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Gluing together Heegaard Floer invariants for
surfaces

Goal: explain a tensor product operation for certain higher
representations, and its connections to Heegaard Floer
homology

Some things appearing in previous talks:

Invariants in 3d: knot homology theories, homological
invariants for 3-manifolds

Invariants in 4d: knot concordance, smooth 4-manifolds

Invariants in 2d: “categorified Hilbert spaces” of the
theories on surfaces (coherent sheaves, Fukaya categories,
...)

Focus of this talk: in the case of Heegaard Floer homology,
how do the categories for 2d surfaces behave under surface
decompositions? ↔ what can we assign to 1-manifolds,
0-manifolds?
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Categories for surfaces in Heegaard Floer homology

Heegaard Floer homology assigns a surface F a certain Fukaya
category of the union of all symmetric powers Symk(F )

Basic definitions of HF already suggest the above, but it’s
realized most fully in bordered Heegaard Floer homology
(Lipshitz–Ozsváth–Thurston ’08; connection between LOT and
Fukaya categories due to Auroux ’10)
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Categories for surfaces in Heegaard Floer homology

Cornered Heegaard Floer homology (Douglas–Manolescu ’11,
Douglas–Lipshitz–Manolescu ’13) studies how the bordered HF
invariants of surfaces behave under surface decompositions

Our work reformulates cornered HF and connects it to higher
tensor products in categorified representation theory

HF invariants of genus-zero surfaces especially important when
applying bordered HF ideas to compute knot Floer homology
(HFK) in terms of tangle decompositions; in cornered HF one
can ask how the algebra / category for multiple tangle
endpoints arises from the algebra / category for a single tangle
endpoint
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Rouquier)

Outline

Overview

Tensor
product:
categories

Tensor
product:
algebras

Strands
algebras and
gluing

Further
remarks

Categories for surfaces in Heegaard Floer homology

Cornered Heegaard Floer homology (Douglas–Manolescu ’11,
Douglas–Lipshitz–Manolescu ’13) studies how the bordered HF
invariants of surfaces behave under surface decompositions

Our work reformulates cornered HF and connects it to higher
tensor products in categorified representation theory

HF invariants of genus-zero surfaces especially important when
applying bordered HF ideas to compute knot Floer homology
(HFK) in terms of tangle decompositions; in cornered HF one
can ask how the algebra / category for multiple tangle
endpoints arises from the algebra / category for a single tangle
endpoint



Higher repre-
sentations and

cornered
Heegaard

Floer
homology

Andrew
Manion (joint
with Raphaël
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Knot polynomials and quantum group
representations

If we look at Alexander polynomial and Jones polynomial
(“decategorified level”) instead of HFK and Khovanov
homology (“categorified level”): knot polynomials come from
tangle invariants taking following form

(tangle) 7→, in this case, morphism of
Uq(gl(1|1))-representations (Alexander) or
Uq(sl(2))-representations (Jones)

V ⊗ V ⊗ V ∗ ⊗ V ⊗ V → V ⊗ V ⊗ V ,

V = vector representation (2-dimensional)

⊗: tensor product of representations of the quantum group (a
Hopf algebra, so if V ,W are representations then so is
V ⊗k W )
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The categorified level

For Heegaard Floer / Khovanov homology: instead of tangle 7→
linear map between vector spaces, various constructions give:
tangle 7→ functor between categories, or bimodule over algebras

Match decategorified level: want the category / algebra for set
of n tangle endpoints to be an n-fold tensor product of
categories / algebras for a single endpoint each

A general construction ⊗ for categorified representations of
Kac–Moody algebras is defined by Rouquier (in preparation)
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Summary

Theorem (M.–Rouquier ’20)

There is a version of ⊗ for gl(1|1)+ that explains the algebraic
structure of cornered Floer homology (Douglas–Manolescu ’11)

1 Explain a bit about ⊗ in the case where we define it

2 Discuss relationships to Heegaard Floer “strands algebras”
and their gluing formulas as in Douglas–Manolescu
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A dg monoidal category

Our operation ⊗ applies to 2-representations of a dg monoidal
category U defined by Khovanov (’10) (take to be F2-linear
here)

Categorifies Uq(gl(1|1)+); ignore gradings here and view as
categorifying Hopf superalgebra U(gl(1|1)+) = C[E ]/(E 2)

U : objects generated under ⊗ by one object e (so all objects:
1, e, e2, . . .)

F2-linear morphism spaces generated under composition and ⊗
by one endomorphism τ of e2 with relations τ2 = 0 and
Eτ ◦ τE ◦ Eτ = τE ◦ Eτ ◦ τE , differential d(τ) = 1
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2-representations

2-representation of U on an F2-linear dg category V: dg
monoidal functor U → End(V) (objects: dg endofunctors of V
with ⊗ := composition; morphisms: natural transformations)

Same data as dg endofunctor E of V and natural
transformation τ : E 2 → E 2 with correct relations and
differential

2-representation of U on a dg algebra A over F2: dg monoidal
functor U to End(A) (objects: dg bimodules over A;
morphisms: bimodule maps)

Same data as dg bimodule E over A and bimodule map
τ : E ⊗A E → E ⊗A E with correct relations and differential

Have version of ⊗ in both settings; second is most closely
related to cornered Floer homology



Higher repre-
sentations and

cornered
Heegaard

Floer
homology

Andrew
Manion (joint
with Raphaël
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Hom over U

How to define ⊗ for 2-representations (V1,E1, τ1), (V2,E2, τ2)
on dg categories? First think about Hom instead of tensor

HomU (V1,V2) should be a dg category with objects: dg
functors F : V1 → V2 “commuting with action of E ,” so
E2F ∼= FE1 as dg functors (isomorphism or weaker notion of
equivalence: will be vague here, just say “isomorphism”)

As usual in categorification: should require choice of

isomorphism π : E2F
∼=−→ FE1; can require π to be compatible

with τ1, τ2

Thus: objects of HomU (V1,V2) should be pairs (F , π)
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equivalence: will be vague here, just say “isomorphism”)

As usual in categorification: should require choice of

isomorphism π : E2F
∼=−→ FE1; can require π to be compatible

with τ1, τ2

Thus: objects of HomU (V1,V2) should be pairs (F , π)
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Hom and internal Hom

For ordinary reps V1,V2 of H := C[E ]/(E 2), have
HomH(V1,V2) and HomC(V1,V2)

Latter has action of H: for φ ∈ HomC(V1,V2), have

(Eφ)(v1) = (−1)|φ|(−φ(Ev1) + Eφ(v1))

This vanishes iff φ commutes with the action of E

So: for 2-reps want to define Hom(V1,V2) (dg category with
2-action of U) such that an object “vanishes” iff it’s actually
an object of HomU (V1,V2)
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Categorifying the internal Hom

Reasonable way to do this: take objects of Hom(V1,V2) to be
pairs (F , π) as above, but π can be any map satisfying
compatibility with τ (not necessarily isomorphism or
equivalence)

Take E (F , π) to be (m′, π′) where m′ is the mapping cone of π
(should assume V1 and V2 pretriangulated; will also assume
idempotent complete): should have the right “vanishes iff π
equivalence” when latter is made precise (won’t do this)

Can then guess at definitions of π′, action of E on morphisms,
and τ : E 2 → E 2, and show the construction works
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Generalized diagonal actions

Generalize the above construction: let W be a dg category
with endofunctors E1,E2 and natural endomorphisms τi of E 2

i

satisfying the usual relations (including differential)

Suppose we also have a dg isomorphism σ : E2E1 → E1E2

satisfying compatibility with τi

Can build dg category ∆σW with endofunctor E and natural
transformation τ : E 2 → E 2:

Objects: pairs (m, π) where m is an object of W
i

(idem.
completion of pretriangulated closure) and

π : E2(m)→ E1(m) is a morphism in W
i

(morphisms in
∆σW: can define)

E (m, π) := (m′, π′) where m′ is the mapping cone of π

(makes sense in W
i
); can also define π′, action of E on

morphisms, and τ : E 2 → E 2
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Examples of ∆σ

Given (V1,E1, τ1) and (V2,E2, τ2):

W = dg functors from V1 to V2, E1 on W := − ◦ E1, E2

on W := E2 ◦ −, σ natural isomorphism

⇒ build Hom(V1,V2) with 2-action of U

W = V1 ⊗ V2, E1 on W := E1 ⊗ id, E2 on W := id⊗E2,
σ natural isomorphism

⇒ build V1 ⊗ V2 with 2-action of U
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What we want

This ⊗ is for 2-representations of U on dg categories; how
about dg algebras?

∆σ construction: say we have dg algebra B with dg bimodules
E1,E2, bimodule endomorphisms τi of E 2

i with usual relations
and differential, plus a bimodule isomorphism σ : E2E1 → E1E2

compatible with τ

Can form ∆σ(B -mod); want dg algebra ∆σB (and dg
bimodule E , endomorphism τ of E 2) such that

∆σ(B -mod) ∼= (∆σB) -mod

Object of ∆σ(B -mod): pair (m, π); define ∆σB so this is same
data as a ∆σB-module
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Dualizing π

m is a B-module so a ∆σB-module should give a B-module;
true if ∆σB contains B

Can we take ∆σB to contain B plus something more, so that
action of “extra stuff” on m is same data as
π : E2 ⊗B m→ E1 ⊗B m?

Yes, if we assume our given data (B,E1,E2, . . .) has E1 finitely
generated and projective as a (non-differential) right B-module

Let E∨1 = HomBop(E1,B) be the right dual (left adjoint) of E1;
then σ : E2E1 → E1E2 is dual to a map λ : E∨1 E2 → E2E

∨
1

which we will also assume to be an isomorphism
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Rouquier)

Outline

Overview

Tensor
product:
categories

Tensor
product:
algebras

Strands
algebras and
gluing

Further
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Building ∆σB

Now: π same data as ζ : E∨1 ⊗B E2 ⊗B m→ m: looks like
“E∨1 ⊗B E2 acting on m”!

Thus: want ∆σB to contain E∨1 ⊗B E2

No multiplication on (B,B) bimodule E∨1 ⊗B E2: build ∆σB
from the tensor algebra T ∗B(E∨1 ⊗B E2) (also contains B)

Define ∆σB :=
T∗B (E∨1 ⊗BE2)

(...) where the relation ideal is specified

below (we’ll just do tensor product case)
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Building ∆σB

Now: π same data as ζ : E∨1 ⊗B E2 ⊗B m→ m: looks like
“E∨1 ⊗B E2 acting on m”!

Thus: want ∆σB to contain E∨1 ⊗B E2

No multiplication on (B,B) bimodule E∨1 ⊗B E2: build ∆σB
from the tensor algebra T ∗B(E∨1 ⊗B E2) (also contains B)

Define ∆σB :=
T∗B (E∨1 ⊗BE2)

(...) where the relation ideal is specified

below (we’ll just do tensor product case)
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The relation ideal: tensor product case

For B = A1 ⊗ A2 with endofunctors E1 := E1 ⊗ A2 (dual:
E∨1 = E∨1 ⊗ A2) and E2 := A1 ⊗ E2...

can write

T ∗B(E∨1 ⊗B E2) ∼=
∞⊕

m=0

(E∨1 )m ⊗F2 E
m
2

Define the relation ideal so that

A1 ⊗ A2 := ∆σB ∼=
∞⊕

m=0

(E∨1 )m ⊗Hm Em
2 ,

Hm := endomorphism dg algebra of em in U
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Defining the bimodule E

Fact: ((m, π) encodes action of tensor algebra on m that
descends to action of quotient A1 ⊗ A2) iff (π satisfies
“compatibility with τ” condition)

So: dg module over A1 ⊗ A2 = ∆σB is same data as object of
∆σ(B -mod), as desired

Example: A1 ⊗ A2 as left dg module over itself: equivalent to
some (m, π) where m is a left dg module over A1 ⊗ A2

Define bimodule E over A1 ⊗ A2 to be mapping cone of

π : E2 ⊗A1⊗A2 A1 ⊗ A2 → E1 ⊗A1⊗A2 A1 ⊗ A2

as bimodule over (A1 ⊗ A2,A1 ⊗ A2); natural way to define
left action of A1 ⊗ A2 and endomorphism τ of E 2
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Further
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Arc / chord diagrams

Now we’ll discuss a key family of 2-representations of U on dg
algebras: strands algebras A(Z) in bordered Heegaard Floer
homology (first examples: Lipshitz–Ozsváth–Thurston ’08)

For us: Z will be an “arc diagram” (or “chord diagram”) like
those in Zarev ’11: compact oriented 1-manifold Z with
boundary (drawn in black) and 2-1 matching of finitely many
points in interior of Z (drawn with red arcs)
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Arc / chord diagrams

Now we’ll discuss a key family of 2-representations of U on dg
algebras: strands algebras A(Z) in bordered Heegaard Floer
homology (first examples: Lipshitz–Ozsváth–Thurston ’08)

For us: Z will be an “arc diagram” (or “chord diagram”) like
those in Zarev ’11: compact oriented 1-manifold Z with
boundary (drawn in black) and 2-1 matching of finitely many
points in interior of Z (drawn with red arcs)
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Arc / chord diagrams (continued)

Examples: , taken to represent “sutured surfaces”
(compact surfaces with boundary and extra data on boundary:
“stopped regions” S− and “unstopped regions” S+ interfacing

along a 0-manifold Λ of “sutures”

Compare: LOT’s pointed matched circles Z, taken to represent

closed surfaces with basepoint : Zarev cuts open and
views as chord diagram for corresponding surface with S1

boundary and one stop on boundary
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Arc / chord diagrams (continued)

Examples: , taken to represent “sutured surfaces”
(compact surfaces with boundary and extra data on boundary:
“stopped regions” S− and “unstopped regions” S+ interfacing

along a 0-manifold Λ of “sutures”

Compare: LOT’s pointed matched circles Z, taken to represent

closed surfaces with basepoint : Zarev cuts open and
views as chord diagram for corresponding surface with S1

boundary and one stop on boundary
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Further
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Strands algebras

For chord diagram Z: have dg “strands algebra” A(Z).
Precise definition in paper, generalizing Zarev and LOT; same
basic idea, sketched below

Basis over F2: strands pictures like (including

e.g. ) up to isotopy

Drawn in [0, 1]×Z

Strands compatible with orientation

No double-occupied matchings on right or left, except:
any horizontal strands come in matched pairs (and are
drawn dotted)
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Basis over F2: strands pictures like (including
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Strands algebras

For chord diagram Z: have dg “strands algebra” A(Z).
Precise definition in paper, generalizing Zarev and LOT; same
basic idea, sketched below

Basis over F2: strands pictures like (including

e.g. ) up to isotopy

Drawn in [0, 1]×Z

Strands compatible with orientation

No double-occupied matchings on right or left, except:
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remarks

Strands algebras (continued)

Multiplication: concatenate,

Differential:

Auroux ICM ’10 (sketch): these algebras describe partially
wrapped Fukaya categories of symmetric powers of sutured
surfaces

Heegaard Floer homology in general is based on Fukaya
categories of these symmetric powers, explaining why these
particular algebras are so natural for Heegaard Floer
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Strands algebras (continued)

Multiplication: concatenate,

Differential:

Auroux ICM ’10 (sketch): these algebras describe partially
wrapped Fukaya categories of symmetric powers of sutured
surfaces

Heegaard Floer homology in general is based on Fukaya
categories of these symmetric powers, explaining why these
particular algebras are so natural for Heegaard Floer
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Strands algebras (continued)

Multiplication: concatenate,

Differential:

Auroux ICM ’10 (sketch): these algebras describe partially
wrapped Fukaya categories of symmetric powers of sutured
surfaces

Heegaard Floer homology in general is based on Fukaya
categories of these symmetric powers, explaining why these
particular algebras are so natural for Heegaard Floer
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Strands algebras (continued)

Multiplication: concatenate,

Differential:

Auroux ICM ’10 (sketch): these algebras describe partially
wrapped Fukaya categories of symmetric powers of sutured
surfaces

Heegaard Floer homology in general is based on Fukaya
categories of these symmetric powers, explaining why these
particular algebras are so natural for Heegaard Floer
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Further
remarks

Douglas–Manolescu’s gluing formula

Douglas–Manolescu ’11: asked how to recover algebra of e.g.

from data associated to ,

Their answer: associate certain algebraic constructions to top

and bottom half, based on strands pictures like ,

Algebra for glued diagram:
⊕∞

m=0 (top piece with m strands)
⊗Hm (bottom piece with m strands)

Illustration:
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Illustration:
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Douglas–Manolescu’s gluing formula

Douglas–Manolescu ’11: asked how to recover algebra of e.g.

from data associated to ,

Their answer: associate certain algebraic constructions to top

and bottom half, based on strands pictures like ,

Algebra for glued diagram:
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m=0 (top piece with m strands)
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Further
remarks

Our perspective

Our perspective (following Zarev): trying to recover algebra of

e.g. (with 2-action) from top piece with 2-action and

bottom piece with 2-action

To a chord diagram Z with a distinguished interval component,

use pictures like where 1 strand leaves upward on
distinguished component to define a dg bimodule E over A(Z)

Differential on E , left and right actions of A(Z) on E : like in
definition of A(Z)

E ⊗A(Z) · · · ⊗A(Z) E (m factors) is isomorphic to the bimodule
where m strands leave upward on distinguished component
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where m strands leave upward on distinguished component



Higher repre-
sentations and

cornered
Heegaard

Floer
homology

Andrew
Manion (joint
with Raphaël
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definition of A(Z)
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Our perspective (following Zarev): trying to recover algebra of

e.g. (with 2-action) from top piece with 2-action and
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use pictures like where 1 strand leaves upward on
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Differential on E , left and right actions of A(Z) on E : like in
definition of A(Z)
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Further
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Our perspective (continued)

Dual E∨ of E is isomorphic to the bimodule where one strand

leaves downward on distinguished component, e.g.
((E∨)m: m strands leave downward)

E 2 = E ⊗A(Z) E : have endomorphism τ sending ,

So: for each interval component of Z, have a 2-action of U on
A(Z)
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Our perspective (continued)

Dual E∨ of E is isomorphic to the bimodule where one strand

leaves downward on distinguished component, e.g.
((E∨)m: m strands leave downward)

E 2 = E ⊗A(Z) E : have endomorphism τ sending ,

So: for each interval component of Z, have a 2-action of U on
A(Z)
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Our perspective (continued)

Dual E∨ of E is isomorphic to the bimodule where one strand

leaves downward on distinguished component, e.g.
((E∨)m: m strands leave downward)

E 2 = E ⊗A(Z) E : have endomorphism τ sending ,

So: for each interval component of Z, have a 2-action of U on
A(Z)
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Further
remarks

Expanding on the gluing formula

In our language:

Theorem (Douglas–Manolescu ’11)

(For Zi with one interval, in bijection with LOT’s pointed
matched circles): if Z is obtained by gluing Z1 and Z2

end-to-end, then A(Z) ∼= A(Z1) ⊗ A(Z2) as dg algebras

From this perspective: no more extra structure to consider on
A(Z); extra structure comes from e.g. but A(Z) comes

from
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(For Zi with one interval, in bijection with LOT’s pointed
matched circles): if Z is obtained by gluing Z1 and Z2

end-to-end, then A(Z) ∼= A(Z1) ⊗ A(Z2) as dg algebras

From this perspective: no more extra structure to consider on
A(Z); extra structure comes from e.g. but A(Z) comes

from
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Further
remarks

Expanding on the gluing formula (continued)

Theorem (M.–Rouquier ’20)

(For any Zi with distinguished interval components): if Z is
obtained by gluing Z1 and Z2 end-to-end as above, then
A(Z) ∼= A(Z1) ⊗ A(Z2) as 2-representations of U (so E , τ
also agree on both sides)

We also prove more involved version of this result for

self-gluings like based on a version of ∆σ for
2-actions that “lax-commute” (in this case: we don’t define
2-action on result, only for intervals rather than circles)
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Expanding on the gluing formula (continued)

Theorem (M.–Rouquier ’20)

(For any Zi with distinguished interval components): if Z is
obtained by gluing Z1 and Z2 end-to-end as above, then
A(Z) ∼= A(Z1) ⊗ A(Z2) as 2-representations of U (so E , τ
also agree on both sides)

We also prove more involved version of this result for

self-gluings like based on a version of ∆σ for
2-actions that “lax-commute” (in this case: we don’t define
2-action on result, only for intervals rather than circles)
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3 ways to view the gluing operation

What does this end-to-end gluing Z1,Z2 7→ Z look like on the
sutured surfaces F1,F2,F that these chord diagrams represent?
(At least) 3 equivalent ways to view it:

1 Glue small neighborhood of suture in ∂F1 to small

neighborhood of suture in ∂F2:

2 View sutured surfaces as cobordisms from S− to S+

restricting to idΛ on the boundary; glue along an interval

in idΛ

3 Non-self-gluing case: glue “open pair of pants” to S+

interval in F1 and S+ interval in F2:

Self-gluing case: glue to S+ interval in F
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Open and closed pairs of pants

Compare the last interpretation with: tensor products for
representations of (e.g.) Uq(sl(2)) and gluing closed pairs of

pants:

Related to: gl(1|1)+ (intervals?) vs. gl(1|1) (circles?); note
that higher actions for circles are not apparent on the algebras
A(Z) (need larger algebras?)
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Ozsváth–Szabó’s bordered HFK

Ozsváth–Szabó’s algebras related to Z = are not n-fold
end-to-end gluings like the ones considered here...

instead, doing these end-to-end gluings for the n = 1 case of

the above chord diagram gives Z =

These chord diagrams Z: part of algebraic approach to HFK
(work in preparation / progress) closely related to ⊗ , similar in
spirit to Ozsváth–Szabó’s bordered HFK ’16
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Rouquier)

Outline

Overview

Tensor
product:
categories

Tensor
product:
algebras

Strands
algebras and
gluing

Further
remarks
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Thanks

Thanks for your time!
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