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The Coulomb mystique

My goal today: a purely algebraic perspective on Mina’s talk.

In particular, she introduced:

a space X as the Coulomb branch of a quiver gauge theory and

an action of affine braids (in fact, affine tangles) on the derived
category of T-equivariant coherent sheaves on X .

I want to explain these notions in a way that doesn’t require to know
any physics or even very much algebraic geometry.

Key idea: X is a resolution of singularities of a singular variety X0.
Replace them with a non-commutative resolution: a
non-commutative algebra A with Db(A -mod) ∼= Db(Coh(X )).
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The Coulomb mystique

What’s the deal with Coulomb branches? I mean specifically for 3d
N = 4 supersymmetric gauge theories for a group G and a matter
representation N.

Mystery for a long time. Physicists would tell us if H is the Cartan of
G, then

M ≈ T∗LH/W

but there are “quantum corrections” that change this to a more
complicated variety.

One hint: if N = 0, then M = Spec(HG[[t]]
∗ (Gr)). Braverman,

Finkelberg and Nakajima figured out how to make this hint precise.

In physics terms, this is computing the local operators of the A-twist
of this theory as the endomorphisms of the trivial line operator.
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The quiver case

We’ll specialize to the case of a quiver gauge theory for a quiver Γ:

G =
!

i∈Γ
GL(vi) N =

"

i→j

Hom(Cvi ,Cvj)⊕
"

i∈Γ
Hom(Cvi ,Cwi)

Taylor series C = C[[t]] G = G[[t]] N = N[[t]]
Laurent series C = C((t)) G = G((t)) N = N((t))

Relevant spaces:

Y = N/G = Map(D = SpecC → N/G)

Y = N/G = Map(D∗ = SpecC → N/G)
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The quiver case

The spaces Y and Y are moduli spaces of framed quiver
representations (FQR) with coefficients in the rings C[[t]] = C and
C((t)) = C. The map Y → Y is C⊗C −.

Recall that a lattice in Cn is an C-submodule isomorphic to Cn. The
affine Grassmannian of GLn is the space of lattices in Cn.

Thus, choosing a preimage of VC ∈ Y under this map is choosing a
lattice in VC ⊂ VC which is invariant under the quiver representation
maps.

The fiber product Y ×Y Y is the moduli space of FQR over C with a
pair of compatible lattices.
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The quiver case

Usual convolution arguments give a product on A = HBM
∗ (Y×Y Y; ).

This means we look at the double-raviolo, pullback a by pulling of
raviolo 1, pullback b by pulling off raviolo 2, and the pushforward
a ∩ b by mixing the fillings.

Definition

The (3d) Coulomb branch is the spectrum M = SpecA.
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Flags over Grassmannians

This geometric description is beautiful, but it’s not very practical from
an algebraic standpoint. An analogous situation is geometric
construction of KLR algebras.

Let Y be the moduli space of FQR over C. We’ll be interested in a
flag F1 ⊂ F2 ⊂ · · · of subrepresentations. Any such flag gives me a
word in I ∪ I by looking at which node the dimension jumps on (red
for framing nodes):

dim(Fk ∩ Cvj/Fk−1 ∩ Cvj) = δj,ik .

dim(Fk ∩ Cwj/Fk−1 ∩ Cwj) = δj,ik .
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Flags over Grassmannians

Theorem (W., Varagnolo-Vasserot, Rouquier)

We can write the KLRW algebra as Rv = HBM
∗ (X ×Y X).
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Flags over Grassmannians

Theorem (W., Varagnolo-Vasserot, Rouquier)

We can write the KLRW algebra as Rv = HBM
∗ (X ×Y X).
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Flags over Grassmannians

How do we affinize this story?

Definition

An affine flag in Cm is a sequence of a lattices Fk ⊂ Cm for k ∈ Z
such that

· · · ⊂ Fk ⊂ Fk ⊂ Fk+1 ⊂ · · · tFk = Fk−m

Objects describing affine flags are periodic (periodic permutations for
Schubert cells, etc.)
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Flags over Grassmannians

We can look now at the moduli space of quiver representations that
preserve an affine flag. We have to specify which nodes the jumps
occur on.

A periodic word i is a map i : Z → I ∪ I such that ik = ik+m for all k
for m =

#
vi + wi such that any m consecutive entries contain vi

copies of i and wi copies of i

Any homogeneous affine flag F• ⊂
$

i∈I C
vi ⊕ Cwj has a periodic

word as its type, defined by

dim(Fk ∩ Cvj/Fk−1 ∩ Cvj) = δj,ik .

dim(Fk ∩ Cwj/Fk−1 ∩ Cwj) = δj,ik .
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Flags over Grassmannians

Let Xi be the moduli space of quiver reps over C together with a
choice of affine flag of subreps of type i which matches the standard
flag on Cwj .

In physics, this gives us a half-BPS vortex line operator
compatible with the A-twist of the theory, where we couple to
quantum mechanics on the flag variety, and think of preserving
the flag as a restriction on the poles and zeros of fields.

Mathematically, we can think of this as the D-module
pushforward by the map Xi → Y.

Thus we’ll want to consider the convolution algebra

R =
"

i,j

HBM
∗ (Xi ×Y Xj) ∼= Ext∗(

"

i

π∗CXi).
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The non-commutative resolution

Theorem

The convolution algebra R has a presentation by cylindrical KLRW
diagrams with the same local relations.
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The non-commutative resolution

Theorem

Assuming Γ is type ADE and wi is only non-zero on minuscule nodes,
the convolution algebra R is a non-commutative symplectic resolution
of M for any ordering of the red strands.

In fact, R is the endomorphisms of a tilting generator on any (usual)
symplectic resolution X of M, which you can also construct using
work of Bezrukavnikov and Kaledin in characteristic p.

In particular, there is an idempotent e0 ∈ R such that

A = C[X ] = e0Re0.
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The non-commutative resolution

The elements of this subalgebra can be thought of as pinching the
strands at the top and bottom to a single thick strand (in the style of
“thick calculus”).

We’re using the usual process of a taking a divided power (“one
vi!th”) of the vi strands with label i.
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The tangle action and variation of stability

As discussed in Mina’s talk, there is an action of cylindrical tangles
on this category. This is intimately tied to a real variation of
t-structures.

The (non-equivariant) central charge gives a function on
K(R -mod) → R depending on the position of the red strands (the
B-field) on the circle.

For each set of labelled points x on the circle, we have an
idempotent ex.

The central charge of a module M is given by the integral
Z(M) =

%
dim(exM)dx

Both the action of crossings and of cups/caps are pinned down by this
function, and in particular, its behavior as two red points collide.
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The tangle action and variation of stability

When two red points pass through each other, we have equivalences

Db(R -mod) ∼= Db(Coh(X )) ∼= Db(R′ -mod)

Not unique: two most obvious possibilities correspond to the two
ways points can swap in the space of complexified Kähler parameters.

Theorem

The resulting wall-crossing functors generate an action of the affine
braid groupoid (keeping track of labels on strands) acting on the
categories Db(R -mod) for the different orders of red strands.

These are perverse equivalences by a theorem of Losev, with perverse
filtration depending on order of vanishing of Z(M).

· · ·· · · · · ·
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The tangle action and variation of stability

On purely abstract grounds, these functors come from tensor product
with a complex of bimodules, but we can explicitly construct the
corresponding bimodules:

They are cylindrical versions of the R-matrix bimodules for KLRW
algebras.

Ben Webster UW/PI

Knot homology and coherent sheaves on Coulomb branches

L&
E



Coulomb branches Non-commutative resolutions Knot invariants

The tangle action and variation of stability

The cup functor is an equivalence between:

Objects in R -fdmod with maximal vanishing order as red
strands labeled with λ and λ∗ = −w0λ come together.

Objects in R′ -fdmod for this algebra with the two red strands
deleted (as well as α∨

i (λ+ λ∗) black strands with label i).

Cap functor is biadjoint (up to shift). Realized by a cylindrical version
of cup and cap functors for KLRW algebras:
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Link homology

Theorem

These braid and cup/cap functors define a functor

from the category of oriented affine ribbon tangles, labeled with
minuscule fundamentals,

to the category of dg-categories with morphisms given by
functors up to quasi-isomorphism.
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Link homology

Making a labeled ribbon link annular in the boring way, this gives a
link homology Dcoh(K).

Theorem

The following link homologies are all the same:

Dcoh(K), constructed from the affine tangle action above.

the invariant constructed in my older knot homology work
(which matches Khovanov-Rozansky in type A).

Aganagić’s physical construction.
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Link homology

Of course, this gives an annular knot invariant as well.

Conjecture

In type A, this agrees with annular Khovanov-Rozansky homology (as
defined by Queffelec and Rose).

The categories of R -mod for all possible labelings by fundamentals
should carry an action of annular foams (by the web bimodules
defined by Mackaay-W.)

This reduces to the check that a single unknot looped around the
cylinder has the right value. I can do this calculation in sl2, and am
one ugly complex away from doing so in sln.
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Thanks

Thanks for listening.
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