x) = x - 2 q_1(x) = x p_2(x) = x^2 - 4x + 3 q_2(x) = x^2 - 2x - 4 p_3(x) = x^3 - 6x^2 + 10x - 4 q_3(x) = x^3 - 4x^2 - x + 8$$

#### Theorem

The characteristic polynomial of the adjacency matrix of the nth level Schreier graph of G(r; k) is given recursively by

$$P_{n+1}(x) = (p_{r-1}(x))^{(k-1)d^n} P_n(q_r(x))$$

The spectrum of the corresponding infinite Schreier graph (coming from the action on right-infinite words) is a set of isolated points together with its closure, which is a Cantor set (and is the Julia set of  $q_r$ )

The sequence of scaled Laplacians  $r^n L_n$  on level n converges to a Laplacian on the Julia set of f.

# Spectrum of the monoid M(r; k)

#### Theorem

The spectrum of the adjacency matrix of the nth level Schreier graph of the monoid M(r; k) is given by backward iterations of the polynomial

(M(5,3))

$$q_r(x) = x(x-k_0)^{r-1}$$

