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Overview

This talk reports on various joint works: with Shende, Kucharski,
Longhi, Georgieva, Ng

Plan:

Skein valued open GW-invariants and large N duality

Skein recursion

The toric brane and basic disks

Other basic curves

Refined partition functions and consequences for HOMFLY
homology



Skeins on branes

Geometric setting:

(X , ω) 3-dim symplectic Calabi-Yau, c1(X ) = 0.
Main examples: C3, T ∗S3, and O(−1)⊕2 → CP1.

L ⊂ X Maslov zero Lagrangian.
Main examples: toric brane, knot conormals, 0-section.

Holomorphic curves:

J acs on X compatible with ω. (S , j) Riemann surface. A
holomorphic curve is a map u : (S , ∂S)→ (X , L) that solves
the Cauchy-Riemann equation: ∂̄Ju = 1

2 (du + J ◦ du ◦ j) = 0.

The Cauchy-Riemann equation is Fredholm and the expected
dimension of the moduli space of solutions is

(dimC X − 3)χ(S) + 2c rel
1 (u∗TX ) = 0 + 0.



Skeins on branes

The dimension count indicates that after perturbation, the moduli
space of solutions to the Cauchy-Riemann equation is an oriented
zero-manifold. For closed curves nodal solutions appear in codim 2
and curve counts are invariant under deformation. For open curves
boundary nodes have codimension one and curve counts are not
invariant. There are invariant curve counts in this setting, in the
skein.

For general curves we use the HOMFLY skein. For curves invariant
under an involution that fixes the Lagrangian we use the
Kauffmann skein.



Skeins on branes

For example, Sk(S3) = C[q±1, a±1], Sk(S1 × R2) is a free
commutative algebra on countably many generators Am (m − 1
crossings, m times around).



Skeins on branes

Bare curves: A stable map u : S → X is bare if all its irreducible
components have positive symplectic area.

Skein valued curve counts are based on counting bare holomorphic
curves by their boundary in the framed skein.

Auxiliary framing data: Generic vector field ξ on L and 4-chain C
with ∂C = 2 · L and ±J · ξ along the boundary.



Skeins on branes

The skein valued curve count is then a sum over all disconnected
bare holomorphic curves where the contribution of
u : (S , ∂S)→ (X , L) is

w(u) z−χ(S) alk(L,u) 〈u(∂S)〉 ∈ Sk(L)

w(u) – rational weight of u as a weighted point in the moduli
space

χ(S) – Euler characteristic of S

lk(L, u) – linking between u and L

〈u(∂S)〉 – the boundary of u in the skein of L.



Skeins on branes

The skein valued curve count is invariant under deformations. This
is proved by constructing a perturbation scheme for the
Cauchy-Riemann equation. A cartoon version is as follows.



Skeins on branes

Define, inductively in Euler characteristic, a (multi-) section
λ : Z→W, which is zero on ghost components and which have
the following properties:

1) Bare solutions transversely cut out, embeddings, tangent along
boundary spans together with ξ a 2-plane everywhere.

2) Constant curves bubble off only in codimension ≥ two
⇒ for 1-parameter families, all solutions near boundary are bare
with ghosts.



Skeins on branes

3) Degeneracies in 1-parameter families of solutions have standard
form.
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Skeins on branes

4) At tangencies with ξ a kink is traded for a 4-chain intersection.
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Skeins on branes – comments

Skein counts are inductive in Euler characteristic. Usual
perturbative treatment is not.



Skeins on branes – comments

With z = (q − q−1) the bare curve count is like the first term
(d=1) in the GV formula for the contribution to GW from a curve
of Euler characteristic χ in homology class x :

exp

( ∞∑
d=1

xd

d
(qd − q−d)−χ

)



Ooguri-Vafa large N duality

Geometric setup: K ⊂ S3 – knot. LK ⊂ T ∗S3 – Lagrangian
conormal ≈ S1 × R2. Shift LK off of 0-section S3 (non-exact).
Transition to resolved conifold X = {O(−1)⊕2 → CP1}.

21{ z  + z  + z  + z  = 0 }3 4
2 2 2 2



Ooguri-Vafa large N duality

Theorem

The GW partition function equals the generating function for the
colored HOMFLY:

ΨK (x , a, gs) =
∑
k≥0

HK ,n(a, e
gs
2 )enx ,



Ooguri-Vafa large N duality

SFT-stretch
LK

LK

S3
ε

S3K

For a small shift of the conormal there is a unique holomorphic
cylinder. SFT stretching removes all boundaries from the 0-section
(outside curves asymptotic to Reeb orbits of index 2 gives negative
dimension). Calculating the skein valued invariant gives the colored
HOMFLY (obvious for once around, for many times we use info
about the unknot). Curves in the stretched structure are the same
as in the conifold for small area CP1.



Large N duality – comments

Moduli spaces for planar unknot.

Real curves can be counted as in ordinary GW theory. For any knot
K the count in the basic homology class in H2(T ∗S3; LK ∪ S3) is
one cylinder, i.e., 1. The skein count corresponds in the stretched
picture to a count in H2(T ∗S3 \ S3; LK ) and equals the Kauffman
polynomial by the argument above.



Large N duality – comments

The argument works for conormals LK ⊂ T ∗M of knots in any
oriented 3-manifold M but since π1(M) 6= 1 there are index zero
geodesics and holomorphic curves generally has inside pieces after
stretching. This leads to a universal skein GW invariant with
values in

Q ⊗ Sk(M),

where Q is the kernel of a differential operator D(a, z) on the
algebra of degree 0 Reeb orbits.



The toric brane in C3

The toric brane in C3 provides a universal model for ‘crossing a
basic disk’ and illustrates how to calculate skein invariants ‘from
infinity’.

Strategy for curve counts from infinity: (X , L) has ideal
contact boundary (∂X , ∂L). The boundary of 1-dimensional
moduli spaces consists of R-invariant curves at infinity and rigid
curves in the bulk. The boundary is zero in the skein. The outside
then determines the inside.



The toric brane in C3

C3 with coordinates z = (z1, z2, z3).

C3 → R3, z 7→ (rα(z), rβ(z), rγ(z)),

rα(z) = |z1|2 − |z2|2, rβ(z) = |z2|2 − |z3|2, rγ(z) = Im(z1z2z3).

Fiber at (rα, rβ, rγ):

|z1|2 = rα + |z3|2, |z2|2 = rβ + |z3|2,
Im(|z1||z2||z3|e i(θ1+θ2+θ3)) = rγ

⇒ generic fiber T 2 × R.



The toric brane in C3

Lagrangians L1, L2, L3 ≈ S1 × R2.

L1 : rα = 0, rβ = r∗1 , rγ ≥ 0 and Re(z1z2z3) = 0,

L2 : rβ = 0, rα = r∗2 , rγ ≥ 0 and Re(z1z2z3) = 0,

L3 : rα − rβ = 0, rα = r∗3 , rγ ≥ 0 and Re(z1z2z3) = 0,

We restrict attention to L1 and parameterize it(
|z3|e iθ, (|z3|+ r∗1 )e iφ, |z3|e−i(θ+φ−π

2
)
)



The toric brane in C3

As |z3| → ∞, L1 is asymptotic to the R-invariant Lagrangian(
ρe iθ, ρe iφ, ρe−i(θ+φ−π

2
)
)
.

Consider the image under the Hopf map S5 → CP2:

[e i(2θ+φ) : e i(2φ+θ) : i ].

A Clifford torus and the Legendrian ∂L1 is a 3-fold cover
(Bohr-Sommerfeld). The Reeb chords of ∂L1 are Bott degenerate
and come in T 2-families, length k 2π

3 , index ≥ 1, with equality only
for k = 1.



The toric brane in C3

To find holomorphic curves one can either use curves on the
Clifford torus or draw the front of ∂L1 in R5 ⊂ S5:



The toric brane in C3

We learn then that the skein valued curve count Ψ on the toric
brane satsifies the operator equation:

(©− P1,0 − P0,1) Ψ = 0.

The operators ©− P1,0 and P0,1 have a common eigen-basis in
the positive skein Wλ where λ runs over partitions of positive
integers. The operator equation has a unique solution in Sk+:

Ψ =
∑
λ

Wλ

∏
�∈λ

q−c(�)/2

qh(�)/2 − q−h(�)/2
,

where h is the hook length and c the content, here we use
z = q1/2 − q−1/2.



The toric brane in C3

Interpretation of the equation

(©− P1,0 − P0,1) Ψ = 0.



Generalized curves

The standard approach to open GW invariants with one copy of
the Lagrangian correspond to U(1) gauge theory and in the case of
bare curves to a = q = egs after projection to ‘homology +
linking’, we call them generalized curves.

w(u) z−χ(S) alk(L,u) 〈u(∂S)〉 ∈ Sk(L)→

w(u) (q − q−1)−χ(S) qlk(L,u) [u(∂S)] ∈ Q[q±] ̂[H2(X , L)]



Generalized curves

E.g., for the toric brane and the recursion relation then reads:

(1− e x̂ − e p̂)ψ(x) = 0, ψ(x) =
∑
k

ck(q)ekx ,

ck(q) = (1− q)−1(1− q2)−1 . . . (1− qk)−1,

where x generates H1(L) and log a generates H2(X ), e x̂ is
multiplication by ex and e p̂ = egs∂x .



Basic holomorphic disks and quivers

It was observed that the generating function for the colored
HOMFLY can be written as a quiver partition function for a
symmetric quiver. The geometry behind such expressions can be
understood if we assume that there is a finite set of basic
holomorphic disks (the quiver nodes) attached to LK such that all
holomorphic curves lie in a neighborhood of LK ∪ {basic disks}.



Basic holomorphic disks and quivers

As for generalized curves, we must keep track of the linking
number between disks to count generalized curves. The result is an
expression of the following form:

ΨK (ex , a, q) = ψ
(
ex1e

∑n
j=1 C1j gs∂xj

)
· · ·ψ

(
exme

∑n
j=1 Cmj gs∂xj

)
=

∑
(d1,...,dm)∈Zm

+

(−q)
∑

ij Cijdidj

m∏
j=1

edjxj

(q2, q2)dj
,

where exi = qni aki ex .

Geometric characters of nodes: Cij is linking between disks i
and j , Cii self-linking or framing data for attaching the disk, ni is
4-chain intersections (invariant self-linking minus framing), (ki , li )
homology class in H2(X , LK ).



Basic holomorphic disks and quivers

After stretching: The linking Cij and self-linking Cii become
framings of along the boundary of the basic cylinder. They
correspond to attaching data of the neighborhood of basic disks
and are determined by normal bundle data. The ‘far away’ 4-chain
intersections lie outside N(LK ).



Basic holomorphic disks and quivers

For the unknot the desired form can be obtained from toric
geometry.

For conormals of other knots basic should come from viewing their
conormals as a ‘cover’ or the unknot conormal and stretching.



Basic holomorphic disks and quivers

U



Non-uniqueness of quivers

Different quivers can give rise to the same partition function.
There are two main sources.



Basic holomorphic disks and refinement

With inspiration from the M-theory picture X ×Ct ×Cq × S1 with
M5 LK × Cq × S1 and M2 Σ× S1 and refined curve counting
connecting Ct to N(LK )/J(TS1) and then N(S1), consider the
refined partition function:

ΨK (ex , a, q, t) =
∑

(d1,...,dm)∈Zm
+

q
∑

ij Cijdidj

m∏
j=1

edjxj

(q2, q2)dj
,

where exi = qni aki tCii ex .

Then the refined partition function is not invariant under removing

canceling pairs and the ex -term Ψ
(1)
K (a, q, t) is the Poincaré

polynomial of HOMFLY-homology.



Basic holomorphic disks and refinement

The unknot:
1

1− q2

(
1 + ta2

)
.

The trefoil:

1

1− q2

(
a2(t2 + q−2) + a4(q−1t3 + q−3(t + t3) + a6q−4t4

)
.



Basic holomorphic disks and refinement

For simple knots this continues. Higher terms in the refined
partition function gives the Poincaré polynomial of the
corresponding symmetrically colored HOMFLY homology

The unknot:

1

(1− q2)(1− q4)...(1− q2d)

(
d∑

k=0

(
d

k

)
a2ktk

)
.



Basic holomorphic disks and refinement

Geometrically this means we express the defect in the U(1)
Chern-Simons on LK in a specific basis of the skein, as if every
contribution comes from covers of a basic disk.



Basic holomorphic disks and refinement

For not so simple knots this breaks. For example for 942

we have (the reduced) super polynomial

Ψ̃
(1)
942

(a, q, t) = P1
942

(a, q, t)

= a−2

(
1

q2t2
+ q2

)
+

(
q4t3 +

1

q4t
+ 2t + 1

)
+ a2

(
q2t4 +

t2

q2

)
.

But
P2

942
(a, q, t) = a−6 (twelve monomials) + . . .



New basic holomorphic curves

We propose new generators at level d in the stretched picture: a
d-fold cylinder over the geodesic with an embedded sphere on the
outside at the Reeb orbit.

Recursion relation

(1− e ŷ − edx̂)ψd = 0.



New basic holomorphic curves

At the refined level we should take into account framing data at
the boundary. A basic disk comes with a standard Lagrangian
boundary condition that is naturally trivialized connecting (v1, v2)
to (−v1,−v2). Depending on the sense of rotation the new basic
objects at level d contributes to the refined level d superpolynomial
as

ξ · (1 + t±q2)(1 + t±q4) . . . (1 + t±q2d−2)

(1− q2)(1− q4) . . . (1− q2d)
.

Here ξ = edxakqmtCii±1, where Cii refers to the self linking of the
attaching map (the underlying once around curve).



New basic holomorphic curves

In general the contribution to both the standard and refined
partition functions can be written much as before in terms of
internal charges ξ and linking information Cij . E.g.,

q2Cijd1k1d2k2
ξk1

1

(1− q2d1) . . . (1− q2k1d1)

ξk2
2

(1− q2d2) . . . (1− q2k2d2)

and on the refined level add factors 1+t±q2s

1−q2s to ‘correct’
denominators.



New basic holomorphic curves – test

A test of the proposal: the part of the level 2 super polynomial that
does not come from level one basic disks should contain factors
(1 + t±q2). For 942 we have the second level super-polynomial:

P2(a, q, t) = 1 +
(
q2 + 1

)( 1

a2q4t3
+ 1

)(
q2

a2t
+ 1

)(
a2q2t4 +

a2t2

q2

)
+
(
q2 + 1

)( 1

a2q6t3
+ 1

)(
1

a2q4t3
+ 1

)(
q2

a2t
+ 1

)
·
(
a2q6t6 + a2q6t5 + a4q4t6 + 2a2q2t5 + a2t4 + q2t4 + t3

)
+
(
q2 + 1

)(1

t
+ 1

)(
1

a2q6t3
+ 1

)(
1

a2q4t3
+ 1

)(
q2

a2t
+ 1

)
·
(
a4q8t8 + a2q8t7 + a2q4t5 + a4q2t6 + a2t4 + q6t5 + t3

)
+

(
1

a2t
+ 1

)(
1

a2q6t3
+ 1

)(
1

a2q4t3
+ 1

)(
q2

a2t
+ 1

)
·
(
a4q12t8 + a4t4

)



New basic holomorphic curves – test

Subtracting the contribution from level one disks leaves:

P2 − P
Q |

x
2 = a
−6

[  1

q6 t4
+

1

q8 t4
+

1

q8 t5
+

1

q2 t3

 (q2
t + 1

)
+

 1

q8 t4
+

1

q2 t2

  q2

t

+ 1

 ]

+ a
−4

[  1

q2 t2
+

2

q4 t2
+

1

q4 t3
+

1

q6 t3
+

2

q8 t3
+

1

q10 t4
+

2

q2 t

+ q
4

+ q
2

+
2

t

 (q2
t + 1

)

+

 q2

t

+ 1

  1

q4 t2
+

1

q8 t2
+

1

q8 t3
+

2

q10 t3
+ q

4
t + q

2
t +

2

q2 t

+
3

q4 t

+
1

q2
+ 1

 ]

+ a
−2

[ (
q

2
t + 1

) q
8
t

3
+ q

8
t

2
+ q

6
t

2
+ 2q

4
t

2
+

2

q6 t2
+

1

q8 t2
+

1

q10 t2
+

1

q10 t3
+ 3q

2
t +

3

q4 t

+
2

q6 t

+
1

q8 t

+
4

q2
+

2

q4
+ 2t + 3



+

 q2

t

+ 1

 q
8
t

4
+ 2q

4
t

3
+ q

4
t

2
+ 3q

2
t

2
+

1

q10 t2
+

3t

q2
+

t

q4
+

2

q6 t

+
3

q4
+

1

q6
+ t

2
+ 3t

 ]

+ a
0

[ (
q

2
t + 1

) q
10
t

5
+ q

8
t

4
+ 4q

6
t

3
+ 5q

4
t

3
+ q

4
t

2
+ 3q

2
t

3
+ 2q

2
t

2
+ q

2
t +

4t

q2
+

2t

q4
+

1

q8 t

+
2

q6
+ 2t

2



+

 q2

t

+ 1

 q
10
t

6
+ 2q

8
t

5
+ q

6
t

5
+ 2q

6
t

4
+ q

2
t

3
+

5t2

q2
+

2t2

q4
+

2t

q6
+

1

q8
+ 2t

3

 ]

+ a
2

[ (
q

2
t + 1

) q
12
t

6
+ q

10
t

6
+ q

8
t

6
+ q

6
t

5
+ 2q

6
t

4
+ 2q

4
t

4
+ 2q

2
t

4
+

t2

q2
+

t2

q4
+ t

4
+ t

3
+ t

2



+

 q2

t

+ 1

 q
8
t

7
+ q

6
t

6
+ q

4
t

5
+ 2q

2
t

5
+

t3

q4
+ t

4

 ]

+ a
4

[ (
q

2
t + 1

) (
q

8
t

7
+ q

2
t

5
)

+

 q2

t

+ 1

 (q8
t

8
+ q

2
t

6
) ]



New basic holomorphic curves – test

In summary the number of generators are

a−6 a−4 a−2 a0 a2 a4

P2 12 60 124 129 64 12
PQ |x2 0 4 20 33 20 4
# new 6 28 52 48 22 4

Also 10132

passes the test.

a0 a2 a4 a6 a8 a10 a12

P2 36 172 352 384 237 80 12
PQ |x2 0 0 16 40 41 20 4
# new 18 86 168 172 98 30 4

The proposal also passes other checks on the unrefined level.



New basic holomorphic curves

The main conjecture is that for any knot there is an essentially
unique finite collection of basic curves with linking, self-linking,
and 4-chain intersection that determine symmetrically colored
HOMFLY homology (via its partition function).

There is also (unrefined) versions of this where linking and
self-linking is upgraded to Sk(LK ).

THANK YOU !


