

A NO-REPLICA TRICK FOR THE FREE ENERGY

Sergio Hernández-Cuenca

based on w.i.p. with Ven Chandrasekaran, Netta Engelhardt and Sebastian Fischetti

> Gravitational Emergence in AdS/CFT BIRS

> > October 28, 2021

INTRODUCTION	THE GENERAL PRESCRIPTION	A Story about JT	DISCUSSION
000	000	00000000	000

INTRODUCTION

THE GENERAL PRESCRIPTION

A Story about JT

DISCUSSION

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
●OO	000	00000000	000

INTRODUCTION

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000	000	00000000	000
			1

► The Euclidean GPI is a mysterious object in quantum gravity

$$\mathcal{P}(B) = \int_{\partial M = B} \mathcal{D}g \ e^{-S[g]}$$

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000	000	00000000	000
			1

► The Euclidean GPI is a mysterious object in quantum gravity

$$\mathcal{P}(B) = \int_{\partial M = B} \mathcal{D}g \ e^{-S[g]}$$

Generally assumed to compute some sort of partition function:

$$\overline{Z(B)} = \mathcal{P}(B)$$

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000	000	00000000	000

► The Euclidean GPI is a mysterious object in quantum gravity

$$\mathcal{P}(B) = \int_{\partial M = B} \mathcal{D}g \ e^{-S[g]}$$

Generally assumed to compute some sort of partition function:

$$\overline{Z(B)} = \mathcal{P}(B)$$

- ► Inclusion of connected topologies has crucial consequences for:
 - von Neumann entropies (unitary Page curve)
 - gravitational correlators (factorization problem $\overline{Z(B^m)} \neq \overline{Z(B)}^m$)
 - free energies [Engelhardt-Fischetti-Maloney]

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000	000	00000000	000

► The Euclidean GPI is a mysterious object in quantum gravity

$$\mathcal{P}(B) = \int_{\partial M = B} \mathcal{D}g \ e^{-S[g]}$$

Generally assumed to compute some sort of partition function:

$$\overline{Z(B)} = \mathcal{P}(B)$$

- ► Inclusion of connected topologies has crucial consequences for:
 - von Neumann entropies (unitary Page curve)
 - gravitational correlators (factorization problem $\overline{Z(B^m)} \neq \overline{Z(B)}^m$)
 - free energies [Engelhardt-Fischetti-Maloney]
- Annealed vs quenched free energies:

$$F_a = -\frac{1}{\beta}\log\overline{Z}$$
 vs $F_q = -\frac{1}{\beta}\overline{\log Z}$

• How can we use \mathcal{P} to compute $\overline{\log Z}$?

• How can we use \mathcal{P} to compute $\overline{\log Z}$?

Mathematical identity:

$$\log Z = \lim_{m \to 0} \frac{1}{m} (Z^m - 1)$$

• How can we use \mathcal{P} to compute $\overline{\log Z}$?

Mathematical identity:

$$\log Z = \lim_{m \to 0} \frac{1}{m} (Z^m - 1)$$

Put overlines on both sides and we are done, right?

$$\overline{\log Z} = \lim_{m \to 0} \frac{1}{m} (\mathcal{P}(B^m) - 1)$$

• How can we use \mathcal{P} to compute $\overline{\log Z}$?

Mathematical identity:

$$\log Z = \lim_{m \to 0} \frac{1}{m} (Z^m - 1)$$

Put overlines on both sides and we are done, right?

$$\overline{\log Z} = \lim_{m \to 0} \frac{1}{m} (\mathcal{P}(B^m) - 1)$$

► Not so fast: continuation to no replicas is ill-defined

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000	●00	00000000	000

THE GENERAL PRESCRIPTION

000 00000000 0000	INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
	000	000	00000000	000

► Assume higher topologies are parametrically suppressed

► Assume higher topologies are parametrically suppressed

• Constrain $\mathcal{P}(B^m)$ to replica symmetric manifolds M_m for $m \in \mathbb{Z}_+$

- ► Assume higher topologies are parametrically suppressed
- Constrain $\mathcal{P}(B^m)$ to replica symmetric manifolds M_m for $m \in \mathbb{Z}_+$
- ► Work in quotient $\hat{M}_m = M_m / \mathbb{Z}_m$ for a unique extension to $m \in \mathbb{R}_{\geq 0}$ [Lewkowycz-Maldacena]

- Assume higher topologies are parametrically suppressed
- Constrain $\mathcal{P}(B^m)$ to replica symmetric manifolds M_m for $m \in \mathbb{Z}_+$
- ► Work in quotient $\hat{M}_m = M_m / \mathbb{Z}_m$ for a unique extension to $m \in \mathbb{R}_{\geq 0}$ [Lewkowycz-Maldacena]
- Localize the path integral to gravitational saddle points:

$$\overline{\log Z} = \lim_{m \to 0} \frac{1}{m} (e^{-I[M_m]} - 1) = \lim_{m \to 0} \frac{1}{m} (e^{-mI[\hat{M}_m]} - 1) = -I[\hat{M}_0]$$

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000	000	00000000	000

TWO INTERESTING OBSERVATIONS

1. Not just the LM recipe...

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000	000	00000000	000

TWO INTERESTING OBSERVATIONS

1. Not just the LM recipe...

Chandrasekaran, HC, Engelhardt, Fischetti

...bring the CHEF recipe!

TWO INTERESTING OBSERVATIONS

1. Not just the LM recipe...

Chandrasekaran, HC, Engelhardt, Fischetti

...bring the CHEF recipe!

2. Saddle points in the $m \rightarrow 0$ limit give quenched generating functionals in quantum gravity... who are these creatures?

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000	000	●00000000	000

A Story about JT

INTRODUCTION THE GE	ENERAL PRESCRIPTION A STORY ABOU	r JT DISCUSSION
000 000	00000000	000

The Quotient Geometry

Example: replica wormhole M_3 and \mathbb{Z}_3 orbifold \hat{M}_3 [East Coast]

INTRODUCTION THE GE	ENERAL PRESCRIPTION A STORY ABOU	r JT DISCUSSION
000 000	00000000	000

THE QUOTIENT GEOMETRY

Example: replica wormhole M_3 and \mathbb{Z}_3 orbifold \hat{M}_3 [East Coast]

In general, M̂_m is conformal to a Poincaré disk with two conical defects of opening angle 2π/m

INTRODUCTION THE GE	ENERAL PRESCRIPTION A STORY ABOU	r JT DISCUSSION
000 000	00000000	000

THE QUOTIENT GEOMETRY

Example: replica wormhole M_3 and \mathbb{Z}_3 orbifold \hat{M}_3 [East Coast]

- ► In general, \hat{M}_m is conformal to a Poincaré disk with two conical defects of opening angle $2\pi/m$
- Wormhole throat sizes relate to proper distance between defects

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000	000	00000000	000

JT AND BOUNDARY CONDITIONS

► JT action:

$$I = -\frac{S_0}{4\pi} \left[\int_M R + 2 \int_{\partial M} K \right] - \frac{1}{2} \int_M \Phi(R+2) - \int_{\partial M} \Phi(K-1)$$

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000	000	00000000	000

JT AND BOUNDARY CONDITIONS

► JT action:

$$I = -\frac{S_0}{4\pi} \left[\int_M R + 2 \int_{\partial M} K \right] - \frac{1}{2} \int_M \Phi(R+2) - \int_{\partial M} \Phi(K-1)$$

• Gauss-Bonnet and Φ path integral:

$$I = -S_0 \chi(M) - \int_{\partial M} \Phi(K-1)$$

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000	000	00000000	000

JT AND BOUNDARY CONDITIONS

► JT action:

$$I = -\frac{S_0}{4\pi} \left[\int_M R + 2 \int_{\partial M} K \right] - \frac{1}{2} \int_M \Phi(R+2) - \int_{\partial M} \Phi(K-1)$$

• Gauss-Bonnet and Φ path integral:

$$I = -S_0 \chi(M) - \int_{\partial M} \Phi(K-1)$$

Boundary conditions:

Cutoff boundaries identified with level sets of the dilaton $\Phi|_{\partial M} = 1/\delta$. Limit $\delta \to 0$ taken with fixed ratio $L_{\partial M}/\Phi|_{\partial M} = \beta$

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000	000	0000000	000

AN INTERACTING SCHWARZIAN THEORY

Near-boundary metric:

$$g = \left(\frac{1}{(1-\xi)^2} + h_a^{(m)}(\phi) + \mathcal{O}(1-\xi)\right) \left(d\xi^2 + d\phi^2\right)$$

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000	000	00000000	000

AN INTERACTING SCHWARZIAN THEORY

Near-boundary metric:

$$g = \left(\frac{1}{(1-\xi)^2} + h_a^{(m)}(\phi) + \mathcal{O}(1-\xi)\right) \left(d\xi^2 + d\phi^2\right)$$

• Wiggle $\phi : \mathbb{S}_{\beta} \to \partial M \cong \mathbb{S}$ defined by $g|_{\partial M} = du^2/\delta^2$

$$-\int_{\partial M} \Phi(K-1) = \int_{\mathbb{S}_{\beta}} du \left(\left\{\tan\frac{\phi}{2}, u\right\} + \frac{1}{2}(1+3h_a^{(m)}(\phi)) \phi'(u)^2\right)$$

Note $h_a^{(m)}(\phi) = -\frac{1}{3}$ for m = 1,2 leave the Schwarzian alone

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000	000	00000000	000

AN INTERACTING SCHWARZIAN THEORY

Near-boundary metric:

$$g = \left(\frac{1}{(1-\xi)^2} + h_a^{(m)}(\phi) + \mathcal{O}(1-\xi)\right) \left(d\xi^2 + d\phi^2\right)$$

• Wiggle $\phi : \mathbb{S}_{\beta} \to \partial M \cong \mathbb{S}$ defined by $g|_{\partial M} = du^2/\delta^2$

$$-\int_{\partial M} \Phi(K-1) = \int_{\mathbb{S}_{\beta}} du \left(\left\{\tan\frac{\phi}{2}, u\right\} + \frac{1}{2}(1+3h_a^{(m)}(\phi)) \phi'(u)^2\right)$$

Note $h_a^{(m)}(\phi) = -\frac{1}{3}$ for m = 1, 2 leave the Schwarzian alone

Wiggle equation of motion:

$$\left(\frac{1}{\phi'}\left(\frac{\phi''}{\phi'}\right)' - 3h_a^{(m)}(\phi)\phi'\right)' + \frac{3}{2}\left(h_a^{(m)}(\phi)\right)'\phi' = 0$$

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000	000	00000000	000

THE JT HELLSCAPE

• Explicit JT wiggle action for all replica $m \in \mathbb{R}_{\geq 0}$ and moduli *a*:

$$I_a^{(m)}(eta) = rac{8}{eta} \operatorname{arcsinh}^2 \sqrt{\sin^2 rac{\pi}{m} \cosh^2 rac{a}{2} - 1}$$

Note $I_a^{(1)}(\beta) = -2\pi^2/\beta$, $I_a^{(2)}(\beta) = 2a^2/\beta$

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000	000	00000000	000

THE JT HELLSCAPE

• Explicit JT wiggle action for all replica $m \in \mathbb{R}_{\geq 0}$ and moduli *a*:

$$I_a^{(m)}(eta) = rac{8}{eta} \operatorname{arcsinh}^2 \sqrt{\sin^2 rac{\pi}{m} \cosh^2 rac{a}{2} - 1}$$

Note $I_a^{(1)}(\beta) = -2\pi^2/\beta$, $I_a^{(2)}(\beta) = 2a^2/\beta$

Action and stability analysis...

... and the modulus is not stabilized

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000	000	000000000	000

ADDING MATTER

Conformal matter with classical sources:

$$I_{\rm mat} = \frac{1}{2} \int_M (d\psi)^2.$$

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000	000	000000000	000

ADDING MATTER

Conformal matter with classical sources:

$$I_{\rm mat} = \frac{1}{2} \int_M (d\psi)^2.$$

▶ Solve in terms of boundary profile specified by $\psi_0: \partial M \to \mathbb{R}$

$$I_{\text{mat}} = \frac{1}{2} \int_{\partial M} \psi \nabla_n \psi = \frac{1}{2} \int_{\mathbb{S}} d\phi \, d\tilde{\phi} \, \psi_0(\phi) S(\phi, \tilde{\phi}) \psi_0(\tilde{\phi}),$$

where S is an integral kernel known explicitly but gross

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000	000	000000000	000

ADDING MATTER

Conformal matter with classical sources:

$$I_{\rm mat} = \frac{1}{2} \int_M (d\psi)^2.$$

▶ Solve in terms of boundary profile specified by $\psi_0: \partial M \to \mathbb{R}$

$$I_{\text{mat}} = \frac{1}{2} \int_{\partial M} \psi \nabla_n \psi = \frac{1}{2} \int_{\mathbb{S}} d\phi \, d\tilde{\phi} \, \psi_0(\phi) S(\phi, \tilde{\phi}) \psi_0(\tilde{\phi}),$$

where S is an integral kernel known explicitly but gross

Wiggle equation of motion

$$\left(\frac{1}{\phi'}\left(\frac{\phi''}{\phi'}\right)' - 3h_a(\phi)\phi'\right)' + \frac{3}{2}\left(h_a(\phi)\right)'\phi' + \psi_0(\phi)\int_{\mathbb{S}} d\tilde{\phi}\,S(\phi,\tilde{\phi})\psi_0(\tilde{\phi}) = 0$$

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000	000	000000000	000

A SILVER LINING

• Modulus saddles appear for m = 2 as sources are turned on:

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000	000	000000000	000

A SILVER LINING

• Modulus saddles appear for m = 2 as sources are turned on:

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000	000	000000000	000

A SILVER LINING

• Modulus saddles appear for m = 2 as sources are turned on:

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000	000	000000000	000

A SILVER LINING

• Modulus saddles appear for m = 2 as sources are turned on:

▶ Will modulus saddles make it all the way to *m* < 1?

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000	000	000000000	000

A SILVER LINING

• Modulus saddles appear for m = 2 as sources are turned on:

▶ Will modulus saddles make it all the way to *m* < 1?

THE LITTLE SADDLE THAT COULD

- ▶ Pair of stable/unstable branches of solutions exist for m < 1!
- ► The little wormhole can be made to dominate over the disk one
- Action and stability analysis for m = .75:

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000	000	00000000	000

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000	000	00000000	000

	INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000 000 00000 000	000	000	00000000	000

Little saddle spotted at m = .65

	INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000 000 00000 000	000	000	00000000	000

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000	000	00000000	000

Little saddle spotted at m = .55

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000	000	00000000	•00

DISCUSSION

INTRODUCTION	THE GENERAL PRESCRIPTION	A STORY ABOUT JT	DISCUSSION
000	000	00000000	000

Outlook

- Will the little saddle make it to $m \rightarrow 0$?
- What properties does the resulting generating functional have?
- How does it differ from the annealed result?
- What is the effect on scalar correlation functions?

OPEN QUESTIONS AND FUTURE DIRECTIONS

- ► Is there a simple diagnostic for when quenched $m \rightarrow 0$ saddle points will differ from annealed ones?
- Is there any correlation between dominance of replica wormholes for *m* ∈ Z₊ and for 0 < *m* < 1?</p>
- Are there any universal features about $m \rightarrow 0$ saddle points and quenched generating functionals in quantum gravity?
- Other toy models for the study $m \rightarrow 0$ saddles?

OPEN QUESTIONS AND FUTURE DIRECTIONS

- ► Is there a simple diagnostic for when quenched $m \rightarrow 0$ saddle points will differ from annealed ones?
- Is there any correlation between dominance of replica wormholes for *m* ∈ Z₊ and for 0 < *m* < 1?</p>
- Are there any universal features about $m \rightarrow 0$ saddle points and quenched generating functionals in quantum gravity?
- Other toy models for the study $m \rightarrow 0$ saddles?

Thank you for listening!