One peculiar feature (new structure) from multiple perspectives:

- Annular Khovanov homology
- Spectral sequences
as in talks of Michael, Mina, Melissa, ...
cf. Eugene's talk
- Enumerative curve / BPS counting
- Kapustin-Witten equations
as in Edward's talk
- 3d-3d correspondence
- Rozansky-Witten theory based on $T^{*} \mathrm{Gr}_{G}$
cf. Ben's talk
- Vertex algebras \& quantum groups

Based on the spectacular success of the Khovanov homology, that categorifies the Jones polynomial,

$$
J_{K}(q)=\sum_{i, j}(-1)^{i} q^{j} \operatorname{dim} K h_{i, j}(K)
$$

it is natural to ask whether Witten-ReshetikhinTuraev (WRT) invariants of 3-manifolds admit a similar categorification:

$$
\operatorname{WRT}\left(M_{3} ; k\right)=\sum \ldots \operatorname{dim} H\left(M_{3}\right)
$$

One immediate obstacle is that the WRT invariants, defined at roots of unity, do not come in the form of a polynomial / power series in $q=\exp (2 \pi i / k)$ with integer coefficients, e.g.

$$
\left(\frac{k}{2}\right)^{g-1} \sum_{j=1}^{k \neq 1}\left(\sin \frac{\pi j}{k}\right)^{2-2 g}
$$

Possible ways around this challenge:

- Hopfological algebra M.Khovanov, Y.Qi, A.Beliakova, ...
- Higher representation theory
- Holomorphic q-series in $|q|<1$


## Surprise: multiple q-series

$$
\widehat{Z}_{b}\left(M_{3} ; q\right)=\sum_{i, j}(-1)^{i} q^{j} \operatorname{dim} H^{i, j}\left(M_{3} ; b\right)
$$

S.G., P.Putrov, C.Vafa S.G., D.Pei, P.Putrov, C.Vafa
labeled by $b \in H_{1}\left(M_{3} ; \mathbb{Z}\right) \cong \operatorname{Spin}^{c}\left(M_{3}\right)$
S.G., C.Manolescu S.G., P.-S.Hsin, H.Nakajima, S.Park, D.Pei, N.Sopenko
so that $\operatorname{WRT}\left(M_{3}, k\right)=\left.\sum_{b} c_{b}^{\operatorname{WRT}} \widehat{Z}_{b}(q)\right|_{q \rightarrow e^{\frac{2 \pi i}{k}}}$

$$
M_{3}=S_{1 / r}^{3}(K)
$$

$$
S_{p}^{3}(K)
$$

$$
b \in \mathbb{Z}_{p}
$$

## infinitely many:

$$
\begin{array}{ll}
S^{1} \times S^{2} & b \in \mathbb{Z} \\
S^{1} \times \Sigma_{g} & b \in \mathbb{Z}^{2 g+1}
\end{array}
$$

In the approach based on surgeries, one first needs to construct invariants for knot (or link) complements:

$$
F_{K}(x, q):=\sum_{b \in \mathbb{Z}} x^{b} \widehat{Z}_{b}\left(S^{3} \backslash K\right)
$$

Theorem [Lickorish, Wallace]:
Every connected oriented closed 3-manifold arises by performing an integral Dehn surgery along a link in $S^{3}$.

$$
T^{3}=\underbrace{0}_{0}
$$

For knot and link complements, a very efficient diagrammatic approach based on the R-matrix for Verma modules and quantum groups at generic $q$ was proposed by Park.

For example, using this approach and the GM surgery formula one finds:

$$
\begin{array}{ccc}
S_{+5}^{3}\left(\mathbf{1 0}_{\mathbf{1 4 5}}\right) & b=2: & q^{14 / 5}\left(-1+2 q+2 q^{2}+q^{3}+\ldots\right) \\
& b=1: & q^{11 / 5}\left(-1-2 q^{2}-2 q^{3}-4 q^{4}+\ldots\right) \\
b=0: & 2 q^{4}+2 q^{7}+2 q^{8}+2 q^{9}+4 q^{10}+\ldots \\
& b=-1: & q^{11 / 5}\left(-1-2 q^{2}-2 q^{3}-4 q^{4}+\ldots\right) \\
b=-2: & q^{14 / 5}\left(-1+2 q+2 q^{2}+q^{3}+\ldots\right)
\end{array}
$$

One peculiar feature (new structure) from multiple perspectives:

- Annular Khovanov homology
- Spectral sequences
as in talks of Michael, Mina, Melissa, ...
cf. Eugene's talk
- Enumerative curve / BPS counting
- Kapustin-Witten equations
as in Edward's talk
- 3d-3d correspondence
- Rozansky-Witten theory based on $T^{*} \mathrm{Gr}_{G}$
cf. Ben's talk
- Vertex algebras \& quantum groups

There is a canonical map:

$$
\sigma: \operatorname{Spin}\left(M_{3}\right) \times H_{1}\left(M_{3}, \mathbb{Z}\right) \longrightarrow \operatorname{Spin}^{c}\left(M_{3}\right)
$$

## induced by

$$
B \operatorname{Spin} \times B U(1) \rightarrow B \operatorname{Spin}^{c}
$$

which, in turn, is part of the fiber sequence for the classifying spaces.

$$
\Omega_{3}^{\mathrm{Spin}}=0
$$



## Spectral sequences:



3-manifold version of knot Floer homology is the Heegaard Floer homology: requires a choice of Spin ${ }^{\text {c }}$ structure.

P.Ozsvath, Z.Szabo

$$
\begin{gathered}
M_{4}=\mathbb{R} \times M_{3} \\
M_{3}
\end{gathered}
$$

Equivalent to:

- Monopole Floer homology
P.Kronheimer, T.Mrowka
- Embedded contact homology
C. Taubes M.Hutchings

3 -manifold version of knot Floer homology is the Heegaard Floer homology: requires a choice of Spin ${ }^{\text {c }}$ structure.

P.Ozsvath, Z.Szabo

correction terms: $\quad d\left(M_{3}, b\right) \in \mathbb{Q}$

$$
b \in \operatorname{Spin}^{c}\left(M_{3}\right)
$$

$\Rightarrow$ new proofs of Donaldson's diagonalization theorem and the Thom Conjecture

Example: $\quad d(L(p, 1), b)=\frac{(p-2 b)^{2}-p}{4 p}$

$$
b=0,1, \ldots, p-1
$$

Choice of Spin ${ }^{\text {c }}$ structure is natural if Heegaard Floer homology and "Khovanov homology for 3-manifolds"

$$
\widehat{Z}_{b}\left(M_{3} ; q\right)=\sum_{i, j}(-1)^{i} q^{j} \operatorname{dim} H^{i, j}\left(M_{3} ; b\right)
$$

unify in a larger framework, equipped with similar differentials.


Annular Khovanov homology (a.k.a. sutured annular Khovanov homology):
M.Asaeda, J.Przytycki, A.Sikora


- triply-graded (homological, quantum, annular)
- spectral sequence


$$
E^{2}=A K h(\bar{K}) \Longrightarrow E^{\infty}=S F H(\Sigma(A \times I, K))
$$

$$
\text { cf. } \quad E^{2}=K h(\bar{K}) \Longrightarrow E^{\infty}=\widehat{H F}\left(\Sigma\left(S^{3}, K\right)\right)
$$

Annular Khovanov homology (a.k.a. sutured annular Khovanov homology):
M.Asaeda, J.Przytycki, A.Sikora


- carries an action of $\operatorname{sl}(2)$
$\Rightarrow b=\operatorname{sl}(2)$ weight
D.Auroux, E.Grigsby, S.Wehrli
A.Lauda
E.Grigsby, A.Licata, S.Wehrli and $x \in \operatorname{Hom}\left(H_{1}\left(M_{3}\right), \mathbb{C}^{*}\right)$ is a holonomy of a flat connection in the Cartan of SL(2,C)
- applying GM surgery formula
$\Rightarrow$ agrees with $\widehat{Z}$ for simple links in $S^{1} \times S^{2}$
and in Lens spaces
S.G., D.Pei, P.Putrov, C.Vafa


## Open enumerative invariants



3d-3d correspondence
Gauge theory

## Open enumerative invariants



3d-3d correspondence
Gauge theory

## Open enumerative invariants:

$$
\phi:(\Sigma, \partial \Sigma) \longrightarrow(X, L)
$$

$\Sigma$ genus g, with n boundary components

$$
\begin{aligned}
& \partial \Sigma=\gamma_{1} \sqcup \ldots \sqcup \gamma_{n} \\
& \beta=\phi_{*}[\Sigma] \in H_{2}(X, L) \\
& b_{i}=\phi_{*}\left[\gamma_{i}\right] \in H_{1}(L) \\
& \quad \text { s.G., D.Pei, P.Putrov, C.Vafa }
\end{aligned}
$$

## Gauge theory:

$\mathcal{B}_{\text {Nahm }}$
$\underline{\sum_{i=1}^{3} e_{\mu}^{i} t_{i}}$ $y$

sometimes
requires a choice of Spin structure
E.Witten
R.Mazzeo, E.Witten

## $\mathcal{B}_{b}$

e.g. $\mathbb{L}=U(1)$
and $x=e^{2 \pi i \eta}$
when $M_{3}=S^{1} \times \Sigma$

A version of the Freed-Witten anomaly on the slab.

## 3d-3d correspondence:


$b$ : background momentum/charge sectors of 2d boundary theory
M.Dedushenko, S.G., P.Putrov

$$
\widehat{Z}_{b}\left(M_{3} ; q\right) \xrightarrow{q \rightarrow \text { root of } 1} \underset{\begin{array}{c}
\text { invariants }
\end{array}}{\text { CGP } / \mathrm{ADO}}
$$

$$
\underset{\sim}{\widehat{Z}_{b}}\left(M_{3} ; q\right) \xrightarrow{q \rightarrow 1} \frac{1}{\text { Turaev torsion }}
$$

S.Chun, S.G., S.Park, N.Sopenko S.G., P.-S.Hsin, H.Nakajima, S.Park, D.Pei, N.Sopenko

$$
F_{K}(x, q):=\sum_{b \in \mathbb{Z}} x^{b} \widehat{Z}_{b}\left(S^{3} \backslash K\right) \xrightarrow{q \rightarrow 1} \frac{1}{\Delta_{K}(x)}
$$

## Example:


$\eta(q)=\sum_{m=1}^{\infty} \epsilon_{m} q^{\frac{m^{2}}{24}}$

$$
\frac{x^{-1}-x}{\Delta_{\boldsymbol{3}_{1}}\left(x^{2}\right)}=\sum_{m=1}^{\infty} \epsilon_{m}\left(x^{m}-x^{-m}\right)
$$



$$
F_{\mathbf{3}_{1}}(x, q)=\sum_{m=1}^{\infty} \epsilon_{m} q^{\frac{m^{2}}{24}}\left(x^{m}-x^{-m}\right)
$$

Space of BPS states with q-degree bounded by $n$ asymptotically grows as:

$$
\operatorname{dim} H(K) \sim n^{\#}
$$

1d QM
$\operatorname{dim} H\left(M_{3}\right) \sim \exp \left(2 \pi \sqrt{\frac{1}{6} c_{\text {eff }} n}\right) \quad 2 \mathrm{~d}$ CFT


Relation to other 3-manifold invariants labeled by Spin or Spin ${ }^{\text {c structures? }}$

$$
\widehat{Z}_{b}\left(M_{3}, q\right)
$$

$$
\exp \left(-2 \pi i \frac{3 \mu\left(M_{3}, s\right)}{16}\right)=\left.\sum_{b} c_{s, b}^{\text {Rokhlin }} \widehat{Z}_{b}\left(M_{3}, q\right)\right|_{q=i}
$$



$$
\begin{gathered}
\Delta_{b}\left(M_{3}\right)=\frac{1}{2}-d\left(M_{3}, b\right) \bmod 1 \\
\widehat{Z}_{b}=q^{\Delta_{b}}\left(a_{0}^{(b)}+a_{1}^{(b)} q+a_{2}^{(b)} q^{2}+\ldots\right) \in q^{\Delta_{b}} \mathbb{Z}[[q]]
\end{gathered}
$$

$$
M_{3}=S_{-1 / 2}^{3}(8):
$$

$$
\widehat{Z}(q)=q^{-\frac{1}{2}}\left(1-q+2 q^{3}-2 q^{6}+q^{9}+3 q^{10}+q^{11}+\ldots\right.
$$

$$
\left.\ldots-15040 q^{500}+\ldots\right)
$$


cf. Neumann-Siebenmann invariant vs. correction terms:

$$
\bar{\mu}\left(M_{3}, s\right)=-4 d\left(M_{3}, s\right)
$$

A.Stipsicz
M.Ue I.Dai

## and averaged versions:

$$
\begin{array}{r}
\lambda(L(p, r))=\frac{1}{p} \sum_{b \in \operatorname{Spin}^{c}(L(p, r))} d(L(p, r), b) \\
\sum_{s \in \operatorname{Spin}\left(M_{3}\right)} \exp \left(-2 \pi i \frac{3 \mu\left(M_{3}, s\right)}{16}\right)=\left.\sum_{s, b} c_{s, b}^{\text {Rokllin }} \widehat{Z}_{b}\left(M_{3}, q\right)\right|_{q=i} \\
\text { R.Kirmussen } \\
\end{array}
$$

## Question (about knots):

## "OUPntunn"

Jones,
HOMFLY-PT,
Kauffman, ...

## "homological"

$$
\mathrm{s}, \mathrm{~s}_{\mathrm{n}}, \tau, \mathrm{v}, \varepsilon, \mathrm{v}^{+}
$$

$$
\delta, \delta_{p^{n}}, V_{s}, \bar{V}_{o}
$$

$$
\underline{V}_{0}, \mathrm{Y}(\mathrm{t}), \ldots
$$


$\left|J_{\mathbf{3}_{\mathbf{1}}}(q)-J_{\mathbf{8}_{\mathbf{1 0}}}(q)\right|^{-1}$



$$
\left|J_{4_{1}}(q)-J_{9_{37}}(q)\right|^{-1}
$$



# Thanks for listening. 

## Questions?

