UC SANTA BARBARA

A No-Replica Trick for the Free Energy

Sergio Hernández-Cuenca
based on w.i.p. with
Ven Chandrasekaran, Netta Engelhardt and Sebastian Fischetti

Gravitational Emergence in AdS/CFT
BIRS
October 28, 2021

INTRODUCTION

The General Prescription

A Story about JT

DISCUSSION

INTRODUCTION

BACKGROUND

- The Euclidean GPI is a mysterious object in quantum gravity

$$
\mathcal{P}(B)=\int_{\partial M=B} \mathcal{D} g e^{-S[g]}
$$

BACKGROUND

- The Euclidean GPI is a mysterious object in quantum gravity

$$
\mathcal{P}(B)=\int_{\partial M=B} \mathcal{D} g e^{-S[g]}
$$

- Generally assumed to compute some sort of partition function:

$$
\overline{Z(B)}=\mathcal{P}(B)
$$

BACKGROUND

- The Euclidean GPI is a mysterious object in quantum gravity

$$
\mathcal{P}(B)=\int_{\partial M=B} \mathcal{D} g e^{-S[g]}
$$

- Generally assumed to compute some sort of partition function:

$$
\overline{Z(B)}=\mathcal{P}(B)
$$

- Inclusion of connected topologies has crucial consequences for:
- von Neumann entropies (unitary Page curve)
- gravitational correlators (factorization problem $\overline{Z\left(B^{m}\right)} \neq \overline{Z(B)^{m}}$)
- free energies

BACKGROUND

- The Euclidean GPI is a mysterious object in quantum gravity

$$
\mathcal{P}(B)=\int_{\partial M=B} \mathcal{D} g e^{-S[g]}
$$

- Generally assumed to compute some sort of partition function:

$$
\overline{Z(B)}=\mathcal{P}(B)
$$

- Inclusion of connected topologies has crucial consequences for:
- von Neumann entropies (unitary Page curve)
- gravitational correlators (factorization problem $\overline{Z\left(B^{m}\right)} \neq \overline{Z(B)^{m}}$)
- free energies
[Engelhardt-Fischetti-Maloney]
- Annealed vs quenched free energies:

$$
F_{a}=-\frac{1}{\beta} \log \bar{Z} \quad \text { vs } \quad F_{q}=-\frac{1}{\beta} \overline{\log Z}
$$

Towards a No-Replica Trick

- How can we use \mathcal{P} to compute $\overline{\log Z}$?

Towards a No-Replica Trick

- How can we use \mathcal{P} to compute $\overline{\log Z}$?
- Mathematical identity:

$$
\log Z=\lim _{m \rightarrow 0} \frac{1}{m}\left(Z^{m}-1\right)
$$

Towards a No-Replica Trick

- How can we use \mathcal{P} to compute $\overline{\log Z}$?
- Mathematical identity:

$$
\log Z=\lim _{m \rightarrow 0} \frac{1}{m}\left(Z^{m}-1\right)
$$

- Put overlines on both sides and we are done, right?

$$
\overline{\log Z}=\lim _{m \rightarrow 0} \frac{1}{m}\left(\mathcal{P}\left(B^{m}\right)-1\right)
$$

Towards a No-Replica Trick

- How can we use \mathcal{P} to compute $\overline{\log Z}$?
- Mathematical identity:

$$
\log Z=\lim _{m \rightarrow 0} \frac{1}{m}\left(Z^{m}-1\right)
$$

- Put overlines on both sides and we are done, right?

$$
\overline{\log Z}=\lim _{m \rightarrow 0} \frac{1}{m}\left(\mathcal{P}\left(B^{m}\right)-1\right)
$$

- Not so fast: continuation to no replicas is ill-defined

The General Prescription

An LM-Style No-Replica Trick

- Assume higher topologies are parametrically suppressed

An LM-Style No-Replica Trick

- Assume higher topologies are parametrically suppressed
- Constrain $\mathcal{P}\left(B^{m}\right)$ to replica symmetric manifolds M_{m} for $m \in \mathbb{Z}_{+}$

An LM-Style No-Replica Trick

- Assume higher topologies are parametrically suppressed
- Constrain $\mathcal{P}\left(B^{m}\right)$ to replica symmetric manifolds M_{m} for $m \in \mathbb{Z}_{+}$
- Work in quotient $\hat{M}_{m}=M_{m} / \mathbb{Z}_{m}$ for a unique extension to $m \in \mathbb{R}_{\geq 0}$

An LM-Style No-Replica Trick

- Assume higher topologies are parametrically suppressed
- Constrain $\mathcal{P}\left(B^{m}\right)$ to replica symmetric manifolds M_{m} for $m \in \mathbb{Z}_{+}$
- Work in quotient $\hat{M}_{m}=M_{m} / \mathbb{Z}_{m}$ for a unique extension to $m \in \mathbb{R}_{\geq 0}$
[Lewkowycz-Maldacena]
- Localize the path integral to gravitational saddle points:

$$
\overline{\log Z}=\lim _{m \rightarrow 0} \frac{1}{m}\left(e^{-I\left[M_{m}\right]}-1\right)=\lim _{m \rightarrow 0} \frac{1}{m}\left(e^{-m I\left[\hat{M}_{m}\right]}-1\right)=-I\left[\hat{M}_{0}\right]
$$

Two Interesting Observations

1. Not just the LM recipe...

Two Interesting Observations

1. Not just the LM recipe...

Chandrasekaran, HC, Engelhardt, Fischetti
...bring the CHEF recipe!

Two Interesting Observations

1. Not just the LM recipe...

Chandrasekaran, HC, Engelhardt, Fischetti
...bring the CHEF recipe!
2. Saddle points in the $m \rightarrow 0$ limit give quenched generating functionals in quantum gravity... who are these creatures?

A Story about JT

The Quotient Geometry

- Example: replica wormhole M_{3} and \mathbb{Z}_{3} orbifold \hat{M}_{3}

The Quotient Geometry

- Example: replica wormhole M_{3} and \mathbb{Z}_{3} orbifold \hat{M}_{3}

- In general, \hat{M}_{m} is conformal to a Poincaré disk with two conical defects of opening angle $2 \pi / \mathrm{m}$

The Quotient Geometry

- Example: replica wormhole M_{3} and \mathbb{Z}_{3} orbifold \hat{M}_{3}

- In general, \hat{M}_{m} is conformal to a Poincaré disk with two conical defects of opening angle $2 \pi / \mathrm{m}$
- Wormhole throat sizes relate to proper distance between defects

JT and Boundary Conditions

- JT action:

$$
I=-\frac{S_{0}}{4 \pi}\left[\int_{M} R+2 \int_{\partial M} K\right]-\frac{1}{2} \int_{M} \Phi(R+2)-\int_{\partial M} \Phi(K-1)
$$

JT and Boundary Conditions

- JT action:

$$
I=-\frac{S_{0}}{4 \pi}\left[\int_{M} R+2 \int_{\partial M} K\right]-\frac{1}{2} \int_{M} \Phi(R+2)-\int_{\partial M} \Phi(K-1)
$$

- Gauss-Bonnet and Φ path integral:

$$
I=-S_{0} \chi(M)-\int_{\partial M} \Phi(K-1)
$$

JT and Boundary Conditions

- JT action:

$$
I=-\frac{S_{0}}{4 \pi}\left[\int_{M} R+2 \int_{\partial M} K\right]-\frac{1}{2} \int_{M} \Phi(R+2)-\int_{\partial M} \Phi(K-1)
$$

- Gauss-Bonnet and Φ path integral:

$$
I=-S_{0} \chi(M)-\int_{\partial M} \Phi(K-1)
$$

- Boundary conditions:

Cutoff boundaries identified with level sets of the dilaton $\left.\Phi\right|_{\partial M}=1 / \delta$. Limit $\delta \rightarrow 0$ taken with fixed ratio $L_{\partial M} /\left.\Phi\right|_{\partial M}=\beta$

An Interacting Schwarzian Theory

- Near-boundary metric:

$$
g=\left(\frac{1}{(1-\xi)^{2}}+h_{a}^{(m)}(\phi)+\mathcal{O}(1-\xi)\right)\left(d \xi^{2}+d \phi^{2}\right)
$$

An Interacting Schwarzian Theory

- Near-boundary metric:

$$
g=\left(\frac{1}{(1-\xi)^{2}}+h_{a}^{(m)}(\phi)+\mathcal{O}(1-\xi)\right)\left(d \xi^{2}+d \phi^{2}\right)
$$

- Wiggle $\phi: \mathbb{S}_{\beta} \rightarrow \partial M \cong \mathbb{S}$ defined by $\left.g\right|_{\partial M}=d u^{2} / \delta^{2}$

$$
-\int_{\partial M} \Phi(K-1)=\int_{\mathbb{S}_{\beta}} d u\left(\left\{\tan \frac{\phi}{2}, u\right\}+\frac{1}{2}\left(1+3 h_{a}^{(m)}(\phi)\right) \phi^{\prime}(u)^{2}\right)
$$

Note $h_{a}^{(m)}(\phi)=-\frac{1}{3}$ for $m=1,2$ leave the Schwarzian alone

An Interacting Schwarzian Theory

- Near-boundary metric:

$$
g=\left(\frac{1}{(1-\xi)^{2}}+h_{a}^{(m)}(\phi)+\mathcal{O}(1-\xi)\right)\left(d \xi^{2}+d \phi^{2}\right)
$$

- Wiggle $\phi: \mathbb{S}_{\beta} \rightarrow \partial M \cong \mathbb{S}$ defined by $\left.g\right|_{\partial M}=d u^{2} / \delta^{2}$

$$
-\int_{\partial M} \Phi(K-1)=\int_{\mathbb{S}_{\beta}} d u\left(\left\{\tan \frac{\phi}{2}, u\right\}+\frac{1}{2}\left(1+3 h_{a}^{(m)}(\phi)\right) \phi^{\prime}(u)^{2}\right)
$$

Note $h_{a}^{(m)}(\phi)=-\frac{1}{3}$ for $m=1,2$ leave the Schwarzian alone

- Wiggle equation of motion:

$$
\left(\frac{1}{\phi^{\prime}}\left(\frac{\phi^{\prime \prime}}{\phi^{\prime}}\right)^{\prime}-3 h_{a}^{(m)}(\phi) \phi^{\prime}\right)^{\prime}+\frac{3}{2}\left(h_{a}^{(m)}(\phi)\right)^{\prime} \phi^{\prime}=0
$$

The JT Hellscape

- Explicit JT wiggle action for all replica $m \in \mathbb{R}_{\geq 0}$ and moduli a :

$$
I_{a}^{(m)}(\beta)=\frac{8}{\beta} \operatorname{arcsinh}^{2} \sqrt{\sin ^{2} \frac{\pi}{m} \cosh ^{2} \frac{a}{2}-1}
$$

Note $I_{a}^{(1)}(\beta)=-2 \pi^{2} / \beta, I_{a}^{(2)}(\beta)=2 a^{2} / \beta$

The JT Hellscape

- Explicit JT wiggle action for all replica $m \in \mathbb{R}_{\geq 0}$ and moduli a :

$$
I_{a}^{(m)}(\beta)=\frac{8}{\beta} \operatorname{arcsinh}^{2} \sqrt{\sin ^{2} \frac{\pi}{m} \cosh ^{2} \frac{a}{2}-1}
$$

Note $I_{a}^{(1)}(\beta)=-2 \pi^{2} / \beta, I_{a}^{(2)}(\beta)=2 a^{2} / \beta$

- Action and stability analysis...

... and the modulus is not stabilized

Adding Matter

- Conformal matter with classical sources:

$$
I_{\mathrm{mat}}=\frac{1}{2} \int_{M}(d \psi)^{2} .
$$

Adding Matter

- Conformal matter with classical sources:

$$
I_{\mathrm{mat}}=\frac{1}{2} \int_{M}(d \psi)^{2}
$$

- Solve in terms of boundary profile specified by $\psi_{0}: \partial M \rightarrow \mathbb{R}$

$$
I_{\mathrm{mat}}=\frac{1}{2} \int_{\partial M} \psi \nabla_{n} \psi=\frac{1}{2} \int_{\mathbb{S}} d \phi d \tilde{\phi} \psi_{0}(\phi) S(\phi, \tilde{\phi}) \psi_{0}(\tilde{\phi})
$$

where S is an integral kernel known explicitly but gross

Adding Matter

- Conformal matter with classical sources:

$$
I_{\mathrm{mat}}=\frac{1}{2} \int_{M}(d \psi)^{2}
$$

- Solve in terms of boundary profile specified by $\psi_{0}: \partial M \rightarrow \mathbb{R}$

$$
I_{\mathrm{mat}}=\frac{1}{2} \int_{\partial M} \psi \nabla_{n} \psi=\frac{1}{2} \int_{\mathbb{S}} d \phi d \tilde{\phi} \psi_{0}(\phi) S(\phi, \tilde{\phi}) \psi_{0}(\tilde{\phi})
$$

where S is an integral kernel known explicitly but gross

- Wiggle equation of motion

$$
\left(\frac{1}{\phi^{\prime}}\left(\frac{\phi^{\prime \prime}}{\phi^{\prime}}\right)^{\prime}-3 h_{a}(\phi) \phi^{\prime}\right)^{\prime}+\frac{3}{2}\left(h_{a}(\phi)\right)^{\prime} \phi^{\prime}+\psi_{0}(\phi) \int_{\mathbb{S}} d \tilde{\phi} S(\phi, \tilde{\phi}) \psi_{0}(\tilde{\phi})=0
$$

A Silver Lining

- Modulus saddles appear for $m=2$ as sources are turned on:

A Silver Lining

- Modulus saddles appear for $m=2$ as sources are turned on:

A Silver Lining

- Modulus saddles appear for $m=2$ as sources are turned on:

A Silver Lining

- Modulus saddles appear for $m=2$ as sources are turned on:

- Will modulus saddles make it all the way to $m<1$?

A Silver Lining

- Modulus saddles appear for $m=2$ as sources are turned on:

- Will modulus saddles make it all the way to $m<1$?

Yes!

The Little Saddle that Could

- Pair of stable/unstable branches of solutions exist for $m<1$!
- The little wormhole can be made to dominate over the disk one
- Action and stability analysis for $m=.75$:

The Journey Just Began

Little saddle spotted at $m=.75$

The Journey Just Began

Little saddle spotted at $m=.7$

The Journey just Began

Little saddle spotted at $m=.65$

The Journey Just Began

Little saddle spotted at $m=.6$

The Journey Just Began

Little saddle spotted at $m=.55$

DISCUSSION

OUTLOOK

- Will the little saddle make it to $m \rightarrow 0$?
- What properties does the resulting generating functional have?
- How does it differ from the annealed result?
- What is the effect on scalar correlation functions?

Open Questions and Future Directions

- Is there a simple diagnostic for when quenched $m \rightarrow 0$ saddle points will differ from annealed ones?
- Is there any correlation between dominance of replica wormholes for $m \in \mathbb{Z}_{+}$and for $0<m<1$?
- Are there any universal features about $m \rightarrow 0$ saddle points and quenched generating functionals in quantum gravity?
- Other toy models for the study $m \rightarrow 0$ saddles?

Open Questions and Future Directions

- Is there a simple diagnostic for when quenched $m \rightarrow 0$ saddle points will differ from annealed ones?
- Is there any correlation between dominance of replica wormholes for $m \in \mathbb{Z}_{+}$and for $0<m<1$?
- Are there any universal features about $m \rightarrow 0$ saddle points and quenched generating functionals in quantum gravity?
- Other toy models for the study $m \rightarrow 0$ saddles?

Thank you for listening!

