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Abstract. We continue our study of noncommutative resolutions of Coulomb
branches in the case of quiver gauge theories. These resolutions are based on
vortex line defects in quantum field theory, but have a precise mathematical
description, which in the quiver case is a modification of the formalism of
weighted KLR algebras. While best understood in a context which depends
on the geometry of the affine Grassmannian and representation theory in char-
acteristic p, we give a description of the Coulomb branches and their commu-
tative and non-commutative resolutions which can be understood purely in
terms of algebra.

This allows us to construct a purely algebraic version of the knot homol-
ogy theory defined by Aganagić from a physical perspective, categorifying the
Reshetikhin-Turaev invariants for minuscule representations of type ADE Lie
algebras. We show that this homological invariant agrees with the categori-
fication of these invariants previously defined by the author, and thus with
Khovanov-Rozansky homology in type A.

Slodowy slices in type A and symmetric powers in C2 are special cases
of these Coulomb branches, and in this case, we recover the noncommuta-
tive Springer resolution of Bezrukavnikov and those constructed using the
Cherednik algebra by Bezrukavnikov, Finkelberg and Ginzburg.

Author’s note: As this is a continuation of the first part of this paper [Weba], we

will use notation and constructions from that paper without additional reference or

comment. You can spot links to part I as they will have blue outline instead of red.

Note that in some PDF viewers, these links will not open correctly, due to a # getting

coverted to %23. Using Adobe Acrobat seems to solve this issue, as does manually

changing the %23 in the URL back to #.

5. (Re)introduction

In [Weba, Webb, Webc], we developed a general theory of Coulomb branches from an

algebraic perspective. We showed that the Coulomb branch algebra itself, its extended

category (of line operators) and various related algebras, such as the non-commutative
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Institute is supported in part by the Government of Canada through the Department of Innovation,
Science and Economic Development Canada and by the Province of Ontario through the Ministry of
Colleges and Universities.
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resolution constructed through quantization by Bezrukavnikov and Kaledin [BK08,

Kal08, Bez06] and the category controlling their Gelfand-Tsetlin modules all have ex-

plicit combinatorial descriptions. In this sequel to these papers, we focus in on under-

standing this construction in the quiver gauge case, especially on the non-commutative

resolution and corresponding geometric constructions with coherent sheaves. Appli-

cations to the representation theory of quantum Coulomb branches in characteristic

0 have already been covered extensively in [KTW+, Webb, Web19a], so we will only

discuss these in passing.

At the root of this perspective is a description of the Coulomb branch algebra as

paths in the space TR/W , the quotient of the compact torus of the gauge group G

modulo the Weyl group W , modulo certain relations (see [Webc, (2.5a–c)]). In the case

of GLn, this space can be identified with the configuration of n points on the circle

R/Z (allowing collisions), and thus a path in this space with a diagram drawn on the

cylinder.

Fix a quiver Γ with vertex set V(Γ), and dimension vectors v,w : V(Γ) → Z≥0 for

this quiver. We should emphasize that we do allow edge loops. By a quiver gauge

theory we mean the one attached to the gauge group and matter (G, V ) given by:

(5.1) G =
∏

GL(Cvi) V =
(⊕
i→j

Hom(Cvi ,Cvj)
)⊕( ⊕

i∈V(Γ)

Hom(Cwi ,Cvi)
)
,

As described above, we can think of a path in TR/W as a path in a labeled configuration

space where vi points have label i, that is, as a string diagram on the cylinder where

strands are labeled by points in the Dynkin diagram. When we translate the relations

[Webc, (2.5a–c)] into this framework, they suddenly become very familiar to any one

used to categorification: those of KLRW (weighted KLR) algebra, as presented in

[Web19b]. The author and his collaborators exploited this in [KTW+] to study the

representation theory of shfited Yangians, but here we apply the same idea with a more

geometric perspective. Based on these ideas, we attach to the choice of Γ,v,w and

some additional auxilliary data a cylindrical KLRW algebra; these are defined by

diagrams of red and black strands drawn on a cylinder subject to local relations like

those of those of the weighted KLR algebra [Web19b].

Recall that a non-commutative crepant resolution of singularities for a com-

mutative algebra A (or the variety SpecA) is an associative algebra R such that R -mod

behaves like the category of coherent sheaves on a crepant resolution. For our purposes,

we only need consider the case where there is an idempotent e such that A = eRe: in

this case, R is a NCCR if eR is Cohen-Macaulay as an A-module, and R has global di-

mension equal to the Krull dimension of A. Since a (usual) crepant resolution of a sym-

plectic singularity is symplectic, we may as well call a NCCR of A a non-commutative

symplectic resolution in the case where SpecA has symplectic singularities.

Our main result is that:
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Theorem D If M is the Coulomb branch of an quiver gauge theory that admits

a BFN resolution, then the cylindrical KLRW algebra R̊ with the same underlying

combinatorial data defines a non-commutative symplectic resolution of singularities of

M.

Since we’ll be interested in considering versions of these varieties in positive char-

acteristic, let us note that this result is only proven for these varieties over a field of

characteristic 0 or sufficiently large (to the worried physicist: in particular, this result

holds over C), though we believe it actually is true in arbitrary characteristic.

By a BFN resolution, we mean a symplectic resolution of singularities arising from

the constructions of Braverman-Finkelberg-Nakajima in [BFN]. In physics terms, this

means that the Coulomb branch becomes smooth at a generic choice of mass parameters

(and trivial FI parameters).

The quiver gauge theories which admit BFN resolutions include those with cyclic

or linear quivers (affine type A), and those for type D and E quivers with wi only

non-zero on nodes with minuscule fundamental representations, in both cases chosen

so they correspond to dominant weight spaces (these theories are often called “good”

in the physics literature, to contrast them with “bad” and “ugly” theories). The most

familiar examples of these are resolved Slodowy slices (or more generally, S3 varieties)

for a linear quiver and the Hilbert scheme of points on C2 (or more generally, the

resolved Kleinian singularity C2/Z/`Z). We’ll discuss these examples in more detail in

Appendix A.

These non-commutative resolutions arise as the endomorphisms of tilting generators

on symplectic resolutions of the same varieties; in fact, this is how we prove that they

give non-commutative resolutions.

Theorem E If M is the Coulomb branch of a quiver gauge theory, and M̃ a BFN

resolution, then:

(1) the homogeneous coordinate ring of M̃ is an algebra of twisted cylindrical KLR

diagrams, modulo local relations.

(2) For each NCSR R of Theorem D, the variety M̃ admits a tilting generator T ,

described as an explicit module over the homogeneous coordinate ring, such that

End(T ) = R; in particular, End(T ) is a cylindrical KLRW algebra R̊.

(3) The wall-crossing functors relating different tilting generators are given by tensor

product with explicit bimodules, modeled on the braiding functors of [Web17a,

§6]; more generally, the Schober connected to these functors can constructed

using the representation theory of related algebras.

As with Theorem D, this is only currently proven in characteristic 0, though we

believe it holds in all characteristics.
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Finally, we turn to applying these algebras in topology for the construction of ho-

mological knot invariants. Recent work [Aga] of Aganagić defines such a knot invari-

ant based on the coherent sheaves on M̃ (which she denotes X ; see [Aga, §3.1.1]) in

the case where Γ is of ADE type. In this case, our quiver gauge theory must corre-

spond to a tensor product of minuscule representations in order to construct a BFN

resolution. Aganagić’s construction depends on an action of affine tangles of the cat-

egory Db(Coh M̃), which arises naturally from a family of central charge functions on

the Grothendieck group of this category: the action of affine braids is given by wall-

crossing functors associated to certain singular loci for this function, and the action of

cups and caps from a filtration that arises on the category as we approach certain walls.

We can capture this precisely in a real variation of stability in the sense of Anno,

Bezrukavnikov and Mirković [ABM15].

By Theorem E, we can translate Aganagić’s action into complexes of bimodules over

a cylindrical KRLW algebra. In particular, we give a combinatorial description of

the central charge function, which you can think of this as “integration over a non-

commutative resolution.” The affine braid group action is covered in Theorem E, and

we add cup and cap functors that extend this to an annular tangle action on the

categories Db(Coh M̃) for different theories. This gives us an annular knot invariant

defined using only KLRW algebras, which agrees with that of Aganagić; in particular,

this removes any questions about mathematical rigor from [Aga, Th. 5*]. It’s a tricky

philosophical question how rigorously you can check that a construction which does

not claim to be mathematically rigorous matches another one, but at each point, our

construction matches the description in [Aga] under the equivalences of E.

More precisely, let Γ be of ADE type, and let R̊j be the corresponding cylindrical KLR

algebra, summed over all possible numbers of black strands. Consider an oriented affine

ribbon tangle T labeled with minuscule fundamental representations. We can read off

the labels at the bottom of this tangle (taking the dual representation if the strand is

oriented downward) to get a sequence j of minuscule fundamental representations, and

similarly read off j′ from the top.

Theorem F We have an induced functor Φ(T ) : Db(R̊j -fdmod) → Db(R̊j′ -fdmod)

which is compatible with composition of tangles up to isomorphism of functors. This

defines a link invariant which agrees with those of [Aga, Th. 5*] and [Web17a, §8], and

in type A with Khovanov-Rozansky homology.

It’s worth nothing that this defines an invariant of annular links (we think of a usual

link as an annular link by embedding B3 into the annulus times an interval). We expect

that in type A, this agrees with the annular Khovanov-Rozansky homology of Queffelec

and Rose [QR18]; we lay out some preliminary steps to checking this fact, but verifying

it carefully is beyond the scope of this paper.
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6. Cylindrical KLRW algebras

6.1. The definition of cylindrical KLRW algebras. As in the introduction, let Γ

be a quiver, and v,w : V(Γ)→ Z≥0 dimension vectors. First, we note some basic facts

about quiver gauge theories. In this case, the group H = NGL(V )(G) is generated by G,

the product GL(Cwi) acting by precomposition in the obvious way, and by GL(Cχi,j)

where χi,j is the number of edges i → j, acting by taking linear combinations of the

maps along these edges, i.e. via the isomorphism⊕
i→j

Hom(Cvi ,Cvj) ∼=
⊕

(i,j)∈V(Γ)

Hom(Cvi ,Cvj)⊗ Cχi,j .

Thus, for any unitary element g ∈ H, after multiplying by an element of G and

conjugating, we can find classes βe, γi,k ∈ R/Z for e ∈ E and i ∈ V(Γ), k = 1, . . . , wi
such that g acts on the homomorphism along e by the scalar exp(2πiβe) and on Cwi

with eigenvalues exp(2πiγi,k).

6.1.1. Cylindrical KLRW diagrams. In this section, we will discuss how to utilize these

classes to define a quite different object: a cylindrical KLRW algebra. For simplicity,

we will assume that βe, γi,k satisfy the following genericity assumptions:

• For all edges e, βe 6= 0.

• We have γi,k 6= γj,` for all (i, k) 6= (j, `).

• If two edges e, e′ have the same tail and head, then βe 6= βe′ . If the tail of e is

the head of e′ and vice versa, then βe 6= βe′ .

These restrictions are primarily to simplify the relations we draw below; the non-generic

relations can be derived from these in a method we will describe.

Definition 6.1 A cylindrical KLRW diagram is a collection of finitely many oriented

curves in R/Z× [0, 1] of the form {(π̄(t), t) | t ∈ [0, 1]} for some path π̄ : [0, 1]→ R/Z.

Each curve is labeled with an element i ∈ V(Γ) and decorated with finitely many

dots. For each curve with label i, and each edge e : i→ j, we draw a “ghost” curve at

{(π̄(t)−βe, t) | t ∈ [0, 1]}, which we label with j, and draw as dashed. We also draw red

lines at x = −γi,k, labeled with i. These should satisfy the same genericity conditions

as weighted KLR diagrams from [Web19b, Def. 2.3]: we have no tangencies or triple

points involving any combination of strands and ghosts (except the case where βe = 0,

so a strand and ghost coincide), and no dots on crossings. We identify any diagrams
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that differ by isotopies preserving these genericity conditions. The only local structures

we allow are those shown below:

We’ll draw these on the page in the rectangle [0, 1] × [0, 1] with seams on the left and

right side of the diagram where we should glue to obtain the cylindrical diagram. If

our graph Γ is given by i← j ← k, then an example of such a diagram is

λ µ

i i

i ik

k

i

i

j

j

If there were any strands with label j, they would have ghosts with label k, but we

have left these out for simplicity of drawing.

As in [Web19b], we let a cylindrical loading be a map to V(Γ) from a finite subset

of R/Z which avoids x = −γi,k and such that if there is an edge e : i → j, then there

is no pair of elements x and y mapping to i and j with x − y = βe. Note slicing

a cylindrical KLRW diagram at a fixed value of y gives a loading. We will record a

cylindrical loading by the list i = (i1, . . . , in) ∈ V(Γ)n of the labels on the subset as we

read from x = 0 to x = 1 in increasing order (so this is their cyclic order around the

circle), and by the images a = (a1, . . . , an) ∈ (R/Z)n.

Note that the cylindrical loadings divide naturally into equivalence classes that are

bounded by the subtori where aj − ak = βe when e : ij → ik and aj = −γi,k with

i = ij, where the aj’s are the positions of the strands and ij the label on the jth strand;

compare with [Web19b, Prop. 2.12] for the linear case. If we deform βe and γi,k, usually

the set of these chambers will not change, but it will when we hit a point where there

is a redundancy between these equations:

Lemma 6.2 If the set of possible equivalence classes of cylindrical loadings is not

locally constant near (βe, γi,k) then for some i, j ∈ V(Γ), we have a path

i = i0
e1−→ i1

e2−→ i2
e3−→ · · · en−→ in = j

such that in R/Z:

(6.1) γj,` − γi,k +
n∑
p=1

βei = 0
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The set of cylindrical loadings inherits a measure from the usual measure with volume

1 on (R/Z)n (that is, its Haar measure as a Lie group).

6.1.2. Relations.

Definition 6.3 The cylindrical KLRW algebra R̊ attached to the data Γ,v,w, β∗, γ∗,∗
is the quotient of the formal span over a ring k of cylindrical wKLR diagrams for these

data by the local relations

(6.2a)

i j

=

i j i j

=

i j

i 6= j

(6.2b)

i j

=

i j i j

=

i j

(6.2c)

i i

= 0

i j

=

i j

i 6= j

(6.2d)

i i

−

i i

=

i i

−

i i

=

i i

(6.2e)

i i

=

ii j i

=

ij

i 6= j

(6.2f)

i i

=

ii i j

=

ji

i 6= j
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Given an edge e : j → i, we have that:

(6.2g)

i j k

=


i j k

j 6= k

i j k

−

i j k

j = k

(6.2h)

i jk

=


i jk

j 6= k

i jk

−

i jk

j = k

(6.2i)

ii i

=

ii i

+

ii i

(6.2j)

jj iij

=

jj iij

+

iijj j

(6.2k)

j jj i

=

jj j i

−

jj j i

.

For all other triple points, we set the two sides of the isotopy through it equal.

Remark 6.4. As mentioned before, to simplify our relations, we have assumed that our

parameters are generic. If you wish to work with non-generic parameters, they will

have the same form as above, relating diagrams isotopic across a non-generic diagram

(tangency, dot on crossing or triple point). You can find the appropriate relations in

that case by taking a very small deformation of the parameters β∗, γ∗,∗, applying the
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relations above (possibly multiple times), and then deforming the parameters back to

the non-generic ones of interest.

Remark 6.5. Note that in many earlier works, such as [Web17a, Web17b], we had an

additional non-local relation setting a diagram to 0 if it had a black strand at far left of

the diagram; it not clear how one could interpret this relation on the circle. Ultimately

this corresponds to the fact that coherent sheaves have no obvious notion of category

O.

One useful observation about relations: as discussed in [Web19b, Prop. 2.15], if

η : V(Γ)→ R/Z is any function, we can replace β∗, γ∗,∗ with the cohomologous value:

(6.3) β′e = βe − ηh(e) + ηt(e) γ′i,k = γi,k − ηi
We can define a map Sη between the cylindrical KLRW algebras for these different

choices of parameters by shifting the position of each solid strand with label i by ηi; by

(6.3), this has the effect of shifting each ghost with the same label by the same amount,

so all ghost/solid crossings remain intact. This shows:

Lemma 6.6 The map Sη is an isomorphism of algebras.

The case that will be of most interest to use is when Γ is a tree. In this case, we can

always use a choice of η to reduce to the case where βe = 0 for all e ∈ E, since thinking

of β∗ as a 1-cocycle, it must be a coboundary. In this case, there are no visible ghosts,

since the coincide with the original strand so our diagrams look like.

λ µ

i

ik

k

i

i

The relations can be deduced in this case from Remark 6.4, but for completeness, let us

note that if we have a single edge j → i, then applying this approach to the relations

(6.2d,6.2g,6.2h), we have that

(6.4)

i j

=

i j

−

i j ij

=

ij

−

ij

Similarly in (6.2j,6.2k), we just move the solid strand with label i on top of the ghost

with label j. Note that while the relations (6.2a–6.2k) did not depend at all on the

number of edges between vertices, because different edges will have separate ghosts,

the relations above need to be modified if there are multiple edges i→ j (following the

standard recipe of [KL11]).
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6.1.3. Relation to planar KLRW algebras. As suggested by the name, cylindrical KLRW

algebras are related to KLRW (or weighted KLR) algebras. We will distinguish these

by calling them “planar.” Let us just start for the record that this does not refer to the

structure of the corresponding quiver (which is arbitrary) but the surface on which the

diagrams are drawn. These are spanned by diagrams with the same local properties

as cylindrical KLRW diagrams, but in R × [0, 1] instead of S1 × [0, 1], and subject to

the same local relations (8.4c–6.2k). We discuss these algebras largely with the aim

of transferring certain calculations done for planar KLRW algebras to cylindrical ones.

We’ll only discuss this connection in the case where βe = 0.

In this case, we consider the algebra T̃ j where we fix the labels on red strands to be

j = (j1, . . . , j`), but allow any number of black strands. Note that in this case T̃ ∅ is

the usual KLR algebra defined in [KL11]. The category of T̃ ∅-modules has a monoidal

structure induced by the induction functor defined in [KL09, §2.6]: put simply, horizon-

tal composition induces an algebra map T̃ ∅ ⊗ T̃ ∅ → T̃ ∅, and induction is pushforward

by this map.

Similarly, horizontal composition also gives a map T̃ ∅⊗T̃ j⊗T̃ ∅ → T̃ j, and pushforward

gives a functor sending a triple (K,M,N) with of T̃ ∅-modules K,N , and a T̃ j-module

M to a T̃ j-module K ◦M ◦N .

We can think of the cylindrical KLRW algebra as an affinization of the T̃ ∅ -mod

bimodule structure on T̃ j -mod. We can say this a little more precisely when we think

about the planar KLRW category T̃ , where the objects are words in black and red

copies of V(Γ), and morphisms are KLRW diagrams joining these words, modulo the

relations (6.2a–6.2k); for notational purposes, let U− be the planar KLRW category

with no red lines. Similarly, there is a cylindrical KLRW category with objects

given by cyclic words (or if you prefer, periodic words) and morphisms by cylindrical

KLRW diagrams modulo the same local relations.

Consider the category Q obtained by adjoining to T̃ an isomorphism ξi,i′ : i◦ i′ → i′◦ i
for i′ an object in U− (a word only in the black copy of V(Γ)), and i′ an object in T̃ (a

word in the red and black copies of V(Γ)), and impose the additional relations:

ξi,i′◦i′′ = ξi′′◦i,i′ξi◦i′,i′′(6.5)

ξm,m′ ◦ (f ⊗ g) = (g ⊗ f) ◦ ξi,i′(6.6)

for i,m words with red strands labeled by λ, i′, i′′,m′ words only in the black strands

and f : i → m and g : i′ → m′ arbitrary morphisms. Note the similarity to the work

of Mousaaid and Savage on affinization of monoidal categories; this not quite a special

case of their work, since we are using a bimodule category, and they only consider the

action of a monoidal category on itself on the left and right.

Proposition 6.7 The category Q defined above is equivalent to the cylindrical KLRW

category via the functor sending i to the same word considered cyclically, sending any

morphism in the planar KLRW category to the morphism drawn in in S1 × [0, 1] by
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embedding R as S1\{∗}, and ξi,i′ to the diagram with bottom given by the concatenation

i ◦ i′, which moves the strands in i′ around the back of the cylinder in the positive

direction. That is:

ξi,i′ 7→

i i′

Proof. To show this functor is well-defined, we need only check that the relations (6.5–

6.6) hold, which is an easy geometric verification by the relations shown below:

i

i

i′ ◦ i′′

i′ ◦ i′′

=

i

i

i′′i′

i′′i′

,

i

m

i′

m′

g f

=

i

m

i′

m′

f g

Now, we wish to show this functor is fully faithful. Fullness is clear from the fact

that we can isotope crossings and dots off of the seam and we can use ξ and its inverse

to get any crossings over the seam where we glue R to form S1. Thus, only faithfulness

remains. If a planar combination of diagrams is 0, this is derived by a finite chain of

local relations and isotopies. All the local relations are applied when away from the

seam, and so they hold in the planar category as well. Thus, we need only consider

isotopies. We can any isotopy in the cylinder can be written using the cancelation of

ξ∗,∗ and its inverse, the relations ((6.5)–(6.6)) and isotopies avoiding the seam. This

shows faithfulness. �

This equivalence has a manifestation on the level of modules: given a T̃ j-module M ,

we can consider the tensor product R̊j⊗T̃λ −. This is the pushforward by the inclusion

of the planar KLRW category in the cylindrical.

Lemma 6.8 The functor R̊j ⊗T̃λ − is exact.

This is proven on page 37. This perspective is useful in that it shows that a bimodule

B between T̃ j and T̃ j′ compatible with the bimodule structure on these categories

induces a bimodule between cylindrical KLRW categories. For our purposes, it will

be easier to say this in terms of functors between derived categories. We say that the

functor B = B
L
⊗− is strongly equivariant if it commutes with the action of U− on

the left and the right, i.e the functors U− × T̃ × U− → T̃ defined by

K ◦ BM ◦N ← [ (K,M,N) 7→ B(K ◦M ◦N)
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are isomorphic.

Lemma 6.9 If B is strongly equivariant for the left and right actions of U−, then there

is an induced functor

B̊ : Db(R̊j -mod)→ Db(R̊j′ -mod)

which is compatible with composition: if B = B1B2, then B̊ = B̊1B̊2.

Of course, we have

B̊(M) = B̊⊗R̊j M B̊ = B̊(R̊j).

Proof. It’s enough to define the functor B̊ on modules of the form R̊je(i) for i a cyclic

word. This is just R̊j′ ⊗T̃ j′ Be(̃i) for ĩ any lift of the cyclic word to a usual planar word.

This is well-defined and functorial by the strong equivariance of B.

Note in particular that if M is a T̃ j-module, then

(6.7) B̊(R̊j ⊗T̃ j M) ∼= R̊j′ ⊗T̃ j′ B(M).

This is what we need to prove the composition, since we have a functorial isomorphism

B̊(R̊je(i)) ∼= R̊j′ ⊗T̃ j′ B(T̃ je(̃i)) = R̊j′ ⊗T̃ j′ B1B2(T̃ je(̃i)) = B̊1B̊2(R̊je(i))

with the last step applying (6.7) twice, to B1 first and then B2. �

6.1.4. Comparison with Coulomb branches. For each cylindrical loading (i, a), we have

a corresponding idempotent e(i, a). As before, we assume that our order is chosen that

0 < a1 < a2 < · · · < an < 1.

We will now refine this definition to also assign an idempotent to e(i, a) where a is

defined to be only weakly increasing and may have repeated values: 0 ≤ a1 ≤ a2 ≤
· · · ≤ an < 1.

We must apply an operation to each group ik, . . . , ik+p with ak−1 6= a = ak = ak+1 =

· · · = ak+p 6= ak+p+1.

(1) We fix any order on the set V(Γ), and order the multi-set of indices {ik, . . . , ik+p}
in increasing order to obtain i′k, . . . , i

′
k+p. This gives us a sequence (i′, a), and

we will have e(i, a) = e(i′, a).

(2) Now, we deform to a to be strictly increasing by defining a′m = am + mε for

ε > 0 very small. For ε sufficiently small, the isotopy class of this loading is

independent of ε. Now e(i′, a′) has a well-defined idempotent, but this is not

what we wish to call e(i′, a).

(3) Since the indices i′k, . . . , i
′
k+p are ordered, all copies of an given vertex i occur

together. Let µi,a be the multiplicity with which i appears here.

(4) Crossing the corresponding strands in i′k, . . . , i
′
k+p with label i gives a homomor-

phism of the nilHecke algebra of rank µi,a to e(i′, a′)R̊e(i′, a′). This nilHecke

algebra contains a primitive idempotent projecting to the Sµi,a invariants in the

usual polynomial representation.

12
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Definition 6.10 We let e(i, a) ∈ R̊ be the product of the images of these idempotents

for all vertices i and values a.

Note that the idempotent is independent of the choice of order of V(Γ) up to isomor-

phism because of we can reorder strands with different labels by (6.2b).

Definition 6.11 Let e(a) be the idempotent where we set all ai’s are equal to a single

value a 6= −γi,j. In this case, the ordering of i is irrelevant; when constructing i′, we

will put the indices in our fixed order, and as discussed above, the order won’t change

the isomorphism type of the corresponding idempotent.

One primary reason for our interest in this algebra is the following result:

Theorem 6.12 The algebraA0 = e(a)R̊e(a) is isomorphic to the (undeformed) Coulomb

branch algebra k[M] of the quiver gauge theory associated to Γ with the dimension vec-

tors v,w.

This is proven on page 33. Note that this theorem is independent of the choice of a,

β∗ and γ∗,∗; we obtain the same algebra A0 here regardless of these parameters. This

is a generalization of [Weea, Cor. 4.13]. More generally, for each e(i, a), we have a

corresponding vortex line operator, that is, an object in the category B, and R̊ is the

sum of the morphism spaces between these objects; see Physics Motivation 2.5.

6.2. Change of flavor. In this section, we discuss a modification of the structures

introduced in the previous subsection by allowing βe and γi,k to vary with respect to

the height t. To emphasize the difference with the previous section, we will make these

symbols bold when they vary with respect to t.

6.2.1. Twisted diagrams. We now fix smooth functions βe : [0, 1]→ R/Z and γi,k : [0, 1]→
R/Z, and let

βe = βe(0) β′e = βe(1) γi,k = γi,k(0) γ′i,k = γi,k(1).

We’ll most often want βe and γi,k to be linear, but at the moment, we can allow them

to be any smooth functions. To save a great deal of notation in the section below, we

interpret any equality involving the functions βe to implicitly include the γi,k’s as well.

Definition 6.13 A twisted cylindrical KLRW diagram is a diagram satisfying all

the conditions of a cylindrical KLRW diagram, but with the position of red lines and

distance of ghosts strands now varying with respect to time. That is, the ghost strands

are given by {(π̄(t)−βe(t), t) | t ∈ [0, 1]} and the red lines by {(−γi,k(t), t) | t ∈ [0, 1]}.
Let Bβ,γ be the formal span of the twisted cylindrical KLRW diagrams modulo the

local relations (6.2a–6.2k)

13
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Below, we show an example of a twisted cylindrical KLRW diagram, once in our

usual convention where the cylinder is cut open, and the same example in perspective

on a cylinder:

Note that we can compose twisted diagrams for functions βe,β
′
e with βe(1) = β′e(0)

(and implicitly γi,k(1) = γ ′i,k(0); we’ll stop pointing this out now). Important special

cases of this are:

(1) The module Bβ,γ is a right module over the algebra R̊ for the parameters βe =

βe(0), and a left module over the algebra for parameters β′e = βe(1). Note that

after naively composing these diagrams, we need to apply an isotopy to get back

to the original functions βe.

(2) If βe(1) = βe(0), then we can define a function β(n)
e (t) = βe(nt) which runs

through this function n times over [0, 1]. Using appropriate isotopies, we have

multiplications

(6.8) Bβ(k),γ(k) ⊗Bβ(m),γ(m) → Bβ(k+m),γ(k+m) ;

the left and right module structures discussed above are the case where k or m

is 0.

6.2.2. Relation to resolved Coulomb branches. For fixed integers be, ci,k and parameters

βe, γi,k, we let

βe(t) = βe + bet γi,k = γi,k + ci,kt

We can consider the direct sum Rb,c =
⊕

k≥0Bβ(k),γ(k) ; this is a Z≥0-graded ring with

the multiplication (6.8).

Theorem 6.14 The ring Ab,c = e(a)Rb,ce(a) is commutative, and Proj(Ab,c) is the

partial resolution M̃b,c defined in [BFN].

This is a more precise statement of Theorem E(1). This is proven on page 36. If the

space M̃b,c is a resolution of singularities for some b, c, we call it a BFN resolution.

By [Weeb, Thm. 5], a BFN resolution is necessarily symplectic. By [Nam08, Prop.

19], the space M̃b is a symplectic resolution if and only if the twistor deformation for

the corresponding ample line bundle is generically smooth (i.e. the Coulomb branch

becomes smooth when we consider b, c as FI parameters).

14
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This allows us to state one of the main results of our paper:

Theorem 6.15 If the space M̃b,c is a symplectic resolution, then R̊ is a non-commutative

symplectic resolution of singularities for any generic choice of βe, γi,k andDb(Coh(M̃b,c)) ∼=
Db(R̊ -mod).

This follows from Lemma 8.10. One point we should emphasize here is that βe, γi,k is

in no way related to b, c. We prove this result by showing that M̃b possesses a tilting

generator with endomorphisms given by R̊, which proves the desired properties.

6.2.3. Wall crossing functors. Let V = RE ×
∏

i∈V(Γ) Rwi .

Given a point β = (βe, γi,k) in this space, we have a corresponding algebra R̊β, and for

any pair β, β′, we have have a bimodule Bβ, where β = (1−t)β+tβ. Let β̄(t) = β(1−t).
We can define an equivalence relation on V by β ∼ β′ if Bβ is a Morita equivalence.

Considering the bimodules Bβ and Bβ̄ as a Morita context (or “pre-equivalence data”

in the terminology of [Bas68]), by [Bas68, II.3.4], this defines a Morita equivalence if

and only the multiplication maps

Bβ ⊗Bβ̄ → R̊β Bβ̄ ⊗Bβ → R̊β′

are surjective.

Proposition 6.16 This equivalence relation is refined by the alcoves of the hyperplane

arrangement

(6.9) γj,` − γi,k +
n∑
p=1

βei = n

for all paths

i = i0
e1−→ i1

e2−→ i2
e3−→ . . .

en−→ in = j

in the graph Γ.

Note that we allow the “lazy path” of length 0 at some i; this is the only one which

we need to consider if βe = 0.

Proof. If there is a path from β to β′ that never crosses one of these hyperplanes, then

by Lemma 6.2 shows that the set of equivalence classes of loadings never changes, and

so we can draw diagrams Bβ and Bβ̄ with no strands crossing, joining any loading

in R̊β to the same loading in R̊β′ . Multiplying these in either order gives the desired

idempotent, and shows the Morita equivalence. �

If the bimodules Bβ and Bβ̄ do not induce Morita equivalences, then the situation is

more complicated.

15
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Conjecture 6.17 Given a planar path β = (1−t)β+tβ′, the bimodule Bβ

L
⊗− induces

an equivalence of derived categories for any ring k.

Establishing this in full generality requires more algebraic machinery than we want

to develop at this moment, but we can use already known results to show it holds in

the most important cases for us:

Proposition 6.18 For each Γ,v,w, βe, γi,k, Conjecture 6.17 holds for k = Q (or more

generally any characteristic 0 field) if the space M̃b,c is a symplectic resolution for

generic b, c.

This is proven on page 36.

6.3. Real variation of stability conditions. Recall the definition of a real variation

of stability conditions: let D be a finite type triangulated category and V a real vector

space. Suppose that a discrete collection Σ of affine hyperplanes in V is fixed, let V 0

denote their complement. For each hyperplane in Σ consider the parallel hyperplane

passing through zero, let Σlin be the set of those planar hyperplanes. Fix a component

V + of the complement to the union of hyperplanes in Σlin. The choice of V + determines

for each H ∈ Σ the choice of the positive half-space (V \ H)+ ⊂ V \ H, where (V \
H)+ = H + V +. By an alcove we mean a connected component of the complement to

hyperplanes in Σ and we let ∇ denote the set of alcoves. For two alcoves A, A′ ∈ ∇
sharing a codimension one face which is contained in a hyperplane H ∈ Σ we will say

that A′ is above A and A is below A′ if A′ ∈ (V \H)+.

Definition 6.19 A real variation of stability conditions on D parameterized by

V 0 and directed to V + is the data (Z, τ), where Z (the central charge) is a polynomial

map Z : V → (K0(D)⊗R)∗, and τ is a map from ∇ to the set of bounded t-structures

on D, subject to the following conditions.

(1) If M is a nonzero object in the heart of τ(A), A ∈ ∇, then 〈Z(x), [M ]〉 > 0 for

x ∈ A.

(2) Suppose A, A′ ∈ ∇ share a codimension one face H and A′ is above A. Let

C be the heart of τ(A); for n ∈ N let Cn ⊂ C be the full subcategory in C
given by: M ∈ Cn if the polynomial function on V , x 7→ 〈Z(x), [M ]〉 has zero of

order at least n on H. One can check that Cn is a Serre subcategory in C, thus

Dn = {C ∈ C | H i
τ(A)(C) ∈ Cn} is a thick subcategory in D. We require that

(a) The t-structure τ(A′) is compatible with the filtration by thick subcate-

gories Dn.

(b) The functor of shift by n sends the t-structure on grn(D) = Dn/Dn+1

induced by τ(A) to that induced by τ(A′). In other words,

grn(C ′) = grn(C)[n]

16
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where C ′ is the heart of τ(A′), grn = C ′n/C ′n+1, C ′n = C ′ ∩ Cn.

In our context, V = RE ×
∏

i∈V(Γ) Rwi , and Σ is the set of hyperplanes defined by

the conditions (6.9), and as defined above, ∇ is the set of alcoves for this arrangement.

We fix a generic integral element χ in ZE ×
∏

i∈V(Γ) Zwi , which we can also interpret as

a cocharacter into Q; we define the positive side each hyperplane as the side any ray

parallel to ν points toward.

Now, let us define a real variation of stability conditions for each alcove C0 in ∇.

First, for each alcove C, we let R̊C be the cylindrical KLRW algebra corresponding to

parameters in that chamber.

Given C, we define an equivalence BC,C0 : Db(R̊C -fdmod)→ Db(R̊C0 -fdmod) by the

rule that for any pair of chambers C± on the positive/negative sides of a hyperplane

(i.e. C+ is above C−), the equivalences are related by

BC−,C0
(M) = BC+,C0

(Bβ

L
⊗M),

where β is a path from the interior of C− to the interior of C+.

Definition 6.20 Let τ be the map sending the alcove C to the image inDb(R̊C0 -fdmod)

of the standard t-structure of Db(R̊C -fdmod) under the derived equivalence BC,C0 . In

particular, it sends C0 to the standard t-structure on R̊-modules.

Now, we need to define the central charge Z. Since this depends polynomially on

V , we need only define it on C0. Let cycn ⊂ (R/Z)n be the set of cyclically ordered

elements. For a generic element a of this set, and a choice of (i1, . . . , in), we have

idempotent. Note that the associated idempotent depends on the choice of β, γ, since

these define the positions of red lines and distance of ghosts. We then define the central

charge by the formula:

(6.10) Zβ,γ(M) =
∑
i∈Inv

∫
a∈cycn

dim e(a, i)M.

This is a weighted sum of the dimensions of the images of idempotents, weighted by

the volume of the corresponding chamber.

This is a combinatorial version of the central charge function Z0 defined in [Aga,

(4.7)], as we will explain in more detail in Remark 9.3.

Note that the alcove C0 is arbitrary, so we can define this central charge function

on K0(R̊C -fdmod) for any alcove using the formula (6.10) on the alcove C; note that

for any integral ν, the translation C0 + ν is another alcove with R̊C0
∼= R̊C0+ν , but the

corresponding functions of the K-group differ by translation in V . Of course, we can

reasonably ask how to match these functions for different alcoves:

Lemma 6.21 Using the isomorphism [BC,C0 ] : K
0(R̊C -fdmod) ∼= K0(R̊C0 -fdmod) to

identify K-groups, the functions Zβ,γ(M) match.

17
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This is proven on page 39.

Theorem 6.22 The data (Z, τ) define a real variation of t-structures.

This is proven on page 41.

One structure we need to understand when studying this real variation of t-structures

is the structure of the categories Cn corresponding to a given wall. Consider a wall of

C0, defined by an equality of the form (6.9) for some path (possibly lazy). Let β, γ

denote a choice of parameters in the interior of C0, and β′, γ′ a generic point on the

wall. In the case where βe = 0, this wall must be of the form γ′i,k = γ′j,`.

When we follow a path from the interior of C0 to this wall, each equivalence class of

loadings is defined by a set of inequalities depending on β, γ. The closure of this set of

loadings becomes a face of some codimension d as we reach the wall.

This codimension d is the number of separate groupings of strands that trace out

the circuit path from (6.9). In particular, if βe = 0, it is just the number of black

strands between the red strands on corresponding to γ′i,k and γ′j,`. We call this the

codimension of the equivalence class (with respect to the wall H).

Thus, the objects in the subcategory Cn defined with respect to C0 and H are those

killed by all idempotents of codimension < n.

7. The tangle action

7.1. Affine braids. Throughout this section, we assume that Γ is an ADE quiver and

that βe = 0; by Lemma 6.6, we lose no generality by assuming this. Recall that the

operation of dualizing fundamental representations induces an involution of Γ, which

coincides with the action of −w0 on fundamental representations; this is the unique

nontrivial diagram automorphism for An, D2n+1 and E6, and trivial for D2n and E7, E8.

We denote this involution by j 7→ j∗.

We fix dimension vectors v,w as usual, and let ` =
∑
wi. We let R̊jR̊j be the

cylindrical KLRW algebra where the labels on the red strands, reading from 0 to 1, are

given by the `-tuple j = (j1, . . . , j`)

Let B̂` be the extended braid group of affine type A acting as usual on the set of `-

tuples with wi appearances of i. This is the group generated by elements s0, . . . , s`−1, σ

with relations:

sisi+1si = si+1sisi+1 sisj = sjsi |i− j| > 1

si+1σ = σsi

Let Σw be the set of sequences in V(Γ) where i appears in wi many times. The group

Ŵ acts on Σw with si acting by transposition of the i and i + 1st entries and σ by by

the cyclic permutation σ · (j1, . . . , j`) = (j`, j1, . . . , j`−1).

Definition 7.1 The affine braid groupoid is the action groupoid for the action of

B̂` on Σw.
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The notation R̊j is useful, since the algebra does not depend up to isomorphism on

the position of the red lines, but it will be useful for us to fix parameters γi,k, so they are

evenly spaced around the circle; that is, we define km so that jm is the km appearance

of jm reading from the start of the word j, and let γjm,km = m
`
− 1

2`
. For each i, we

define a linear path for t ∈ [0, 1] that swaps the ith and ist parameters, that is,

γjm,km =
m+ δi,mt− δi+1,mt

`
− 1

2`
.

Similarly, to σ we associate the path rotating one “click” around the cylinder:

γjm,km =
m+ t

`
− 1

2`
.

These are maybe easier to visualize in terms of the path traced by the red strands:

· · ·· · ·

si

· · ·

σ

Consider the functors of tensor product with the bimodule Bγ corresponding to these

paths:

Bi : Db(R̊j -fdmod)→ Db(R̊sij -fdmod) Bσ : Db(R̊j -fdmod)→ Db(R̊σj -fdmod).

Theorem 7.2 The functors Bi and Bσ define an affine braid groupoid action on the

categories Db(R̊j -fdmod).

This is proven on page 42.

7.2. Cups and caps. The functor Bi corresponds to a path through a wall where the

i-th and (i+ 1)-st red strands cross. Associated to the passage to this wall, we have a

filtration of the derived category Db(R̊j -fdmod) by subcategories Dm; let em be the sum

of all idempotents corresponding to loadings with < m black strands between these red

strands. As is discussed earlier, we have:

Lemma 7.3 The subcategory Dm is the subcategory of complexes M• such that the

complex of vector spaces emM
• is exact.

Proof. For a chamber representing an equivalence class of cylindrical loadings, its vol-

ume depends polynomially on the choice of γi,k’s, and as two of the strands come

together, the order of vanishing of this polynomial is the number of black strands be-

tween the two reds which are coming together. Thus, the order of vanishing of Zβ,γ(M)

for a module M less than m if and only if emM 6= 0, and taking contrapositive, M ∈ Cm
if and only if emM = 0. The result follows immediately. �

It follows immediately that:
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Lemma 7.4 The quotient Cm/Cm+1 is isomorphic to the representations of the ring

R(m) = em+1R̊em+1/em+1R̊emR̊em+1.

We’ll be particularly interested in the case where the consecutive strands have labels

j, j∗. Without loss of generality, we can assume these are the labels j`−1, j`. Let

j′ = (j1, . . . , j`−2). In this case, the deepest level of the filtration is Dz where

z = ρ∨($j +$j∗) = ρ∨($j − w0$j) = 2ρ∨($j).

Let $j +$j∗ =
∑

i∈V(Γ) ziαi. Note that z =
∑
zi.

Lemma 7.5 The ring R(z) in this case is Morita equivalent to the algebra R̊j′ with

dimension vector v′ = v − z.

This is proven on page 42. This defines a functor ∪` : R̊j′ -mod → R̊j -mod, which

is exact; we can think of this as R̊jem+1/R̊
jemR̊

jem+1⊗R̊j′ . We can try to define a left

adjoint ∪∗` to this functor by derived tensor product with em+1R̊
j/em+1R̊

jemR̊
j. We

say “try” above because there’s no guarantee that this functor will preserve being a

bounded complex.

Recall that we call a fundamental weight $j minuscule if all of the non-zero weight

spaces of its corresponding representation are extremal. This holds for all fundamental

weights in type A, for the vector and both spin representations in type D, two rep-

resentations for E6 and one for E7. For simplicity, we call i ∈ V(Γ) minuscule if the

corresponding fundamental representation is minuscule, and let V(Γ)min be the subset

of minuscule elements of V(Γ).

Lemma 7.6 We have a well-defined functor ∪∗` : Db(R̊j -fdmod) → Db(R̊j′ -fdmod) if

j ∈ V(Γ)min.

Proof. This is functor is well-defined if and only if R̊j/R̊jezR̊
j has a finite resolution as

a module over R̊j. This follows from the fact that R̊j has finite global dimension, since

it is an NCCR, by Theorem D. �

Remark 7.7. This result holds in effectively no non-minuscule cases. As in [Web17a],

we could consider a category of complexes which are bounded above or below with

weaker finiteness properties and use non-minuscule weights; for simplicity we don’t

work through the details of this. The interested reader can infer them from [Web17a].

Definition 7.8 Let ∩` = ∪∗` [−m](−m); we remind the reader that [−m](−m) means

that we shift degree by increasing the internal and homological degree of any element

by m. Note that this is the opposite of the shift in [Web17a, Def. 7.4], because we are

defining our functor using a tensor product. We also have ∩` = ∪!
`[m](m) where ∪!

` is

the right adjoint to ∪` by [Web17a, Thm. 8.11].
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The cup and cap functors ∪k and ∩k are obtained from rotation in the cylinder so

that there are k red strands left of the two red strands which meet (i.e. they are the

(k + 1)st and (k + 2)nd when reading around the circle from 0). We can write this in

terms of the equivalence Bσ, which precisely acts by twisting the cylinder.

Draw the image of 1 in R̊jem+1/R̊
jemR̊

jem+1 as a cup where the two red strands meet

a point carrying an element of L0, the unique simple over T̃ j,j
∗

killed by em, constructed

in [Web17a, Lem. 7.3] (denoted L$j there). We’ll fix a generator of L0 in each case,

and just draw this generator as two red strands meeting at the bottom of a cup, with

the black strands coming out of the minimum. These are annular versions of the cup

and cap bimodules in [Web17a, §7.3]. In type A, these can be seen as a special case of

the the Y -ladders with c = n introduced in [MW18, 3.1].

7.3. Annular tangles. Let A be the annulus R2 \ {(0, 0)}. Let π : A → S1 be the

obvious projection along rays; we’ll use the same symbol to denote the induced map

A× [0, 1]→ S1 × [0, 1].

Definition 7.9 A oriented ribbon annular tangle T is a framed tangle in A× [0, 1],

that is a 1-dimensional oriented submanifold with boundary lying in S1 × {0, 1}. As

usual, we number the boundary points of the tangle by their cyclic order around S1 ∼=
R/Z, starting at 0; as usual, we consider these up to isotopy avoiding 0. A projection

of an annular tangle T is the image of T under π in S1 × [0, 1] when it is isotoped

so that the projection map is an immersion on T , and any point in S1 × [0, 1] has at

most two pre-images in T , whose images cross transversely (i.e. we avoid triple points

and tangencies). We account for the framing on tangles by only using projections with

the “blackboard framing” i.e. where the derivative of the projection always induces an

isomorphism between the framing space and the tangent space of S1 × [0, 1].

As always when considering tangles in a thickened surface, we have that any two

projections for isotopic ribbon tangles are related by a finite chain of isotopies and

Reidemeister moves II and III, as well as cancelling pairs of Reidemeister I moves

which preserve the blackboard framing; a single Reidemeister I move will not.

We consider labelings of the components of an oriented ribbon tangle with elements

j ∈ V(Γ)min (which we think of as the corresponding fundamental representation). As

usual, these induce a labeling of the boundary of T , where we use the same element of

V(Γ) if the orientation on T matches the upward orientation of [0, 1] under projection,

and the “dual” j∗ if the orientations are opposite.

Definition 7.10

Let Tang be the category such that:

• objects are finite subsets of S1 labeled with elements of V(Γ)min,
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• morphisms S → S ′ are annular ribbon tangles with boundary in A× {0} given

by S and in A× {1} by S ′.

• composition is just stacking of tangles (followed by appropriate isotopy).

We let the list (j1, . . . , j`) denote any fixed set where this is the list of labels.

We have an obvious functor from the affine braid groupoid to Tang giving the tangles

with no minima or maxima. In order to generate all tangles, we need only add cup and

cap functors joining two adjacent points, which we also denote ∪k,∩k when the cup and

cap use the (k + 1)st and (k + 2)nd when reading around the circle from 0; of course,

there are many different versions of these functors with different labels j ∈ V(Γ)min,

but we leave these implicit. Consider two lists j ∈ V(Γ)smin and j′ ∈ V(Γ)s
′

min; these give

corresponding dimension vectors w and w′ where wi is the number of k with jk = i,

and similarly with w′i. Fix a vector v, and let v′ = v + C−1(w′ − w) where C is the

Cartan matrix of Γ; of course, this is not necessarily integral, but it will be if there is

a morphism T : j→ j′.

Theorem 7.11 For each morphism T : j → j′ in Tang, there is an associated functor

Φ(T ) : Db(R̊j
v -fdmod) → Db(R̊j′

v′ -fdmod) satisfying Φ(T1 ◦ T2) ∼= Φ(T1) ◦ Φ(T2) such

that Φ(τ) for an affine braid τ is the wall-crossing functor Bτ , and for a cups and caps,

we have Φ(∪k) = ∪k and Φ(∩k) = ∩k.

This is proven on page 43. You can think of this as defining a functor from Tang to

the category whose objects are triangulated categories, and whose morphisms are exact

functors up to isomorphism.

Of course, this assigns a finite dimensional bigraded vector space to any annular knot

or link with components labeled by minuscule representations by considering this link

as a tangle and applying it to R̊∅0.

Theorem 7.12 If K ⊂ B3 ⊂ R3 is any link, and we embed K as an annular link via

any embedding B3 ↪→ A× [0, 1] (all such embeddings are isotopic), the invariant Φ(K)

is the same as the invariant ΦL(K) defined in [Web17a, §8.1] for the same labeling. In

particular,

(1) If Γ is of type A1, then Φ(K) coincides with Khovanov homology.

(2) If Γ is of typeAn, then Φ(K) coincides with Khovanov-Rozansky sln+1-homology.

This is proven on page 43. A more comprehensive description of all the different

manifestations of this invariant in type A is given in [MW18, Th. A].

However, constructing an invariant of knots in R3 is only using a small portion of

the power of this construction: we obtain an invariant for each annular link, which will

depend on how the link wraps around the origin. Of course, in type A, invariants of

this type are well-known: annular Khovanov-Rozansky homology. This is defined by

Queffelec and Rose in [QR18].
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It also seems natural to compare with the following construction: given an annular

link K, we can cut along the plane over the positive x-axis in A to obtain a usual tangle

K ′ in R2× [0, 1]. This has an associated complex of Tλ -Tλ-bimodules ΦL(K ′) over the

(planar) KLRW algebras defined by the construction of [Web17a, §8.1]. The Hochschild

homology HHTλ(ΦL(K ′)) is easily seen to be an annular link invariant:

Conjecture 7.13 The following invariants of annular knots labeled with minuscule

representations coincide:

(1) the invariant Φ(K) constructed above;

(2) the Hochschild homology HHTλ(ΦL(K ′));

(3) if Γ = An, the annular Khovanov-Rozansky homology of [QR18].

We don’t expect this conjecture to be exceptionally difficult; the equivalence of (1-3)

in type A should be approachable by rephrasing constructions (1) and (2) using actions

of foams as in [MW18], and showing that (1) and (2) are both defined by annular

evaluation of foams. The main difficulty here is showing that a single essential circle

on the annulus evaluates to the corresponding representation over the Lie algebra gΓ.

This is effectively just the observation that Tλ has finite global dimension in situation

(2), since this means that higher Hochschild homology of Tλ vanishes, and in degree 0

it matches the Grothendieck group. For (1), this not obvious for n > 2, and requires a

rather complex calculation. It seems promising to think of the equivalence of (1) and

(2) as a generalization of Queffelec and Rose’s comparison of the horizontal and vertical

traces in [QR18, §3], but we have not made much progress on making this precise.

8. Diagrams for quiver gauge theories

In order to establish the results of Sections 6 and 7, we need to describe how the results

of [Webc, Weba] can be interpreted in the quiver case. In those papers, we explain how

the quantum Coulomb branch Asph can be written as an endomorphism ring in a larger

category B, which we call the extended BFN category. This larger category is more

easily presented and more amenable to algebraic methods; this will allow us to make

the connection between Coulomb branches and cylindrical KLR algebras.

The definition of B depends on a parameter δ. For simplicity, we’ll assume through-

out this paper that δ = 1
2

(and so in pth root conventions, we have δ = 1
2p

).

8.1. Unrolled diagrams. In the case of a quiver gauge theory, the extended BFN

category B has a more graphical description.

Recall that this is a category whose objects are elements of t1,H̃
∼= tH̃ , the (real)

Lie algebra of the maximal torus of the normalizer H = N◦GL(V )(G). As discussed

earlier, this is generated by the diagonal matrices in gl(Rvi), gl(Rwi), gl(Rεi,j); thus,

each object in this category can be represented by choosing diagonal entries. We let

{zi,k}i∈V(Γ),k=1,...,vi be the diagonal entries in gl(vi); for slightly complicated reasons, we
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let {γi,k}i∈V(Γ),k=1,...,wi and {βe}e : i→j be the appropriate diagonal entries in gl(wi) and

gl(εi,j) plus 1
2
. This is to cancel the shift in the definition of ϕmid

i ; in particular, the

element τ corresponds to zi,k = 0 and γi,k = βe = 1
2
. Readers familiar with this field are

presumably used to odd shifts of 1
2

appearing and disappearing. This representation

isn’t unique; you get the same element of the Lie algebra tH̃ if you shift by

z′i,k = zi,k + ηi γ′i,k = γi,k − ηi β′e = βe − ηh(e) + ηt(e).

Note the similarity to (6.3).

In these terms, the unrolled arrangements defined in Section 2.2 are given by the

unrolled root hyperplanes {α(η) = n | n ∈ Z} of the form:

(8.1a) zi,k − zi,m = n for all k 6= m ∈ [1, vi], n ∈ Z,

and the unrolled matter hyperplanes {ϕmid
i (η) = n | n ∈ Z} of the form:

zj,k − zi,m + βe = n for all edges i→ j, for all k ∈ [1, vj],m ∈ [1, vi], n ∈ Z
(8.1b)

zi,m + γi,k = n for all i ∈ V(Γ),m ∈ [1, vi], n ∈ Z(8.1c)

Note that unlike in Section 6, our parameters γ∗,∗ and β∗ are real numbers, but if we

change them by an integer amount, we will not change the set of hyperplanes (8.1b–

8.1c).

Fix a choice of γ∗,∗ and β∗; let Bβ,γ be the subcategory B where we only consider

objects in the coset tβ,γ of this choice under tR, the Cartan of gl(Rvi). For simplicity,

we assume that γ∗,∗ and β∗ are generic in the same sense discussed in Section 6. We

can describe the objects in this category just by the values z∗,∗ ∈ R.

The category Bβ,γ also depends on a flavor φ, which we can take to be an element of

the Lie algebra of AutG(V ), and thus is induced by a regular element of
∏

i gl(k
wi) ×∏

(i,j)∈V(Γ)2 gl(k
χi,j). We can assume that this cocharacter lands in the usual torus of

diagonal matrices; let ci,1, . . . , ci,wi be the diagonal entries of its components into gl(kwi)

and be for each edge e the weights of its components into gl(kχi,j). Let us just emphasize

that while b∗ and c∗,∗ live in a related space to β∗ and γ∗,∗, the latter parameters are

always chosen over R, whereas the former are defined over the base field (which we will

often want to think of as C or Fp) and they are chosen independently from β∗ and γ∗,∗.

We can think of b∗ and c∗,∗ either as numerical values or as formal variables.

Thus, we can decompose a path π : [0, 1]→ tβ,γ into a vi-tuple of paths πi,k for each

i ∈ V(Γ). We can visualize this by superimposing the graphs of these paths (though we

will use the opposite convention from calculus class, using the y-axis for the independent

variable and the x-axis for the dependent). That is, we consider the path t 7→ (πi,k(t), t)

landing in R× [0, 1].

We cross root hyperplanes when two of these paths for the same element of V(Γ) are

integer distance from each other, and matter hyperplanes when the x-value of a strand

with label i is an integer minus γi,j or the difference between two such strands is an
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integer plus βe. It’s thus convenient to label the points (πi,k(t) + n, t) for n ∈ Z with

“partner” strands and those for n ∈ Z−βe for each edge e : j → i with “ghost” strands

so that we can see when these crossings occur. We’ll label the strand corresponding to

n with i;n. We’ll draw partners as solid lines, and ghosts as dashed lines. We’ll also

draw in dashed lines at x = n for n ∈ Z− γi,j, which we’ll label with ∞;n.

There’s an obvious action of the affine Weyl group Ŵ on the set of such paths with

the finite Weyl group
∏

i∈V(Γ) Svi acting on paths by permutation of the second indices

in πi,k, and the coweight lattice acting by translations πi.k(t) 7→ πi,k(t)+ni,k for integers

ni,k. This leaves the collections of the original curves and their partners unchanged,

just changing the indices and which curves are partners, and which are originals. Thus,

we can visualize the action of an affine Weyl group element by changing the labels

accordingly at some fixed value of y = a. The equations (2.6e) and (2.6i) assure that

the result does not depend on the value of a.

We can also visualize the action of Sh by identifying the weights εi,k with a dot on

the corresponding path, at the top for multiplying at the left and at the bottom for

multiplication on the right. It will be useful to also draw dots on partner strands with

label i;n, which we will associate to εi,k + nh. This likewise assures that inserting an

element of the affine Weyl group above or below a dot will give the same answer, by

equation (2.6a).

Thus, the morphisms in Bβ,γ can all be expressed as one of these diagrams. More

precisely:

Definition 8.1 An unrolled diagram is a collection of paths in R× [0, 1] of the form

{(πi,k(t) + n, t) | t ∈ [0, 1]} for n ∈ Z for some piecewise smooth map πi,k : [0, 1] → R.

At a finite number of values t1, . . . , tk, we apply elements w1, . . . , wk ∈ Ŵ to the labels

on the curves and their partners, which can create a discontinuity in the function πi,k,

but we assume that the resulting curves are still smooth and simply change labeling.

We’ll draw one of these changes as a squiggly green line.

We also add ghost strands at {(πi,k(t) + n− βe, t) | t ∈ [0, 1]} for each edge e : j → i

and at {(n− γi,k, t) | t ∈ [0, 1]} for all n ∈ Z, which we draw as dashed. Each curve is

decorated with finitely many dots.

The diagram must be locally of the form

(8.2)

That is, there are no tangencies, triple crossings or dots on crossings. The curves

(including ghosts) must meet the lines at y = 0 and y = 1 at distinct points. We

consider these diagrams up to isotopy preserving the conditions above.
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We’ll draw an example below; lacking infinitely wide paper, we can only draw part

of the diagram. In the interest of comprehensibility, we draw an example with w = 0,

so there are no vertical strands.

(8.3)

i; 0

j;−1

i;−1

j;−2 j; 0

i; 1i;−1/2

j;−1/2j;−11/2

i; 1/2i;−11/2

j; 1/2j;−21/2

i; 11/2

· · ·· · ·

Let the bottom D(0) of a diagram defined by the path π be the object in Bβ,γ defined

zi,k = πi,k(0), and the top D(1) the object defined by zi,k = πi,k(1).

To an unrolled diagram D, we can associate a morphism rD : D(0)→ D(1) from the

bottom of D to its top as follows:

Definition 8.2

(1) Given an unrolled diagram D with no dots and no elements of Ŵ , let rD be the

morphism rπ from [Webc, Def. 3.12] for the corresponding path.

(2) Given an unrolled diagram with all πi,k’s constant, and one dot on the strand

at (πi,k + n, t), we let rD be multiplication by εi,k + nh.

(3) Given an unrolled diagram with no dots, all strands vertical, and a single rela-

beling by w ∈ Ŵ , we let rD = yw.

Any other diagram can be written as a composition of these, and we define rD to be

the composition of the corresponding morphisms.

This associates a morphism to a diagram, and since we hit all the generators of

the category Bβ,γ, every morphism is a sum of rD’s; this is clear from [Webc, Cor.

3.13]. However, this description is redundant, since there are relations between these

generators.

All the relations of the category Bβ,γ can be described locally in terms of unrolled

diagrams. We can visualize Definition 8.2(2) as a convention of “dot migration” for

interpreting dots on partner strands:

(8.4a)

i;n

· · ·

i

=

i;n

· · ·

i

+ nh

i;n

· · ·

i

The fact that isotopy leaves rD invariant is a combination of relations (2.6a) and the

“boring” cases of (2.6c,2.6h,2.6j,2.6k) where the portions of diagrams commuting past

each other are distant in R. As discussed before, (2.6b,2.6e,2.6f,2.6i) imply that green

lines can isotope past all crossings and dots, and (2.6d) that green lines can merge by
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multiplying their labels.

(8.4b) = =

= =

The relation (2.6a) implies that dots can commute past strands with a different label

or their partners, or past all ghosts:

(8.4c)

i;n j

=

i;n j

unless i = j

(8.4d)

i j;n

=

i j;n

unless i = j

(8.4e)

i;n j

=

i;n j i j;n

=

i j;n

The previous relations have not depended on the weights ci,1, . . . , ci,wi and be defined

before. Let

pi,m(u) =
∏
k s. t.

γi,k−m∈Z

(u+ (ci,k −m+ γi,k)h) ∈ k[u, ci,∗, h]

(8.4f)

qij,m(u) =
∏

e : j→i s. t.
βe−m∈Z

(u+ (be − βe +m)h) ·
∏

e : i→j s. t.
βe+m∈Z

(−u+ (be − βe −m)h) ∈ k[u, β∗, h].

(8.4g)

Note that pi,m(u) = pi,m+n(u+ nh) for all n ∈ Z, and qij,m(u) = qij,m+n(u− nh).

If γ∗,∗ and β∗ satisfy the genericity assumptions of Section 6, then these functions

always have degree ≤ 1 in u, but we allow somewhat less generic parameters here, just

assuming that βe 6= 0 for all e. It might seem strange to see γ∗,∗ and β∗ since these are

in R, but if the difference or sum of one of these with m is an integer, we can consider
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that integer as an element of k. We can now use these to write out our version of the

relation (2.6c):

(8.4h)

i ∞;m

= pi,m

(
∞;mi

)

(8.4i)

∞;m i

= pi,m

(

i∞;m

)

(8.4j)

i j;−m i;m j

= qij,m

(
i j;−mi;m j

−

i j;−mi;m j

)

(8.4k)

ij;−m i;mj

= qij,m

(
ij;−m i;mj

−

ij;−m i;mj

)

Note that the equations above are written assuming that m > 0, but they are equally

valid if m < 0, with the requisite reordering of strands. The relation (2.6g) implies

that:

(8.4l)

i;m i

= 0

i i;m

= 0

The relation (2.6j) is equivalent to isotopy and

(8.4m)

i;m i

−

i;m i

=

i;m i

s

(8.4n)

i i;m

−

i i;m

=

i i;m

s
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with s denoting the unique reflection in the affine Weyl group switching the top and

bottom labels of the diagram.

Finally, the codimension 2 relations show how to relate the two resolutions of a triple

point. The correct relation depends on the number of strands with the same label going

through the triple point: if all three have the same label, then we use (2.6h), if two

have the same label, we use (2.6k) and if there is no such pair, then (2.6c). These

imply we can isotope through any triple point unless it involves exactly two partners

with the label i ∈ V(Γ). In order to cover this last case, let ∂f(u1, u2) = f(u1)−f(u2)
u1−u2 for

any polynomial f(u).

(8.4o)

i;ni

∞;m

s
−

i;ni

∞;m

s
= ∂pi,m

(
i;ni

∞;m

,

i;ni

∞;m )

(8.4p)

i;ni

j;m i;−m i;n−m

j

s −

i;ni

j;m i;−m i;n−m

j

s = ∂qij,m(υ1 − υ2, υ3 − υ2)

υ1 =

i;ni

j;m i;n−mi;−m

j

υ2 =

i;ni

j;m i;n−mi;−m

j

υ3 =

i;ni

j;m i;n−mi;−m

j

with s denoting the unique reflection in the affine Weyl group making the top and

bottom match.

Lemma 8.3 Given η, η′ ∈ tβ,γ, the Hom space HomB(η, η′) is spanned by the mor-

phisms rD for unrolled diagrams D with top η′ and bottom η, modulo the local relations

(8.4a–8.4p).

Proof. We have justified in each individual case why the relations (8.4a–8.4p) hold.

Thus, we have a map from the formal span of unrolled diagrams modulo these relations

to HomB(η, η′). This is surjective because the generating morphisms of the category

B are given by the basic unrolled diagrams in (8.2). On the other hand, the relations

(8.4a–8.4p) suffice to write any rD as a sum of diagrams corresponding to a reduced

word in Ŵ with all dots and green lines at the bottom, and to relate any two reduced

words for w ∈ Ŵ modulo the diagrams for shorter elements of Ŵ . Thus, we find that
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the unrolled diagrams corresponding to the basis of [Webc, Cor. 3.13] are a spanning

set of this quotient. This is only possible if the map is injective as well. �

8.2. Quantum cylindrical KLRW algebras. The reader may have noticed that

these diagrams are actually quite difficult to draw and interpret, but there is a symmetry

that we have not exploited, the action of the extended affine Weyl group. The quotient

of
∏

iRvi by the extended Weyl group Ŵ is given by the space
∏

i(R/Z)vi/Svi , which we

can interpret as the moduli space of multisubsets of the circle R/Z labeled with elements

of V(Γ), such that vi elements have label i ∈ V(Γ). Thus the path [0, 1] →
∏

iRvi

composed with the projection
∏

iRvi →
∏

i(R/Z)vi/Svi can be thought of as a path in

this moduli space.

We draw this by considering our diagrams in R× [0, 1], and considering the quotient

of this plane by Z acting by addition to the x-coordinate. Note that this sends all the

partners to a single curve in R/Z× [0, 1], and all ghosts to a single curve, whose position

depends only on the coset of βe modulo Z. Of course, these are exactly the cylindrical

KLRW diagrams.

Every cylindrical KLRW diagram has a unique lift to a path [0, 1]→ tβ,γ which starts

in the fundamental region of Ŵ where the coordinates zi,k satisfy

(8.5) − 1

2
< zi,1 < zi,2 < · · · < zi,vi <

1

2
.

That is, by the path lifting property of the universal cover, each of the curves π̄ : [0, 1]→
R/Z has a unique lift π with −1

2
< π(0) < 1

2
, and we can number these so that

(8.6) − 1

2
< πi,1(0) < · · · < πi,vi(0) <

1

2
.

Let D̃ be the unrolled diagram defined by the paths πi,k, followed by the unique element

of Ŵ sending the top of this diagram back to the fundamental region.

Definition 8.4 Given a cylindrical KLRW diagram D with no dots, let rD denote the

morphism rD̃ associated to the lifted unrolled diagram D̃.

If the diagram contains dots, then place these in the lifted diagram on the unique

partner preimage which has x-value in (−1
2
, 1

2
).

We have to be careful about lifting cylindrical KLRW diagrams with dots, because

if we do so in the most naive way, the result will not be compatible with composition,

which the definition above is. We could accomplish the same effect if instead of applying

a Weyl group element at the end, we applied one immediately whenever we left the

fundamental region to move back into it.

We can also interpret the relations (8.4a–8.4p) as relations on cylindrical KLRW

diagrams, as before following the rule that
∑
aiDi = 0 if we have that

∑
airDi = 0.

Some of these can interpreted locally exactly as they appear above: (8.4c–8.4d) and

(8.4l–8.4n) are of this type. On the other, if a dot on an cylindrical KLRW diagram is
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slid over the half-integer ghost with label ∞, then it goes between lifting to the ghost

just right of x = −1
2

to that just left of x = 1
2
. Thus, if we draw x = 1

2
as a fringed grey

line, the effect of (8.4a) is thus the following relation on cylindrical KLRW diagrams:

(8.7) = + h = − h

The other relations need to interpreted carefully to be compatible with lifting. For

example, the relations (8.4h–8.4i) and the relations (8.4j–8.4j) need to be applied with

in the version where all original strands have x-values in (−1
2
, 1

2
) (we can isotope to

avoid any values in the coset Z + 1
2
). For (8.4h–8.4i), this means that m ∈ (−1

2
, 1

2
),

and for (8.4j–8.4j) that m ∈ (−1, 1), with the sign determined by how the strands are

cyclically ordered compared with x = 1/2.

Definition 8.5 The quantum cylindrical KLRW (qcKLRW) algebra for the

dimension vectors v,w and parameters β∗, γ∗, b∗, c∗,∗ is the quotient of the formal span of

cylindrical KLRW diagrams for these parameters over k[c∗,∗, b∗, h] modulo the relations

induced by (8.4a–8.4p), in particular by (8.7), with the usual rule of multiplication by

stacking.

Some might prefer to think about the quantum cylindrical KLRW category, the

category whose objects are cylindrical loadings, and morphisms are diagrams with fixed

loadings at top and bottoms. Lemma 8.3 can thus be rephrased as:

Proposition 8.6 The qcKLRW category is equivalent to the category Bβ,γ.

Since the relations of the nilHecke algebra are not deformed in the qcKLRw algebra,

it contains idempotents e(a). These correspond to elements tβ,γ which are central,

since they correspond to scalar matrices. Thus the corresponding object ηa lies on the

root hyperplanes corresponding to a copy of the finite root system for G; from this

perspective, it is as singular as possible. In fact, the corresponding parahoric Iwaηa is

exactly G[[t]].

Lemma 8.7 The endomorphisms of ηa are isomorphic to the quantum Coulomb branch

Asph for a choice of flavor depending on a.

Proof. Consider the cocharacter µ : C∗ →
∏

i∈V(Γ)GL(Cwi) which acts on the kth basis

vector in Cwi with weight ba+γi,kc; note that this is locally constant in terms of a, only

changing when a passes one of the red lines. The subspace Uηa is given by t−µV [[t]],

and so multiplication by tµ induces a G[[t]]-equivariant isomorphism between the spaces

τXτ
∼= ηaXηa . However, this action does not commute with the action of the cocharacter

ϕ (since it doesn’t commute with the loop action); it intertwines the action of ϕ with
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its product with µ, so this gives the necessary shift of flavor. We have an isomorphism

EndB(τ, τ) ∼= Asph by [Webc, (3.1)]. �

Note, this construction is closely related to the flag Yangian introduced in [KTW+,

Def. 4.12]. In that paper, we assumed that Γ was bipartite (with the sets of nodes called

even and odd), that if i → j then i is even and j odd. Furthermore, the definition

depended on a polynomial pi. If h = 2, be = 0 and the scalars ci,k are the roots (with

multiplicity) of pi(2u − 1), then the cylindrical KLR category is closely related to the

flag Yangian category, via the transformation of diagrams sending all odd strands to

their ghosts. Since there are some other minor differences of convention between these

categories, we will not make a precise statement about the relationship between them.

Let us give a simple example. Consider G = GL(2) and V ∼= C2 ⊕ gl2. We have

a natural isomorphism tR ∼= R2 with the coordinates given by z1, z2. The unrolled

matter hyperplanes are z1, z2, z1 − z2 ∈ Z − 1
2

and the unrolled root hyperplanes are

α = z1 − z2 ∈ Z.

With these conventions, we match morphisms of the extended category with cylin-

drical KLRW diagrams. We’ll draw these on a cylinder sliced open at x = 1
2
.

z1 = 1
2

z1 = −1
2

z2 = 1
2

z2 = −1
2

α = 0

α = 1
2

α = −1
2

α = −1 α = 1 ↔

z1 = 1
2

z1 = −1
2

z2 = 1
2

z2 = −1
2

α = 0

α = 1
2

α = −1
2

α = −1 α = 1 ↔

8.3. The classical limit. Now, let use consider the classical limit where we set h = 0.

In this case, the relations (8.4a–8.4p) become exactly the relations (6.2a–6.2k). As the

name suggests, we thus have:
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Lemma 8.8 The cylindrical KLRW algebra of Definition 6.3 is the specialization of

the qcKLRW algebra at h = 0.

This observation allows us to finally begin proving results from Section 6:

Proof of Thm. 6.12. Specialize Lemma 8.7 at h = 0. �

Note that after this specialization, the shift of flavor that was needed in the quantum

version this theorem disappears; since the classical Coulomb branch can be written

as G[[t]]-equivariant homology of τXτ , the map in the proof of Lemma 8.7 induces an

algebra isomorphism on the nose.

Note that this implies a basis theorem for the cylindrical KLRW algebras. Given

a cylindrical loading with vi elements mapping to i ∈ V(Γ), we have a unique way

of lifting to real numbers zi,1, . . . , zi,vi in the fundamental region (that is, satisfying

−1
2
< zi,1 < · · · < zi,vi <

1
2
), and the extended affine Weyl group Ŵ acts freely

transitively on the set of possible lifts. Having fixed two cylindrical loadings S and

T , there is an unrolled diagram with a minimal number of crossings with the bottom

given by this lift of S and the image of this lift of T under w ∈ Ŵ ; this diagram is not

unique, but as usual, any two choices differ by the diagram for a shorter permutation

by the relations (6.2i–6.2k). The image of this diagram Dw on the cylinder R/Z× [0, 1]

gives a weighted antipodal diagram.

From [Webc, Cor. 3.13], we find that:

Lemma 8.9 The Hom space between two objects in the cylindrical wKLR category is

a free module for the left action of polynomials in the dots, with basis Dw for w ∈ Ŵ .

Studying the h = 0 case is particularly important because of its connection to co-

herent sheaves, as shown in [Weba]. In Theorem 2.21, we show that the category of

representations of the quantum Coulomb branch over Fp is equivalent to the represen-

tations of a subcategory Âp(Fp) in the extended BFN category with a different set of

parameters, which we call “pth root” (Definition 2.12). Using the structure of quantiza-

tions in characteristic p, we use this isomorphism to give a derived equivalence between

the representations of Bτ , the extended BFN category with these parameters, and the

coherent sheaves Coh(M̃Fp) as long as p is sufficiently large, and the parameters are

generic (Theorem 3.28). Note that the category Bτ and the induced equivalence depend

on parameters be, ci,k ∈ Fp, but not on a choice of βe, γi,k; these are fixed to all be −1
2

to match τ).

By Lemma 8.8, representations of the category Bτ is equivalent to the representations

of a cylindrical KLRW algebra with k = Fp for the same dimension vectors v,w, but we

need to explain how its parameters depend on be, ci,k ∈ Fp. Under pth root conventions,
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since we take a pth root of the flavor, we have that

(8.8) βe =
be
p

+
1

2p
γi,k =

ci,k
p

+
1

2p
.

This gives us a result (Corollary 3.22) relating representations of R̊ over Fp, and coherent

sheaves on Coh(M̃Fp), again, as long as p is sufficiently large, and the parameters are

generic. Those familiar with the work of Kaledin [Kal08] will expect this to be phrased

in terms of a tilting generator, which we define in Definition 3.16; this vector bundle is

defined over Z, and is a sum of terms, one for each loading such that all x-values are

in 1
p
Z/Z ⊂ R/Z.

Note that while our possible choices of parameter are constrained by p, this is not

the case up to equivalence. For any alcove C defined by the hyperplanes (6.9), we can

choose that p, be, ci,k so that

(1) the parameters (8.8) lie in C

(2) every equivalence class of cylindrical loadings has a representative with values

in 1
p
Z/Z ⊂ R/Z

Theorem 3.28 shows that:

Lemma 8.10 If k be characteristic 0 (or just sufficiently large) then the variety M̃

carries a tilting generator QQ whose endomorphisms A (defined in Section 3.6) are the

cylindrical KLRW algebra R̊ for the parameters (8.8).

This establishes Theorem 6.15 and allows to us to prove two of the claimed results in

the introduction: Theorem E(2) now follows from Theorem 3.28 and Theorem D from

Corollary 3.30. .

Example 8.i. Consider the case where G = C∗ acting on C2 by scalars. In this case,

the Coulomb branch is T ∗P1. The corresponding cylindrical wKLR algebra has two

red strands, and one black strand, all with the same label. There are two idempotents

in this algebra, corresponding to the two cyclic orders of the 3 strands. Since the

corresponding quiver has no edges, the black strand has no ghosts.

x x∗ y y∗

These satisfy the quadratic relations

(8.9) xx∗ = yy∗ x∗x = y∗y,

and it’s easy to check that these are a complete set of relations. This algebra is Koszul

and its Koszul/quadratic dual is easily seen to be defined by

(8.10) xx∗ = −yy∗ x∗x = −y∗y y∗x = x∗y = yx∗ = xy∗ = 0.
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This latter set of relations defines an 8-dimensional algebra studied by Nandakumar

and Zhao in [NZ], which appears as the endomorphisms of a projective generator for

exotic sheaves on T ∗P1. ♣

Example 8.ii. The most important example of a case where weighting is useful is case

of Symn(C2); in this case we have only a single node in our quiver, which carries a loop,

equipped with the weight βe = ϑ, and a single red strand (of course, labeled with this

node). This describes B when be
p

+ 1
2p
≈ θ.

The objects in the cylindrical wKLR category are thus n-tuples of distinct points in

S1, where each point has a ghost ϑ units to its right, which the other points avoid.

This information can be recorded by listing the order in which one encounters dots

and ghosts; the set of possible configurations for a given ϑ corresponds to the set Λ̄

discussed earlier.

Note that the set of possible configurations is locally constant, and will only change

at values of θ where one has a non-simple hyperplane arrangment this can only be the

case if there is a loop of equations

z1 − z2 ≡ ϑ (mod Z)

z2 − z3 ≡ ϑ (mod Z)

...

zk − z1 ≡ ϑ (mod Z)

for k ≤ n. This implies that kϑ ∈ Z, i.e. that ϑ is rational with denominator ≤ n. Of

course, this same set of values has shown up in the structure of Hilbert schemes and

Cherednik algebras in other contexts. ♣

8.4. Change of flavor. Let us now discuss how we can interpret twisted diagrams in

this context.

We can choose flavors φ, φ′ corresponding to choices of parameters be, ci,k ∈ Fp for φ,

and b′e, c
′
i,k ∈ Fp for φ′. Choose integers

νe ≡ b′e − be (mod p) νi,k ≡ c′i,k − ci,k (mod p).

We can interpret ν here as a real cocharacter of the flavor torus T F (with the usual

caveats about redundancy). Associated to ν, we have a twisting bimodule φ+νT φ

over the categories Bφ+ν and Bφ, defined in (2.8). The elements of these bimodules are

morphisms in the BFN category BQ attached to the larger group Q acting on V . Thus,

applying Proposition 2.18 to Bφ+ν ,Bφ and BQ, we obtain that the twisting bimodule

φ+νT φ is intertwined with the corresponding a similar bimodule φ′
1/p

Tφ1/p with pth root

conventions. Since 1
p
ν might not be intergral, we cannot apply the definition of φ+νT φ

directly, and we take the description above to be the definition, but let us say a few

words about why the fact that h = 0 allows us to extend this definition to arbitrary

cocharacters of tF .
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We will spare the reader the blizzard of notation required to say this carefully, but

in brief Bφ1/p and Bφ′
1/p

can be realized as subcategories of BQ modulo the action of

polynomial morphisms t∗F ; note that this quotient is only well-defined because h = 0.

We identify their object sets with orbits of t in t1;Q which differ by 1
p
ν, and note that

morphisms in Bφ1/p and Bφ′
1/p

are precisely those in the larger category generated by

paths, polynomials, and uα and the extended affine Weyl group of G (as opposed to

the affine Weyl group of Q, which has more translations). We can define φ′
1/p

Tφ1/p as

the space of morphisms in BQ/(t∗F ) generated by paths, polynomials, and uα and the

extended affine Weyl group of G which begin in one coset and end in the other.

In the quiver case, we can also recover the twisting bimodules φ+νT φ and φ′
1/p

Tφ1/p
using the appropriate modification of Proposition 8.6 and Lemma 8.8. Let

βe = βe + νet γi,k = βe + νi,kt

We can define a bimodule over qcKLRW algebras given by the span of twisted cylin-

drical KLRW diagrams for these functions modulo the local relations (8.4a–8.4p);

note that applying these relations requires some real care: the real number labeling

ghost strands will vary as t changes, and that must be incorporated into the relations

(8.4j,8.4k,8.4o,8.4p).

Proposition 8.11 The isomorphism of Proposition 8.6 extends to a bimodule isomor-

phism of φ+νT φ with the span of twisted cylindrical KLRW diagrams for the functions

βe and γi,k modulo the local relations (8.4a–8.4p);

With pth root conventions, this means that φ′
1/p

Tφ1/p is isomorphic to the span of

twisted cylindrical KLRW diagrams with h = 0 for the functions

(8.11) βe =
be + νet

p
+

1

2p
γi,k =

ci,k + νi,kt

p
+

1

2p
.

This now establishes Theorem E(3) by Theorem C.

Proof of Thm. 6.14. By the h = 0 special case of Proposition 8.11 above, we can rewrite

e(a)Bβ(k),γ(k)e(a) as the bimodule φ+nνTφ(ηa, ηa). By the definition (2.8), we thus have

e(a)Bβ(k),γ(k)e(a) ∼= HBM
∗ (ηaX

(kν)
ηa ).

Since the space ηaX
(kν)
ηa is precisely the same as the quotient by G[[t]] of that denoted

R̃(kν)
in [BFN], this shows that our definition matches exactly the projective coordinate

ring of the partial resolution attached to the cocharacter ν in [BFN]. �

Proof of Prop. 6.18. For some large prime p, we can approximate β and β′ by choices of

be, ci,k as in (8.11), such that derived localization holds at these parameters by Theorem

3.25. Thus, the corresponding wall-crossing functor is a derived equivalence by Lemma

4.4, and so Proposition 8.11 shows the same is true for tensor product with Bβ with

coefficients in Fp.
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For any base ring k, derived tensor product with Bβ is an equivalence if and only

if the natural map R̊β → RHomR̊β′
(Bβ, Bβ) is an isomorphism, and similarly with

β, β′ reversed. First consider the cone K• of this map with k = Z. The result is a

complex whose cohomology is a finitely generated graded bimodule over R̊β in each

degree. Since each graded degree of R̊β is a finitely generated abelian group, the same

is true of Hk(K•) for each homological degree k. In particular, we can use the universal

coefficient theorem to compute the cohomology of K• ⊗Z k for any ring k. We have

shown above that K• is exact after base change to Fp for some p; this shows that

the cohomology of Hk(K•) is torsion of order coprime to p, and so becomes trivial for

k = Q. �

9. Proofs from Sections 6 and 7

We deferred the proofs of a number of results in Sections 6 and 7 which required the

results of Section 8; in this section we will cover these and any preliminary lemmata

needed for them.

Proof of Lem. 6.8. By Lemma 8.9, the module e(i)R̊j has a basis as a free right module

over the action of the dots indexed by affine permutations, with labels on strands fixed

by the labeling on the top given by i. This basis is given by diagrams that trace

out this affine permutation on the cylinder with a minimal number of crossings and

no dots. We can easily check that the set of these diagrams in a fixed left coset2

of the finite permutation group span a projective right T̃λ module, freely generated

by the unique shortest element of this coset. This is isomorphic to e(i′)T̃λ, where i′

is determined by the bottom of this shortest coset diagram (the one with a minimal

number of crossings). �

In order to prove Lemma 6.21, we need to give a lemma comparing the central

charge Z with a representation theoretic central charge similar to the ones considered

in [ABM15].

Fix a choice of parameters be, ci,k ∈ Z so that the associated parameters of the form

(8.11) lie in our preferred alcove C0. Consider the associated sheaf of algebras Ŵφ for

the corresponding flavor defined by Definition 3.5. For any other b′e, c
′
i,k ∈ Z, we can

consider the quantized line bimodule φ+νTφ with νe = b′e − be, νi,k = c′i,k − ci,k. Tensor

product φ+νTφ ⊗ − gives an equivalence of abelian categories Ŵφ -mod ∼= Ŵφ+ν -mod,

so we can implicitly identify all these categories. Let Wφ -mod0 be the subcategory

of sheaves of modules which are set-theoretically supported on the fiber over the cone

point in M; note that we have left out the completion here, since the action on any

such module automatically extends to the completion.

2As always confuses the author, this means an orbit for right multiplication of a subgroup.
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Definition 9.1 The representation theoretic central charge on K0(Ŵφ -mod0) is defined

by

Zb′,c′([M]) =
1

pV
χ(RΓ(M))

Since the parameters (8.11) lie in the alcove C0, then we have an equivalence

G : Db(Wφ -mod0) ∼= Db(R̊C0 -fdmod).

This is effectively Lemma 3.10 but also follows from applying Lemma 8.10, together with

equivalence of Ŵφ -mod0 with coherent sheaves with the same support; the characteristic

assumption on Lemma 8.10 is unnecessary by Theorem 3.25. Using the equivalence, we

can interpret Zb′,c′ as a function on K0(R̊C0 -fdmod).

Lemma 9.2 The RT central charge Zb′,c′ is:

(1) polynomial in the variables b′e
p

and
c′i,k
p

.

(2) for (β∗, γ∗,∗) ∈ C0, this function limits to Zβ,γ in the sense that if p(m) is a series

of primes with limm→∞ p
(m) = ∞, and b

(m)
e , c

(m)
i,k a series of parameters such

that b
(m)
e

p(m) and
c
(m)
i,k

p(m) converge to βe and γi,k, then Zb(m),c(m) converges to Zβ,γ as

m→∞.

Note any point in R` is a limit of the desired form, so Zβ,γ is determined by this

property.

Proof. Given an Ŵφ-moduleM, we can consider its Rees module as a module over the

usual microlocalization W of Asph to M̃ (essentially just forgetting the coherent sheaf

structure); we can then reduce this sheaf modulo h, and obtain a different coherent

sheaf N .

This will perhaps be easier to picture in terms of Z-algebras as discussed in Section

3.2. Let φ+kχLφ be the quantizations of the line bundles O(k) as left W -modules.

The sheaf M is associated to the module over the projective coordinate ring given by

RΓS(φ+kpχLφ ⊗M), with sections of the line bundles acting by the quantum Frobe-

nius map. On the other hand, N corresponds to taking the associated graded for

RΓS(φ+kχLφ ⊗M), with induced action of the associated graded of the Z-algebra.

Note that RΓ(N ) has the same Euler characteristic of RΓ(M), since the former is

the limit of a spectral sequence with E1 page given by the latter.

Of course, if we consider the tensor product M′ = φ+νTφ ⊗M, then the resulting

sheaf N ′ is simply N ′ ∼= N ⊗ O(ν). This shows that the polynomiality in b′e/p and

c′i.k/p, since changing these parameters is just tensoring N with a line bundle.

By Theorem 2.24, the central charge pV
∏
vi! · Zb′,c′ is equal to a sum over the set Λ

of the dimension of the image of the corresponding idempotent eM times the number

of p-torsion points in the corresponding polytope.
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On the other hand, the Zβ,γ is the sum over the same set, weighted by volume, and

divided by
∏
vi! to account for the fact that in our set of longitudes a1 < · · · < an is

increasing.

Thus, the agreement of these in the limit is just the fact that as p→∞, the number

of p-torsion points in a polytope inside of (R/Z)n times 1
pn

limits to the volume of this

set (the leading coefficient of the Erhart polynomial). �

Remark 9.3. Applying Grothendieck-Hirzebruch-Riemann-Roch, we can also compute

this representation theoretic central charge as an integral over the zero fiber of the

resolution M̃→M. Up to normalization, this should match [Aga, (5.18)].

Proof of Lem. 6.21. Consider two alcoves C+ and C− with C+ above C− across a single

hyperplane, and the algebras R̊C± .

This implies that for any sufficiently large prime p there are parameters be, ci,k and a

integer m > 0 such that taking ν = mχ, the path (8.11) begins in C−, ends in C+ and

passes through no other alcoves. By Lemma 4.4, we have a commutative diagram:

(9.1)

Db(Wφ -mod0) Db(Wφ+ν -mod0)

Db(R̊C− -fdmod) Db(R̊C+ -fdmod)
Bβ ⊗−

G G

φ+νTφ ⊗−

Thus, we have that the RT central charge defined with respect to C− for an R̊C−-module

M is the same as that defined with respect to C+ for Bβ

L
⊗M . Since the equivalence

BC,C0 is uniquely defined by the relation that BC−,C0
(M) = BC+,C0

(Bβ

L
⊗M), for any

such pair, we have that the RT central charge with respect to C0 for BC,C0(M) is the

same as this charge for M with respect to C. This establishes the analogue of Lemma

6.21 for the RT central charge, and thus taking limit as in Lemma 9.2 gives the desired

result. �

Before proving Theorem 6.22, we need to establish some facts about the perverse

structure on wall-crossing/translation functors given by Losev [Los, Prop. 7.3]; we are

interested in this filtration in the characteristic p case, but since it is defined by starting

with ideals in characteristic 0, we will need to consider the characteristic 0 case as well.

We will be focused on the special case relevant for us, where we have fixed be = 0

for all edges and we are crossing over a wall defined by ci,k = cj,m. This perverse

structure is based on a chain of ideals I0 ⊂ · · · ⊂ IV , defined as follows for parameters

ci,k−cj,m ∈ Z6=0: consider Asph,C
φ , with all other c∗,∗’s generic, and let Ik be the minimal

ideal such that A
sph,C
φ /Ik has Gelfand-Kirillov dimension 2(V − k). This is also well-

defined for arbitrary c∗,∗ by continuity. This defines an ideal in AZ
φ by intersection, and

then over any other base field by base change.
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We want to describe these ideals using only Gelfand-Tsetlin modules, that is modules

locally finite under the ring S1. Let us just remind the reader of a few facts: the ring

S1 is a polynomial ring generated by variables zi,k for k = 1, . . . , vk. Thus, a maximal

ideal of this ring is described by choosing scalars ai,k ∈ C. There is a natural notion of

equivalence of maximal ideals: the important property is that maximal ideals ai,k and

a′i,k are equivalent if:

(1) ai,k − a′i,k ∈ Z for all i and k = 1, . . . , vi,

(2) if ai,k − aj,m ∈ Z, then a′i,k − a′j,m ∈ Z is an integer of the same sign, and vice

versa,

(3) if ci,k − aj,m ∈ Z, then ci,k − a′j,m ∈ Z is an integer of the same sign, and vice

versa.

In order to give the sharpest version of this theorem, we need to carefully specify when

0 counts as positive or negative, which depends on various choices of convention; for

our purposes, this is irrelevant. By [Webb, Lem. 4.15], we have that:

Lemma 9.4 For any Gelfand-Tsetlin module M over A
sph,C
φ , the weight spaces of two

equivalent maximal ideals (the subspaces on which they act nilpotently) are naturally

isomorphic.

While only stated in the case of a type A quiver, this follows by the same logic as

[Webb, Prop. 5.4].

Lemma 9.5 For any quotient A
sph,C
φ /I with GK dimension m, there is a faithful GT

module over this quotient with GK dimension m
2

.

Proof. Let S ′ denote the image of S in A = A
sph,C
φ /I. Let p ⊂ S ′ be the ideal of a

component of SpecS ′ of maximal dimension d = dimV (p) = dim SpecS ′, and let m be

a generic maximal ideal containing p. This ideal is defined by scalars ai,k ∈ C as above,

and in particular, generic means that we minimize the number of pairs of (ai,k, aj,m)

or (ci,j, aj,m) with integral difference. We can thus have at most V − d independent

equations of the form ai,k = aj,m + p or ci,k = aj,m + p which are satisfied. That

is, we can find d disjoint subsets Ω1, . . . ,Ωd of Ω such that if (i, k) in Ωq, then ai,k
does not have integral difference with any cj,m or with aj,m outside of Ωq. Thus, for

any (x1, . . . , xd) ∈ Zd, we can add xq to all elements of Ωq and obtain an equivalent

maximal ideal. Let X be the Zariski closure of these points, which is a d-dimensional

affine subspace.

Now consider the module A/AmN , which is a GT module. Note that this has non-zero

multiplicity at all points in SpecS that lie in the equivalence class of m; in particular,

at the points obtained by translation as above. This shows that X ⊂ SpecS ′, and for

dimension reasons, it must be a component of this variety. Since X contains V (m), this

is only possible if X = V (p).
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Thus, the annihilator of A/AmN is a 2-sided ideal I ′ of A/I; for N sufficiently large,

the ideal I ′ ∩ S ′ has trivial p-primary component. Thus, I ′ ∩ S ′ has strictly fewer

associated primes of dimension d than S ′.

Now, apply the same logic to I ′ as a left A-module: let S ′′ be the quotient of S1

by the elements annihilating A/AmN . Note that S ′′ is a quotient of S ′, and as noted

above, it either has dimension < d or fewer components of dimension d. Choose m2

generic in a component of SpecS ′′, etc.

We can inductively define Ik as the annihilator of
⊕k−1

q=1 A/Am
Nq
q , the ring Sk as

S1 modulo the annihilator of this module, and mk as a generic maximal ideal in a

component of SpecSk. Since at each step, the number of components or dimension of

SpecSk drops, eventually, this process will terminate at a module M which is faithful,

since its annihilator is killed by all elements of S ′.

Finally, we need to show that 2d is the Gelfand-Kirillov dimension of A/I. As usual,

if we let J1, . . . , Jn be the primitive ideals killing the composition factors of M , then

J1 · · · Jn ⊂ I ⊂ Ji for all i, so the GK dimension of A/I is the same as the max of the GK

dimensions A/Ji, and we can assume without loss of generality that I is the annihilator

of a simple GT module. The support in SpecS1 of this simple module M is a finite

union of equivalence classes, so its Zariski closure is a finite union of affine subspaces of

dimension < d. As before, let X be one of these spaces of maximal dimension, and let p

be its maximal ideal. Then the tensor product of A/I on the right with the localization

S ′p gives a finite dimensional module over the fraction field K of S ′p.

The action of A/I on this tensor product gives an embedding of A/I into a finite

rank matrix algebra over the twisted group algebra of the lattice of differences between

integral points on X with coefficients in the fraction field K. Furthermore, this map

becomes an isomorphism after tensor product with K. This shows that A/I has GK

dimension 2d. �

Proof of Thm. 6.22. By Lemma 6.21, it’s enough to check these properties for the cham-

ber C0. In this case 〈Z(x), [M ]〉 is the integral of a positive function, and thus is positive;

this shows (1).

Now we turn to (2a). The standard structure is compatible with the filtration by Dn
by definition, so this is clear.

Finally, consider (2b); this requires us to show the equivalence BC,C0 for C below C0

is perverse with respect to this filtration. By Proposition 8.11, it is equivalent to the

same question as whether the functor φ+νTφ

L
⊗ − is perverse. This is proven in [Los,

Prop. 7.3], and so we need only prove that our filtration of the category agrees with

Losev’s.

We have already described Losev’s filtration above. It is based on the ideals Iq,
which by Lemma 9.5 is the annihilator of all GT modules with GK dimension ≤ V − q.

Thus, Iq kills a GT module if and only if all equivalence classes with non-zero weights

have Zariski closure of dimension ≤ V − q. The only way this can happen in the case
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where c∗,∗ are generic, except that ci,k − cj,m ∈ Z≥0, is for there there to be q values of

a`,n between ci,k and cj,m. In the corresponding idempotent over the KLRW algebra,

this means that there are at least q black strands between this particular pair of reds.

That is, it is killed by the planar equivalent of the idempotent eq defined in Section 7.2.

This description of the ideal is unchanged when we specialize to non-generic values of

c∗,∗ and reduce mod p. Thus, we have that the modules killed by Losev’s Iq are those

whose corresponding cylindrical KLRW module is killed by the idempotent eq exactly

as defined in Section 7.2. This completes the proof. �

Proof of Thm. 7.2. This follows immediately from Proposition 4.7: the space T̊1,F is

the torus minus the toric braid arrangment, so we can write the affine braid groupoid

inside the fundamental groupoid of this space as usual, and the action of the functors

Φφ′,φ′′
w match the bimodules Bτ by Proposition 8.11. �

Proof of Lem. 7.5. Recall that in [Web17a, §7.3], we defined a T̃ j′ - T̃ j bimodule kj
′

j

where the red strands trace out a cap with an element of L0.

j1

j1

i

i

· · ·

j j∗

v

This bimodule is strongly equivariant, and we let k̊ be the corresponding cylindrical

bimodule as in Lemma 6.9. We let k̊′ be the reflection of this bimodule through a

horizontal line.

The Morita equivalence we require is the given by a cylindrical version of the cup

bimodules, which is a R̊j - R̊j′ bimodule. We consider the rolled version of this bimodule

over the planar KLRW algebra. By the basis theorem [Web17a, Lemma 7.17], we see

that this module is killed by ez ∈ R̊j, so the left R̊j-module structure on the cup

bimodule factors through the quotient R(z) = R̊j/R̊jezR̊
j.

We now show that this bimodule induces a Morita equivalence. The difficult step in

this is to show that it forms a Morita correspondence with the bimodule k̊
′

given by

reflecting this diagrams in the horizontal axis (and keeping all relations the same).

That, is, we need to define maps

α : k̊
′
⊗R̊j k̊→ R̊j′ ω : k̊⊗R̊j′ k̊

′
→ R̊j

that make the matrix space
[
R̊j k̊

k̊
′
R̊j′

]
into an associative algebra.

Elements of the simple module L0 whose elements sit at the vertex of the cup and cap;

we are thinking of this as a left module, but in k̊
′
, we’ve reflected, and thus have elements
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of the right module L̇0, using the notation of [Web17a, §5.2]. This is isomorphic to the

dual of L0 by [Web17a, Prop. 5.11], and so we can choose a non-degenerate pairing

α : L0⊗L0 → k which realizes this duality, satisfying α(av, v′) = α(v, ȧv′). The map α

on a pair of diagrams is defined by stacking the diagrams, which creates a closed circle,

which we can simplify to avoid any strands outside it. We can also simplify so the circle

has an element v at the top, an element v′ and only straight strands between; in this

case, we delete the circle, and multiply the diagram by the scalar α(v, v′).

In order to define ω, we have to note that if we consider the planar KLRW algebra

T with j, j∗ as labels, z black strands of any label, and consider the quotient T/TezT

by every idempotent with black strands outside the two red, then L0 is the unique

simple module that factors through this quotient, since a simple only factors through

this quotient if it is highest weight for the categorical action, and L0 is the only such

module with this number of black strands. Furthermore, [Web17a, Lemma 7.3] shows

that L0 is projective over this quotient: the standard module S appearing that result

is the quotient by all idempotent where a black strand is left of all reds, and that result

show that the kernel of the map S → L0 is generated by the image of ez. Thus, T/TezT

is a matrix algebra so we have an isomorphism

T/TezT ∼= L0 ⊗k L̇0
∼= Endk(L0).

Thus, we can define the map ω by using the relations [Web17a, §7.5-6] to remove any

strands from between the cup and cap, and then replacing the pair of elements v at

the bottom of the cup and v′ at the top of the cap with the linear map w 7→ α(v′, w)v,

thought of as an element T/TezT . This shows that we have a Morita correspondence.

It show that this gives a Morita equivalence, we need only show that the maps α and

ω are surjective, and it’s enough to show that 1 is in the image of both maps. This is

easy to see from the non-degeneracy of the pairing α. �

Proof of Thm. 7.11. To prove that we have an action of affine ribbon tangles, we use

the annular version of the formalism of [Oht02, Ch. 3]: we define a sliced affine tangle

diagram to be such a diagram where no pair where the elements are crossings, minima

or maxima of the tangle are at the same height, and where we have cut the tangle into

the corresponding pieces. The assignment in the theorem gives a well-defined functor

for each sliced affine tangle, and so we need only show that any two ways of doing the

slicing will result in the same functor. By [Oht02, Th. 3.1], this requires showing the

ribbon Turaev moves: the ribbon Reidemeister moves, the S-move, the pitchfork move,

and the commutation of distant tangles. Each one of these is proven in the planar case

in [Web17a, Th. 8.6], and thus follows in the annular case by Lemma 6.9. �

Proof of Thm. 7.12. Note that when we have no red or black strands, the algebra R̊∅0
is just C; in this case, the planar and cylindrical KLRW algebras coincide. If a link

arises from an inclusion of the 3-ball, then it can be presented as a sliced tangle in

R2 × [0, 1], and then hit with the map compactifying one of the R-directions to S1.
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Its value Φ(K) on a link is the affinization of the functor ΦL(K), since this is true

for each individual slice, and Lemma 6.9 implies the compatibility of affinization with

composition. Since the planar and cylindrical KLRW algebras are the same in the source

and target categories, the functor is tensor product with the same vector spaces in either

case, and the theories coincide. The correspondence with other knot homologies follows

from [MW18, Th. A]. �

Appendix A. Slodowy slices in type A

One particularly interesting special case of the constructions we have discussed are

the S3 varieties for sln. These are resolutions of the intersections of Slodowy slices

and nilpotent orbits in sln. Every one of these varieties can be written as a Nakajima

quiver variety and as an affine Grassmannian slice (both in type A). That is, they have

a realization both as Higgs and as Coulomb branches of quiver gauge theories.

Let us remind the reader of the combinatorics underlying this realization. Given a

partition λ = (λ1 ≥ λ2 ≥ · · · ) of N with n parts, we can consider λ as a (co)weight of

sln, in the usual way. Given µ, another partition of N , we let

wi = λi − λi+1 vi =
i∑

k=1

λk − µk.

The significance of these are more easily seen from the familiar formulae

λ =
n∑
i=1

wiωi µ = λ−
n∑
i=1

viαi.

Consider the S3 variety Xλ
µ given by the slice to nilpotent matrices of Jordan type

µ in the closure of those of Jordan type λ. Note that all symplectic resolutions of

the nilpotent orbit closures with generic Jordan type λ are of the form T ∗G/P →
Ō for P the parabolic of block upper-triangular matrices with block sizes given by

the transpose partition to λ. Different orders of block sizes can potentially give non-

isomorphic resolutions; one can check wi as defined above is the number of blocks of

size i in along the diagonal. All resolutions of S3 varieties are given by the fiber product

of T ∗G/P with a slice to the orbit with Jordan type µ.

Theorem A.1 ([MV07, Th. 1.2], [BFN, Th. 5.6]) The S3 variety Xλ
µ is isomorphic to

the affine Grassmannian slice to Grµ inside Grλ̄, that is, to the Coulomb branch M of

the quiver gauge theory with dimension vectors w and v. The resolution M̃ attached

to a cocharacter ξ : C∗ → Gw is isomorphic to the convolution resolution of Grλ̄µ with

order on fundamental coweights induced by the cocharacter ξ, and to the resolution

T ∗G/P ×sl∗n X
λ
µ where ξ determines the order on blocks in P .

Thus, Theorems D and E give us a non-commutative resolution of the S3 variety

which is D-equivalent to any symplectic resolution of this variety. This is given by a
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cylindrical KLRW algebra with wi red strands and vi black strands of label i. Below

we’ll discuss in a bit more detail what we see in different cases of interest.

A.1. Kleinian singularities. The simplest special case is the Kleinian singularity

C2/(Z/`Z). This is isomorphic to the slice to the subregular orbit of sl` in the full

nilcone, i.e. Jordan types λ = (`, 0) and µ = (` − 1, 1). Thus, this corresponds to the

case where w1 = ` and v1 = 1. That is, we have ` red strands with the same label and

a single black strand.

We have ` different idempotents depending on the position of the black strand, which

we think of as positioned cyclically on a circle. The algebra of endomorphisms is

generated by these idempotents, and by the degree 1 maps joining adjacent chambers

by crossing the red strand:

Thus, this algebra can be written as a quotient of the path algebra of the quiver with

` cyclically ordered nodes and edges joining adjacent pairs of edges in both directions.

The only relations needed are that the two length two paths starting and ending at a

given node are equal: they are both multiplication by a single dot on the single black

strand by (6.2e). Example 8.i covers the ` = 2 case. In the ` = 3 case, we have the

quiver shown below, with the diagrams above corresponding to a single pair of edges

(with the others coming from rotations of these diagrams).

A.2. 2-row Slodowy slices. Another case which has attracted considerable attention

is that of 2-row Slodowy slices. That is, for k ≤ `/2, we consider the case λ = (`, 0)

and µ = (`− k, k). Thus, we have w1 = `, v1 = k. The result is that all red and black

strands are labeled by the same simple root. This is thus a cylindrical version of the

algebras T̃ `k defined in [Web16, Def. 2.3].

Anno and Nandakumar [AN] show that there is an action of the category of affine

tangles on the category of coherent sheaves in this case, which obviously we expect to

match ours. In fact, it is virtually certain that this is the case. The same affine braid

group action appears (up to reflection of braids), so we need only check that the cup and

cap functors match. From the fact that the composition of a cup and then a crossing is

cup shifted by ±1 (depending on the sign of the crossing) both in our tangle action by

Theorem 6.22 and in Anno-Nandakumar’s action, as shown in [AN, Prop. 4.7], we see

that the cup functors just have the same subcategory as image (all the eigenobjects for
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the crossing functor). However, this does not show that the functors are isomorphic.

We leave carefully matching these functors to another time, or perhaps an industrious

reader.

A.3. Cotangent bundles to projective spaces and Grassmannians. Dual to the

examples of Kleinian singularities and 2-row Slodowy slices respectively are the cotan-

gent bundles to projective spaces and Grassmannians.

The example of T ∗Pn corresponds to thinking of this as the S3 variety for the minimal

orbit in type A, that is, for the Jordan types λ = (2, 1, . . . , 1, 0) and µ = (1, . . . , 1). This

corresponds to the quiver gauge theory attached to a linear quiver with n − 1 nodes,

and vectors w = (1, 0, · · · , 0, 1) and v = (1, . . . , 1). One can easily check that the

associated representation is that of G = D∩SLn, the diagonal matrices of determinant

1 acting on V = Cn, so indeed the associated Higgs branch is the Kleinian singularity

C2/(Z/nZ).

To obtain the cotangent bundle to a the Grassmannian Gr(n, k) of k planes in Cn with

n ≥ 2k, we consider λ = (2k, 1n−2k, 0k), and µ = (1, . . . , 1). This gives wp = δk,p+δn−k,p
and v = (1, 2, 3, . . . , k − 1, k, . . . , k, k − 1, . . . , 2, 1). For example, Gr(4, 2) corresponds

to w = (0, 2, 0),v = (1, 2, 1) and Gr(5, 2) to w = (0, 1, 1, 0),v = (1, 2, 2, 1). We’ll study

these examples in more detail in forthcoming work with Zhou [WZ].

A.4. The noncommutative Springer resolution. One final variety of considerable

interest that appears here is the cotangent bundle to the type A flag variety T ∗GLn/B.

This arises from the dimension vectors v = (1, 2, 3, . . . , n − 1) and w = (0, · · · , 0, n).

In this case, µ = λt = (1, . . . , 1) and λ = µt = (n). It is a well-known theorem of

Nakajima that the Higgs branch of this theory is T ∗G/B. The equality µ = λt shows

that this example is self-dual, and the Coulomb branch arises the same way.

It’s also well-known that the quantum Coulomb branch that arises this way is essen-

tially the universal enveloping algebra of gln; if we fix the flavors to numerical values,

then this is the quotient of this ring by a maximal ideal of its center, but keeping the

flavors as variables, it’s easy to construct U(gln) on the nose.

The construction of a tilting generator in Section 3 is thus just a rephrasing of the non-

commutative Springer resolution as constructed by Bezrukavnikov, Mirković, Rumynin

and Riche [BMRR08, Bez06]. Recall that this construction operates by turning differ-

ential operators on the flag variety X in characteristic p into an Azumaya algebra D on

T ∗X, completing in a formal neighborhood of the zero-section and finding a splitting

of the resulting Azumaya algebra D̂ on this formal neighborhood.

Thus, the constructions of Section 3 can be recast in this case in purely Lie theoretic

terms. The ring homomorphism σ of Theorem 3.1 is just the map σ(X) = Xp −X(p)

for X ∈ gln. The integrable system given by equivariant parameters on the Coulomb

branch is precisely the Gelfand-Tsetlin system as discussed in [WWY]. Identifying

the Harish-Chandra center of U(gln) with Fp[t]W , the homomorphism σ is pullback
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by the Artin-Schreier map AS: t∗ → t∗ (which is W -equivariant). This describes the

induced map on the full Gelfand-Tsetlin subalgebra Γ, which is the tensor product of

the Harish-Chandra centers of glk for k = 1, . . . , n.

That is, we can think of a point in MaxSpec(Γ⊗Fp) as a choice a1, . . . , an with ak an

unordered k-tuple in Fp, and σ the map sending ai,j 7→ api,j − ai,j. In particular, when

we complete in a formal neighborhood of the zero-section, the ideal in σ(Γ) generated

by api,j − ai,j = 0 acts topologically nilpotently.

The sections of D are identified with a completion of the cylindrical KLRW algebra

by Lemma 3.10 and Proposition 8.6. By the Chinese remainder theorem applied to

the image of Γ, this completion also contains idempotents attached to each maximal

ideals lying over that in σ(Γ), that is, those with ai,j ∈ Fp. These correspond to the

idempotents in the KLR algebra, given by e(a′) where the labels i are on the point

ai,j/p ∈ R/Z (following Definition 6.10); as before we let e(a/p) denote when we have

fixed ai,j = a for all i, j. The image De(a/p) is a splitting bundle for this Azumaya

algebra by Lemma 3.11.

Thus, while we obtain a familiar object, we obtain a new perspective on it, since this

KLR presentation is not at all obvious from the Lie theoretic perspective. Developing

its consequences will have to wait for future work.

Glossary

T∗ A maximal torus of the group ∗. 2, 35, 49
G The gauge group. 2, 5, 32, 34, 36, 48, 49
W The Weyl group of G. 2, 49
Γ The quiver used to define the quiver gauge theory as in (1.1). 2, 5, 32, 48
V(Γ) The vertex set of Γ. 2, 5, 6, 29, 30
v A dimension vector with components vi for Γ that gives the

ranks of the factors of the gauge group G.
2, 5, 24, 30, 33, 44, 46

w A dimension vector with components wi for Γ that gives the
ranks of the factors of the flavor group F .

2, 5, 24, 27, 44, 46

V The matter representation. 2, 32, 49
M The Coulomb branch—the quotient of the convolution algebra

of a modified affine Grassmannian as defined in [BFN18].
3, 13, 37, 44, 48, 49

R̊ The cylindrical KLRW algebra; see Definition 6.3. 3, 7, 11, 13, 15, 34

M̃ The resolution of the Coulomb branch M defined by taking sym-
plectic redution with a GIT quotient of MQ.

3, 4, 14, 34, 44, 49

R̊j The cylindrical KLRW algebra with βe = 0 for all e and where
the word j defines the labels on the red strands.

4, 18, 19, 37, 42

H The normalizer N◦GL(V )(G). 5, 23, 49

β∗ A R/Z valued function on the edge set of Γ; these control the
distance between solid and ghost strands in cylindrical KLRW
diagrams.

5, 10, 13–16, 18, 24,
25, 30, 31, 34–36, 48
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γ∗,∗ A wi-tuple of elements in R/Z for each node in Γ. These control
the position of red strands in cylindrical KLRW diagrams.

5, 13–16, 19, 24, 25,
31, 34, 48

B The extended BFN category, defined in Definition 2.4. 13, 23–25, 29, 31, 35,
49

Bβ,γ The bimodule defined by twisted cylindrical KLRW diagrams
for some path β,γ in the space of parameters β∗, γ∗,∗.

13–15, 17, 36, 39

Q The preimage in the normalizer H of a fixed torus TF in the
flavor group F .

17, 35, 49

R̊C The cylindrical KLRW algebra with parameters in the alcove C. 17, 38, 39
Zβ,γ(M) The central charge function, depending on β∗ and γ∗,∗, defined by

polynomially extending the formula (6.10) on K0(R̊C0 -fdmod).

17, 19, 38, 41

em As we pass to a wall where two red strands collide, em is the
sum of idempotents corresponding to loadings with < m black
strands between these red strands.

19, 20, 42, 43

Asph The quantum Coulomb branch Asph = H
BM,G̃((t))
∗ (YV [[t]] ×V ((t))

YV [[t]]).
23, 31, 32, 38, 39, 49

δ A parameter between the open interval (0, 1) ⊂ R used in the
definition of B.

23

pth root The conventions for the extended category adopted in Definition
2.12.

23, 35, 49

ϕmid
i The average of ϕ+

i and −ϕ−i . 24
τ The cocharacter τ : C∗ → GL(T ∗V ) that acts trivially on V and

weight −1 on V ∗.
24, 33

c∗,∗ The diagonal entries ci,1, . . . , ci,wi of the flavor φ into gl(kwi). 24, 27, 31, 34–37, 39
be The diagonal entries be of the flavor φ into gl(kχi,j). 24, 27, 31, 34–37, 39

Ŵ The affine Weyl group of G. The semi-direct product of W and
the coweight lattice of T .

25, 29, 30

S∗ The symmetric algebra on t̃∗, that is, the ring of functions on
the affine variety t̃, with the parameter h specialized at h = ∗.

25, 40

rD The morphism rD : D(0) → D(1) in the category B associated
to an unrolled diagram described in Definition 8.2. In Definition
8.4, we extend this to cylindrical KLRW diagrams.

26, 29, 30

Âp The completion with respect to grading of Ap. 33
B The extended BFN category with pth root conventions. 33, 36, 49
F The flavor group H/G. 35, 48

φ+νT φ The Bφ+ν - Bφ bimodule formed by the appropriate quotient of
T (ν), the morphisms of weight ν in BQ.

35, 36

BQ The extended BFN category attached to the pair (Q, V ), defined
in Definition 2.4.

35

48
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t1,R Let t1,R ⊂ t̃R = dν−1(1) be the real lifts of the cocharacter φ. 36

Ŵφ The restriction of Wφ to the formal neighborhood M̂. 37
MQ The Coulomb branch M attached to the group Q acting on V

with its usual action.
48

Ap The subcategory of B defined in Definition 2.20. 49

Wφ The coherent sheaf of generically Azumaya algebras on M̃ or
its pushforward to M, such that Γ(M̃; Wφ) = A

sph
1 with the

quantization parameter φ; see Definition 3.5.

49

M̂ The formal neighborhood in M of the fiber over the origin in
t/W .

49
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[BFN] Alexander Braverman, Michael Finkelberg, and Hiraku Nakajima, Line bundles over
coulomb branches, arXiv:1805.11826.

[BFN18] Alexander Braverman, Michael Finkelberg, and Hiraku Nakajima, Towards a mathematical
definition of Coulomb branches of 3-dimensional N = 4 gauge theories, II, Adv. Theor.
Math. Phys. 22 (2018), no. 5, 1071–1147. MR 3952347

[BK08] R. Bezrukavnikov and D. Kaledin, Fedosov quantization in positive characteristic, J. Amer.
Math. Soc. 21 (2008), no. 2, 409–438. MR 2373355
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