Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

May 19, 2021
Strands

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor
product:
categories
Tensor
product:
algebras
Strands
algebras and
gluing
Further
remarks

1 Overview

2 Tensor product: category case

3 Tensor product: algebra case

4 Strands algebras and a gluing formula

5 Further remarks

Gluing together Heegaard Floer invariants for surfaces

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview

Tensor
product
categories
Tensor
product
algebras
Strands
algebras and gluing

Further remarks

Goal: explain a tensor product operation for certain higher representations, and its connections to Heegaard Floer homology

Gluing together Heegaard Floer invariants for surfaces

Higher representations and cornered Heegaard Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview

Tensor
product
categories
Tensor
product
algebras
Strands

Goal: explain a tensor product operation for certain higher representations, and its connections to Heegaard Floer homology

Some things appearing in previous talks:
■ Invariants in 3d: knot homology theories, homological invariants for 3-manifolds

Gluing together Heegaard Floer invariants for surfaces

Higher representations and
cornered
Heegaard
Floer
homology
Andrew Manion (joint with Raphaël

Rouquier)

Outline
Overview
Tensor
product
categories
Tensor
product:
algebras
Strands

Goal: explain a tensor product operation for certain higher representations, and its connections to Heegaard Floer homology

Some things appearing in previous talks:
■ Invariants in 3d: knot homology theories, homological invariants for 3-manifolds

■ Invariants in 4d: knot concordance, smooth 4-manifolds

Gluing together Heegaard Floer invariants for surfaces

Higher representations and
cornered
Heegaard
Floer
homology
Andrew
Manion (joint with Raphaël

Rouquier)

Outline
Overview
Tensor
product:
categories
Tensor
product:
algebras
Strands

Goal: explain a tensor product operation for certain higher representations, and its connections to Heegaard Floer homology

Some things appearing in previous talks:

- Invariants in 3d: knot homology theories, homological invariants for 3-manifolds

■ Invariants in 4d: knot concordance, smooth 4-manifolds
■ Invariants in 2d: "categorified Hilbert spaces" of the theories on surfaces (coherent sheaves, Fukaya categories, ...)

Gluing together Heegaard Floer invariants for surfaces

Higher representations and
cornered
Heegaard
Floer
homology
Andrew
Manion (joint with Raphaël

Rouquier)

Outline
Overview
Tensor
product: categories

Tensor
product: algebras

Strands algebras and gluing

Goal: explain a tensor product operation for certain higher representations, and its connections to Heegaard Floer homology

Some things appearing in previous talks:
■ Invariants in 3d: knot homology theories, homological invariants for 3-manifolds

■ Invariants in 4d: knot concordance, smooth 4-manifolds
■ Invariants in 2d: "categorified Hilbert spaces" of the theories on surfaces (coherent sheaves, Fukaya categories, ...)

Focus of this talk: in the case of Heegaard Floer homology, how do the categories for 2d surfaces behave under surface decompositions? \leftrightarrow what can we assign to 1 -manifolds, 0-manifolds?

Categories for surfaces in Heegaard Floer homology

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview

Tensor
product
categories
Tensor
product:
algebras
Strands
algebras and gluing

Further remarks

Heegaard Floer homology assigns a surface F a certain Fukaya category of the union of all symmetric powers $\operatorname{Sym}^{k}(F)$

Categories for surfaces in Heegaard Floer homology

Higher repre-
cornered
Heegaard
Floer
homology
Andrew
Manion (joint
with Raphaël
Rouquier)

Outline
Overview
Tensor
product:
categories
Tensor
product:
algebras
Strands

Heegaard Floer homology assigns a surface F a certain Fukaya category of the union of all symmetric powers $\operatorname{Sym}^{k}(F)$

Basic definitions of HF already suggest the above, but it's realized most fully in bordered Heegaard Floer homology (Lipshitz-Ozsváth-Thurston '08; connection between LOT and Fukaya categories due to Auroux '10)

Categories for surfaces in Heegaard Floer homology

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview

Tensor
product
categories
Tensor
product
algebras
Strands
algebras and gluing

Further remarks

Cornered Heegaard Floer homology (Douglas-Manolescu '11, Douglas-Lipshitz-Manolescu '13) studies how the bordered HF invariants of surfaces behave under surface decompositions

Categories for surfaces in Heegaard Floer homology

Higher repre-

Heegaard
Floer
homology
Andrew Manion (joint with Raphaël

Rouquier)

Outline
Overview
Tensor
product:
categories
Tensor
product:
algebras
Strands

Cornered Heegaard Floer homology (Douglas-Manolescu '11, Douglas-Lipshitz-Manolescu '13) studies how the bordered HF invariants of surfaces behave under surface decompositions

Our work reformulates cornered HF and connects it to higher tensor products in categorified representation theory

Categories for surfaces in Heegaard Floer homology

Heegaard
Floer
homology
Andrew

Cornered Heegaard Floer homology (Douglas-Manolescu '11, Douglas-Lipshitz-Manolescu '13) studies how the bordered HF invariants of surfaces behave under surface decompositions

Our work reformulates cornered HF and connects it to higher tensor products in categorified representation theory

HF invariants of genus-zero surfaces especially important when applying bordered HF ideas to compute knot Floer homology (HFK) in terms of tangle decompositions; in cornered HF one can ask how the algebra / category for multiple tangle endpoints arises from the algebra / category for a single tangle endpoint

Knot polynomials and quantum group representations

Higher representations and cornered
Heegaard
Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

If we look at Alexander polynomial and Jones polynomial ("decategorified level") instead of HFK and Khovanov homology ("categorified level"): knot polynomials come from tangle invariants taking following form

Knot polynomials and quantum group representations

Higher representations and cornered
Heegaard
Floer
homology
Andrew Manion (joint with Raphaël
Rouquier)

Outline
Overview
Tensor
product:
categories
Tensor
product:
algebras
Strands

If we look at Alexander polynomial and Jones polynomial ("decategorified level") instead of HFK and Khovanov homology ("categorified level"): knot polynomials come from tangle invariants taking following form

(tangle) \mapsto, in this case, morphism of $U_{q}(\mathfrak{g l}(1 \mid 1))$-representations (Alexander) or $U_{q}(\mathfrak{s l}(2))$-representations (Jones)

$$
V \otimes V \otimes V^{*} \otimes V \otimes V \rightarrow V \otimes V \otimes V
$$

$V=$ vector representation (2-dimensional)

Knot polynomials and quantum group representations

Higher representations and cornered
Heegaard
Floer
homology
Andrew
Manion (joint with Raphaël

Rouquier)

Outline
Overview
Tensor
product:
categories
Tensor
product:
algebras
Strands

If we look at Alexander polynomial and Jones polynomial ("decategorified level") instead of HFK and Khovanov homology ("categorified level"): knot polynomials come from tangle invariants taking following form

(tangle) \mapsto, in this case, morphism of $U_{q}(\mathfrak{g l}(1 \mid 1))$-representations (Alexander) or $U_{q}(\mathfrak{s l}(2))$-representations (Jones)

$$
V \otimes V \otimes V^{*} \otimes V \otimes V \rightarrow V \otimes V \otimes V
$$

$V=$ vector representation (2-dimensional)
\otimes : tensor product of representations of the quantum group (a Hopf algebra, so if V, W are representations then so is
$\left.V \otimes_{k} W\right)$

The categorified level

Higher representations and
cornered
Heegaard
Floer
homology
Andrew
Manion (joint
with Raphaël
Rouquier)

Outline
Overview

Tensor
product
categories
Tensor
product:
algebras
Strands
algebras and gluing

Further
remarks

For Heegaard Floer / Khovanov homology: instead of tangle \mapsto linear map between vector spaces, various constructions give: tangle \mapsto functor between categories, or bimodule over algebras

The categorified level

Higher repre-
cornered
Heegaard
Floer
homology
Andrew Manion (joint with Raphaël

Rouquier)

Outline
Overview
Tensor
product:
categories
Tensor
product:
algebras
Strands

For Heegaard Floer / Khovanov homology: instead of tangle \mapsto linear map between vector spaces, various constructions give: tangle \mapsto functor between categories, or bimodule over algebras

Match decategorified level: want the category / algebra for set of n tangle endpoints to be an n-fold tensor product of categories / algebras for a single endpoint each

The categorified level

Higher repre-
cornered
Heegaard
Floer
homology
Andrew
Manion (joint
with Raphaël
Rouquier)

Outline
Overview
Tensor
product:
categories
Tensor
product:
algebras
Strands

For Heegaard Floer / Khovanov homology: instead of tangle \mapsto linear map between vector spaces, various constructions give: tangle \mapsto functor between categories, or bimodule over algebras

Match decategorified level: want the category / algebra for set of n tangle endpoints to be an n-fold tensor product of categories / algebras for a single endpoint each

A general construction (8) for categorified representations of Kac-Moody algebras is defined by Rouquier (in preparation)

Summary

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël
Rouquier)

Theorem (M.-Rouquier '20)
There is a version of (8) for $\mathfrak{g l}(1 \mid 1)^{+}$that explains the algebraic structure of cornered Floer homology (Douglas-Manolescu '11)

Summary

Theorem (M.-Rouquier '20)
There is a version of (8) for $\mathfrak{g l}(1 \mid 1)^{+}$that explains the algebraic structure of cornered Floer homology (Douglas-Manolescu '11)

1 Explain a bit about (8) in the case where we define it

Summary

Theorem (M.-Rouquier '20)
Andrew
There is a version of (8) for $\mathfrak{g l}(1 \mid 1)^{+}$that explains the algebraic structure of cornered Floer homology (Douglas-Manolescu '11)

1 Explain a bit about (8) in the case where we define it

2 Discuss relationships to Heegaard Floer "strands algebras" and their gluing formulas as in Douglas-Manolescu

A dg monoidal category

Higher repre-

 sentations and cornered Heegaard Floer homologyAndrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor product: categories

Tensor
product:
algebras
Strands
algebras and gluing

Further
remarks

Our operation © applies to 2-representations of a dg monoidal category \mathcal{U} defined by Khovanov ('10) (take to be \mathbb{F}_{2}-linear here)

A dg monoidal category

Higher representations and
cornered
Heegaard
Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview

Tensor product: categories

Tensor
product:
algebras
Strands

Our operation © applies to 2-representations of a dg monoidal category \mathcal{U} defined by Khovanov ('10) (take to be \mathbb{F}_{2}-linear here)

Categorifies $U_{q}\left(\mathfrak{g l}(1 \mid 1)^{+}\right)$; ignore gradings here and view as categorifying Hopf superalgebra $U\left(\mathfrak{g l l}(1 \mid 1)^{+}\right)=\mathbb{C}[E] /\left(E^{2}\right)$

A dg monoidal category

Higher representations and
cornered
Heegaard
Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor product: categories

Tensor
product:
algebras
Strands

Our operation © applies to 2-representations of a dg monoidal category \mathcal{U} defined by Khovanov ('10) (take to be \mathbb{F}_{2}-linear here)

Categorifies $U_{q}\left(\mathfrak{g l}(1 \mid 1)^{+}\right)$; ignore gradings here and view as categorifying Hopf superalgebra $U\left(\mathfrak{g l}(1 \mid 1)^{+}\right)=\mathbb{C}[E] /\left(E^{2}\right)$
\mathcal{U} : objects generated under \otimes by one object e (so all objects: $1, e, e^{2}, \ldots$)

A dg monoidal category

Heegaard
Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor product: categories

Tensor
product:
algebras
Strands

Our operation (8) applies to 2-representations of a dg monoidal category \mathcal{U} defined by Khovanov ('10) (take to be \mathbb{F}_{2}-linear here)

Categorifies $U_{q}\left(\mathfrak{g l}(1 \mid 1)^{+}\right)$; ignore gradings here and view as categorifying Hopf superalgebra $U\left(\mathfrak{g l}(1 \mid 1)^{+}\right)=\mathbb{C}[E] /\left(E^{2}\right)$
\mathcal{U} : objects generated under \otimes by one object e (so all objects: $1, e, e^{2}, \ldots$)
\mathbb{F}_{2}-linear morphism spaces generated under composition and \otimes by one endomorphism τ of e^{2} with relations $\tau^{2}=0$ and $E \tau \circ \tau E \circ E \tau=\tau E \circ E \tau \circ \tau E$, differential $d(\tau)=1$

2-representations

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview

Tensor product: categories

Tensor
product:
algebras
Strands
algebras and gluing

Further remarks

2-representation of \mathcal{U} on an \mathbb{F}_{2}-linear $d g$ category \mathcal{V} : dg monoidal functor $\mathcal{U} \rightarrow \operatorname{End}(\mathcal{V})$ (objects: dg endofunctors of \mathcal{V} with $\otimes:=$ composition; morphisms: natural transformations)

2-representations

Higher representations and
cornered
Heegaard
Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor product: categories

Tensor
product:
algebras
Strands

2-representation of \mathcal{U} on an \mathbb{F}_{2}-linear dg category \mathcal{V} : dg monoidal functor $\mathcal{U} \rightarrow \operatorname{End}(\mathcal{V})$ (objects: dg endofunctors of \mathcal{V} with $\otimes:=$ composition; morphisms: natural transformations)

Same data as dg endofunctor E of \mathcal{V} and natural transformation $\tau: E^{2} \rightarrow E^{2}$ with correct relations and differential

2-representations

Higher representations and
cornered
Heegaard
Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor product: categories

Tensor
product:
algebras
Strands

2-representation of \mathcal{U} on an \mathbb{F}_{2}-linear dg category \mathcal{V} : dg monoidal functor $\mathcal{U} \rightarrow \operatorname{End}(\mathcal{V})$ (objects: dg endofunctors of \mathcal{V} with $\otimes:=$ composition; morphisms: natural transformations)

Same data as dg endofunctor E of \mathcal{V} and natural transformation $\tau: E^{2} \rightarrow E^{2}$ with correct relations and differential

2-representation of \mathcal{U} on a dg algebra A over \mathbb{F}_{2} : dg monoidal functor \mathcal{U} to $\operatorname{End}(\mathcal{A})$ (objects: dg bimodules over A; morphisms: bimodule maps)

2-representations

Heegaard
Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor product: categories

Tensor
product:
algebras
Strands

2-representation of \mathcal{U} on an \mathbb{F}_{2}-linear dg category \mathcal{V} : dg monoidal functor $\mathcal{U} \rightarrow \operatorname{End}(\mathcal{V})$ (objects: dg endofunctors of \mathcal{V} with $\otimes:=$ composition; morphisms: natural transformations)

Same data as dg endofunctor E of \mathcal{V} and natural transformation $\tau: E^{2} \rightarrow E^{2}$ with correct relations and differential

2-representation of \mathcal{U} on a dg algebra A over \mathbb{F}_{2} : dg monoidal functor \mathcal{U} to $\operatorname{End}(\mathcal{A})$ (objects: dg bimodules over A; morphisms: bimodule maps)

Same data as dg bimodule E over A and bimodule map $\tau: E \otimes_{A} E \rightarrow E \otimes_{A} E$ with correct relations and differential

2-representations

Heegaard
Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor product: categories

Tensor
product: algebras

Strands algebras and gluing

2-representation of \mathcal{U} on an \mathbb{F}_{2}-linear $d g$ category \mathcal{V} : dg monoidal functor $\mathcal{U} \rightarrow \operatorname{End}(\mathcal{V})$ (objects: dg endofunctors of \mathcal{V} with $\otimes:=$ composition; morphisms: natural transformations)

Same data as dg endofunctor E of \mathcal{V} and natural transformation $\tau: E^{2} \rightarrow E^{2}$ with correct relations and differential

2-representation of \mathcal{U} on a dg algebra A over \mathbb{F}_{2} : dg monoidal functor \mathcal{U} to $\operatorname{End}(\mathcal{A})$ (objects: dg bimodules over A; morphisms: bimodule maps)

Same data as dg bimodule E over A and bimodule map $\tau: E \otimes_{A} E \rightarrow E \otimes_{A} E$ with correct relations and differential

Have version of © in both settings; second is most closely related to cornered Floer homology

Hom over \mathcal{U}

Higher repre-

 sentations and cornered Heegaard Floer homologyAndrew Manion (joint with Raphaël Rouquier)

Outline
Overview

Tensor product: categories

Tensor
product:
algebras
Strands
algebras and gluing

Further
remarks

How to define (8) for 2-representations $\left(\mathcal{V}_{1}, E_{1}, \tau_{1}\right),\left(\mathcal{V}_{2}, E_{2}, \tau_{2}\right)$ on dg categories? First think about Hom instead of tensor

Hom over \mathcal{U}

Higher representations and
cornered
Heegaard
Floer
homology
Andrew
Manion (joint with Raphaël

Rouquier)

Outline
Overview
Tensor product: categories

Tensor
product:
algebras
Strands

How to define (8) for 2-representations $\left(\mathcal{V}_{1}, E_{1}, \tau_{1}\right),\left(\mathcal{V}_{2}, E_{2}, \tau_{2}\right)$ on dg categories? First think about Hom instead of tensor
$\operatorname{Hom}_{\mathcal{U}}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$ should be a dg category with objects: dg functors $F: \mathcal{V}_{1} \rightarrow \mathcal{V}_{2}$ "commuting with action of E," so $E_{2} F \cong F E_{1}$ as dg functors (isomorphism or weaker notion of equivalence: will be vague here, just say "isomorphism")

Hom over \mathcal{U}

Heegaard Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview

Tensor
product:
categories
Tensor
product:
algebras
Strands

How to define © for 2-representations $\left(\mathcal{V}_{1}, E_{1}, \tau_{1}\right),\left(\mathcal{V}_{2}, E_{2}, \tau_{2}\right)$ on dg categories? First think about Hom instead of tensor
$\operatorname{Hom}_{\mathcal{U}}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$ should be a dg category with objects: dg functors $F: \mathcal{V}_{1} \rightarrow \mathcal{V}_{2}$ "commuting with action of E," so $E_{2} F \cong F E_{1}$ as dg functors (isomorphism or weaker notion of equivalence: will be vague here, just say "isomorphism")

As usual in categorification: should require choice of isomorphism $\pi: E_{2} F \xrightarrow{\cong} F E_{1}$; can require π to be compatible with τ_{1}, τ_{2}

Hom over \mathcal{U}

Heegaard Floer
homology
Andrew
Manion (joint with Raphaël
Rouquier)

Outline
Overview
Tensor
product:
categories
Tensor
product:
algebras
Strands

How to define (8) for 2-representations $\left(\mathcal{V}_{1}, E_{1}, \tau_{1}\right),\left(\mathcal{V}_{2}, E_{2}, \tau_{2}\right)$ on dg categories? First think about Hom instead of tensor
$\operatorname{Hom}_{\mathcal{U}}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$ should be a dg category with objects: dg functors $F: \mathcal{V}_{1} \rightarrow \mathcal{V}_{2}$ "commuting with action of E," so $E_{2} F \cong F E_{1}$ as dg functors (isomorphism or weaker notion of equivalence: will be vague here, just say "isomorphism")

As usual in categorification: should require choice of isomorphism $\pi: E_{2} F \xrightarrow{\cong} F E_{1}$; can require π to be compatible with τ_{1}, τ_{2}

Thus: objects of $\operatorname{Hom}_{\mathcal{U}}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$ should be pairs (F, π)

Hom and internal Hom

```
Higher repre-
sentations and
    cornered
    Heegaard
        Floer
    homology
        Andrew
Manion (joint
with Raphaël
    Rouquier)
Outline
Overview
Tensor
product:
categories
Tensor
product:
algebras
Strands
algebras and
gluing
Further
remarks
```

For ordinary reps V_{1}, V_{2} of $H:=\mathbb{C}[E] /\left(E^{2}\right)$, have $\operatorname{Hom}_{H}\left(V_{1}, V_{2}\right)$ and $\operatorname{Hom}_{\mathbb{C}}\left(V_{1}, V_{2}\right)$

Hom and internal Hom

Higher representations and
cornered
Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor product: categories

Tensor
product:
algebras
Strands
algebras and gluing

Further remarks

For ordinary reps V_{1}, V_{2} of $H:=\mathbb{C}[E] /\left(E^{2}\right)$, have $\operatorname{Hom}_{H}\left(V_{1}, V_{2}\right)$ and $\operatorname{Hom}_{\mathbb{C}}\left(V_{1}, V_{2}\right)$

Latter has action of H : for $\phi \in \operatorname{Hom}_{\mathbb{C}}\left(V_{1}, V_{2}\right)$, have

$$
(E \phi)\left(v_{1}\right)=(-1)^{|\phi|}\left(-\phi\left(E v_{1}\right)+E \phi\left(v_{1}\right)\right)
$$

Hom and internal Hom

Higher representations and
cornered
Heegaard Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor
product:
categories
Tensor
product:
algebras
Strands

For ordinary reps V_{1}, V_{2} of $H:=\mathbb{C}[E] /\left(E^{2}\right)$, have $\operatorname{Hom}_{H}\left(V_{1}, V_{2}\right)$ and $\operatorname{Hom}_{\mathbb{C}}\left(V_{1}, V_{2}\right)$

Latter has action of H : for $\phi \in \operatorname{Hom}_{\mathbb{C}}\left(V_{1}, V_{2}\right)$, have

$$
(E \phi)\left(v_{1}\right)=(-1)^{|\phi|}\left(-\phi\left(E v_{1}\right)+E \phi\left(v_{1}\right)\right)
$$

This vanishes iff ϕ commutes with the action of E

Hom and internal Hom

Heegaard Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor
product:
categories
Tensor
product:
algebras
Strands

For ordinary reps V_{1}, V_{2} of $H:=\mathbb{C}[E] /\left(E^{2}\right)$, have $\operatorname{Hom}_{H}\left(V_{1}, V_{2}\right)$ and $\operatorname{Hom}_{\mathbb{C}}\left(V_{1}, V_{2}\right)$

Latter has action of H : for $\phi \in \operatorname{Hom}_{\mathbb{C}}\left(V_{1}, V_{2}\right)$, have

$$
(E \phi)\left(v_{1}\right)=(-1)^{|\phi|}\left(-\phi\left(E v_{1}\right)+E \phi\left(v_{1}\right)\right)
$$

This vanishes iff ϕ commutes with the action of E
So: for 2-reps want to define $\mathbb{H o m}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$ (dg category with 2-action of \mathcal{U}) such that an object "vanishes" iff it's actually an object of $\operatorname{Hom}_{\mathcal{U}}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$

Categorifying the internal Hom

Higher representations and
cornered
Heegaard
Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview

Tensor product: categories

Tensor
product:
algebras
Strands
algebras and gluing

Further remarks

Reasonable way to do this: take objects of $\mathbb{H o m}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$ to be pairs (F, π) as above, but π can be any map satisfying compatibility with τ (not necessarily isomorphism or equivalence)

Categorifying the internal Hom

Higher repre-

Heegaard
Floer
homology
Andrew Manion (joint with Raphaël
Rouquier)

Outline
Overview
Tensor product: categories

Tensor
product:
algebras
Strands

Reasonable way to do this: take objects of \mathbb{H} om $\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$ to be pairs (F, π) as above, but π can be any map satisfying compatibility with τ (not necessarily isomorphism or equivalence)

Take $E(F, \pi)$ to be (m^{\prime}, π^{\prime}) where m^{\prime} is the mapping cone of π (should assume \mathcal{V}_{1} and \mathcal{V}_{2} pretriangulated; will also assume idempotent complete): should have the right "vanishes iff π equivalence" when latter is made precise (won't do this)

Categorifying the internal Hom

Heegaard
Floer
homology
Andrew Manion (joint with Raphaël
Rouquier)

Outline
Overview
Tensor product: categories

Tensor
product: algebras

Strands

Reasonable way to do this: take objects of $\mathbb{H o m}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$ to be pairs (F, π) as above, but π can be any map satisfying compatibility with τ (not necessarily isomorphism or equivalence)

Take $E(F, \pi)$ to be (m^{\prime}, π^{\prime}) where m^{\prime} is the mapping cone of π (should assume \mathcal{V}_{1} and \mathcal{V}_{2} pretriangulated; will also assume idempotent complete): should have the right "vanishes iff π equivalence" when latter is made precise (won't do this)

Can then guess at definitions of π^{\prime}, action of E on morphisms, and $\tau: E^{2} \rightarrow E^{2}$, and show the construction works

Generalized diagonal actions

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor product: categories

Tensor
product:
algebras
Strands
algebras and gluing

Further remarks

Generalize the above construction: let \mathcal{W} be a dg category with endofunctors E_{1}, E_{2} and natural endomorphisms τ_{i} of E_{i}^{2} satisfying the usual relations (including differential)

Generalized diagonal actions

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor product: categories

Tensor
product:
algebras
Strands

Generalize the above construction: let \mathcal{W} be a dg category with endofunctors E_{1}, E_{2} and natural endomorphisms τ_{i} of E_{i}^{2} satisfying the usual relations (including differential)

Suppose we also have a dg isomorphism $\sigma: E_{2} E_{1} \rightarrow E_{1} E_{2}$ satisfying compatibility with τ_{i}

Generalized diagonal actions

Higher representations and
cornered
Heegaard
Floer
homology
Andrew Manion (joint with Raphaël

Rouquier)

Outline
Overview
Tensor product: categories

Tensor
product:
algebras
Strands

Generalize the above construction: let \mathcal{W} be a dg category with endofunctors E_{1}, E_{2} and natural endomorphisms τ_{i} of E_{i}^{2} satisfying the usual relations (including differential)

Suppose we also have a dg isomorphism $\sigma: E_{2} E_{1} \rightarrow E_{1} E_{2}$ satisfying compatibility with τ_{i}

Can build dg category $\Delta_{\sigma} \mathcal{W}$ with endofunctor E and natural transformation $\tau: E^{2} \rightarrow E^{2}$:

Generalized diagonal actions

Higher representations and
cornered
Heegaard
Floer
homology
Andrew
Manion (joint with Raphaël

Rouquier)

Outline
Overview
Tensor product: categories

Tensor
product: algebras

Generalize the above construction: let \mathcal{W} be a dg category with endofunctors E_{1}, E_{2} and natural endomorphisms τ_{i} of E_{i}^{2} satisfying the usual relations (including differential)

Suppose we also have a dg isomorphism $\sigma: E_{2} E_{1} \rightarrow E_{1} E_{2}$ satisfying compatibility with τ_{i}

Can build dg category $\Delta_{\sigma} \mathcal{W}$ with endofunctor E and natural transformation $\tau: E^{2} \rightarrow E^{2}$:

- Objects: pairs (m, π) where m is an object of \bar{W}^{i} (idem. completion of pretriangulated closure) and $\pi: E_{2}(m) \rightarrow E_{1}(m)$ is a morphism in \bar{W}^{i} (morphisms in $\Delta_{\sigma} \mathcal{W}$: can define)

Generalized diagonal actions

Higher representations and
cornered
Heegaard
Floer
homology
Andrew
Manion (joint with Raphaël

Rouquier)

Outline
Overview
Tensor product: categories

Tensor
product: algebras

Generalize the above construction: let \mathcal{W} be a dg category with endofunctors E_{1}, E_{2} and natural endomorphisms τ_{i} of E_{i}^{2} satisfying the usual relations (including differential)

Suppose we also have a dg isomorphism $\sigma: E_{2} E_{1} \rightarrow E_{1} E_{2}$ satisfying compatibility with τ_{i}

Can build dg category $\Delta_{\sigma} \mathcal{W}$ with endofunctor E and natural transformation $\tau: E^{2} \rightarrow E^{2}$:

- Objects: pairs (m, π) where m is an object of \bar{W}^{i} (idem. completion of pretriangulated closure) and $\pi: E_{2}(m) \rightarrow E_{1}(m)$ is a morphism in \bar{W}^{i} (morphisms in $\Delta_{\sigma} \mathcal{W}$: can define)
- $E(m, \pi):=\left(m^{\prime}, \pi^{\prime}\right)$ where m^{\prime} is the mapping cone of π (makes sense in \bar{W}^{\prime}); can also define π^{\prime}, action of E on morphisms, and $\tau: E^{2} \rightarrow E^{2}$

Examples of Δ_{σ}

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor product: categories

Tensor
product:
algebras
Strands
algebras and gluing

Further remarks

Given $\left(\mathcal{V}_{1}, E_{1}, \tau_{1}\right)$ and $\left(\mathcal{V}_{2}, E_{2}, \tau_{2}\right)$:
$\square \mathcal{W}=\operatorname{dg}$ functors from \mathcal{V}_{1} to \mathcal{V}_{2}, E_{1} on $\mathcal{W}:=-\circ E_{1}, E_{2}$ on $\mathcal{W}:=E_{2} \circ-, \sigma$ natural isomorphism

Examples of Δ_{σ}

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor product: categories

Tensor
product:
algebras
Strands
algebras and gluing

Further remarks

Given $\left(\mathcal{V}_{1}, E_{1}, \tau_{1}\right)$ and $\left(\mathcal{V}_{2}, E_{2}, \tau_{2}\right)$:
$■ \mathcal{W}=\operatorname{dg}$ functors from \mathcal{V}_{1} to \mathcal{V}_{2}, E_{1} on $\mathcal{W}:=-\circ E_{1}, E_{2}$ on $\mathcal{W}:=E_{2} \circ-, \sigma$ natural isomorphism
\Rightarrow build $\mathbb{H o m}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$ with 2-action of \mathcal{U}

Examples of Δ_{σ}

Higher representations and
cornered
Heegaard
Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor product: categories

Tensor
product:
algebras
Strands

Given $\left(\mathcal{V}_{1}, E_{1}, \tau_{1}\right)$ and $\left(\mathcal{V}_{2}, E_{2}, \tau_{2}\right)$:
$\square \mathcal{W}=\operatorname{dg}$ functors from \mathcal{V}_{1} to \mathcal{V}_{2}, E_{1} on $\mathcal{W}:=-\circ E_{1}, E_{2}$ on $\mathcal{W}:=E_{2} \circ-, \sigma$ natural isomorphism
\Rightarrow build $\mathbb{H o m}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$ with 2-action of \mathcal{U}

- $\mathcal{W}=\mathcal{V}_{1} \otimes \mathcal{V}_{2}, E_{1}$ on $\mathcal{W}:=E_{1} \otimes \mathrm{id}, E_{2}$ on $\mathcal{W}:=\mathrm{id} \otimes E_{2}$, σ natural isomorphism

Examples of Δ_{σ}

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor product: categories

Tensor
product:
algebras
\Rightarrow build $\mathcal{V}_{1} \otimes \mathcal{V}_{2}$ with 2-action of \mathcal{U}

What we want

Higher repre-
sentations and
cornered
Heegaard
Floer
homology
Andrew
Manion (joint
with Raphaël
Rouquier)
Outline
Overview
Tensor
product:
categories
Tensor
product:
algebras
Strands
algebras and
gluing
Further
remarks

This (8) is for 2-representations of \mathcal{U} on dg categories; how about dg algebras?

What we want

Higher representations and
cornered
Heegaard
Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor
product
categories
Tensor product: algebras

Strands

This (8) is for 2-representations of \mathcal{U} on dg categories; how about dg algebras?
Δ_{σ} construction: say we have dg algebra B with dg bimodules E_{1}, E_{2}, bimodule endomorphisms τ_{i} of E_{i}^{2} with usual relations and differential, plus a bimodule isomorphism $\sigma: E_{2} E_{1} \rightarrow E_{1} E_{2}$ compatible with τ

Heegaard Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor
product:
categories

This © is for 2-representations of \mathcal{U} on dg categories; how about dg algebras?
Δ_{σ} construction: say we have dg algebra B with dg bimodules E_{1}, E_{2}, bimodule endomorphisms τ_{i} of E_{i}^{2} with usual relations and differential, plus a bimodule isomorphism $\sigma: E_{2} E_{1} \rightarrow E_{1} E_{2}$ compatible with τ

Can form $\Delta_{\sigma}(B-m o d) ;$ want dg algebra $\Delta_{\sigma} B$ (and dg bimodule E, endomorphism τ of E^{2}) such that

$$
\Delta_{\sigma}(B-\bmod) \cong\left(\Delta_{\sigma} B\right)-\bmod
$$

Heegaard Floer
homology
Andrew

This (8) is for 2-representations of \mathcal{U} on dg categories; how about dg algebras?
Δ_{σ} construction: say we have dg algebra B with dg bimodules E_{1}, E_{2}, bimodule endomorphisms τ_{i} of E_{i}^{2} with usual relations and differential, plus a bimodule isomorphism $\sigma: E_{2} E_{1} \rightarrow E_{1} E_{2}$ compatible with τ

Can form $\Delta_{\sigma}(B-m o d) ;$ want dg algebra $\Delta_{\sigma} B$ (and dg bimodule E, endomorphism τ of E^{2}) such that

$$
\Delta_{\sigma}(B-\bmod) \cong\left(\Delta_{\sigma} B\right)-\bmod
$$

Object of $\Delta_{\sigma}(B-\bmod)$: pair (m, π); define $\Delta_{\sigma} B$ so this is same data as a $\Delta_{\sigma} B$-module

Dualizing π

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview

Tensor
product
categories
Tensor product: algebras

Strands algebras and gluing

Further
remarks
m is a B-module so a $\Delta_{\sigma} B$-module should give a B-module; true if $\Delta_{\sigma} B$ contains B

Dualizing π

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor
product:
categories
Tensor product:
algebras
Strands
m is a B-module so a $\Delta_{\sigma} B$-module should give a B-module; true if $\Delta_{\sigma} B$ contains B

Can we take $\Delta_{\sigma} B$ to contain B plus something more, so that action of "extra stuff" on m is same data as $\pi: E_{2} \otimes_{B} m \rightarrow E_{1} \otimes_{B} m$?

Dualizing π

Higher representations and
cornered
Heegaard
Floer
homology
Andrew Manion (joint with Raphaël
Rouquier)

Outline
Overview
Tensor
product:
categories
Tensor product:
algebras
Strands
m is a B-module so a $\Delta_{\sigma} B$-module should give a B-module; true if $\Delta_{\sigma} B$ contains B

Can we take $\Delta_{\sigma} B$ to contain B plus something more, so that action of "extra stuff" on m is same data as $\pi: E_{2} \otimes_{B} m \rightarrow E_{1} \otimes_{B} m$?

Yes, if we assume our given data $\left(B, E_{1}, E_{2}, \ldots\right)$ has E_{1} finitely generated and projective as a (non-differential) right B-module

Dualizing π

Heegaard Floer
homology
Andrew Manion (joint with Raphaël
Rouquier)

Outline
Overview
Tensor
product:
categories
Tensor
algebras
Strands
m is a B-module so a $\Delta_{\sigma} B$-module should give a B-module; true if $\Delta_{\sigma} B$ contains B

Can we take $\Delta_{\sigma} B$ to contain B plus something more, so that action of "extra stuff" on m is same data as $\pi: E_{2} \otimes_{B} m \rightarrow E_{1} \otimes_{B} m ?$

Yes, if we assume our given data $\left(B, E_{1}, E_{2}, \ldots\right)$ has E_{1} finitely generated and projective as a (non-differential) right B-module Let $E_{1}^{\vee}=\operatorname{Hom}_{B \text { op }}\left(E_{1}, B\right)$ be the right dual (left adjoint) of E_{1}; then $\sigma: E_{2} E_{1} \rightarrow E_{1} E_{2}$ is dual to a map $\lambda: E_{1}^{\vee} E_{2} \rightarrow E_{2} E_{1}^{\vee}$ which we will also assume to be an isomorphism

Building $\triangle_{\sigma} B$

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor
product
categories
Tensor product: algebras

Strands algebras and gluing

Further
remarks

Now: π same data as $\zeta: E_{1}^{\vee} \otimes_{B} E_{2} \otimes_{B} m \rightarrow m$: looks like " $E_{1}^{\vee} \otimes_{B} E_{2}$ acting on m "!

Building $\triangle_{\sigma} B$

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor
product
categories
Tensor product: algebras

Strands algebras and gluing

Further remarks

Now: π same data as $\zeta: E_{1}^{\vee} \otimes_{B} E_{2} \otimes_{B} m \rightarrow m$: looks like " $E_{1}^{\vee} \otimes_{B} E_{2}$ acting on m "!

Thus: want $\Delta_{\sigma} B$ to contain $E_{1}^{\vee} \otimes_{B} E_{2}$

Building $\triangle_{\sigma} B$

Higher representations and
cornered
Heegaard
Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor
product: categories

Tensor product:
algebras
Strands

Now: π same data as $\zeta: E_{1}^{\vee} \otimes_{B} E_{2} \otimes_{B} m \rightarrow m$: looks like " $E_{1}^{\vee} \otimes_{B} E_{2}$ acting on m "!

Thus: want $\Delta_{\sigma} B$ to contain $E_{1}^{\vee} \otimes_{B} E_{2}$
No multiplication on (B, B) bimodule $E_{1}^{\vee} \otimes_{B} E_{2}$: build $\Delta_{\sigma} B$ from the tensor algebra $T_{B}^{*}\left(E_{1}^{\vee} \otimes_{B} E_{2}\right)$ (also contains B)

Building $\triangle_{\sigma} B$

Higher representations and
cornered
Heegaard
Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor
product:
categories
Tensor product: algebras

Strands

Now: π same data as $\zeta: E_{1}^{\vee} \otimes_{B} E_{2} \otimes_{B} m \rightarrow m$: looks like " $E_{1}^{\vee} \otimes_{B} E_{2}$ acting on m "!

Thus: want $\Delta_{\sigma} B$ to contain $E_{1}^{\vee} \otimes_{B} E_{2}$
No multiplication on (B, B) bimodule $E_{1}^{\vee} \otimes_{B} E_{2}$: build $\Delta_{\sigma} B$ from the tensor algebra $T_{B}^{*}\left(E_{1}^{\vee} \otimes_{B} E_{2}\right)$ (also contains B)

Define $\Delta_{\sigma} B:=\frac{T_{B}^{*}\left(E_{1}^{\vee} \otimes_{B} E_{2}\right)}{(\ldots)}$ where the relation ideal is specified below (we'll just do tensor product case)

The relation ideal: tensor product case

Higher representations and cornered Heegaard Floer homology

For $B=A_{1} \otimes A_{2}$ with endofunctors $\mathcal{E}_{1}:=E_{1} \otimes A_{2}$ (dual: $\left.\mathcal{E}_{1}^{\vee}=E_{1}^{\vee} \otimes A_{2}\right)$ and $\mathcal{E}_{2}:=A_{1} \otimes E_{2} \ldots$

The relation ideal: tensor product case

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview

Tensor
product:
categories
Tensor product: algebras

Strands algebras and gluing

Further remarks

For $B=A_{1} \otimes A_{2}$ with endofunctors $\mathcal{E}_{1}:=E_{1} \otimes A_{2}$ (dual: $\left.\mathcal{E}_{1}^{\vee}=E_{1}^{\vee} \otimes A_{2}\right)$ and $\mathcal{E}_{2}:=A_{1} \otimes E_{2} \ldots$
can write

$$
T_{B}^{*}\left(\mathcal{E}_{1}^{\vee} \otimes_{B} \mathcal{E}_{2}\right) \cong \bigoplus_{m=0}^{\infty}\left(E_{1}^{\vee}\right)^{m} \otimes_{\mathbb{F}_{2}} E_{2}^{m}
$$

The relation ideal: tensor product case

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor
product:
categories
Tensor product:
algebras
Strands

For $B=A_{1} \otimes A_{2}$ with endofunctors $\mathcal{E}_{1}:=E_{1} \otimes A_{2}$ (dual: $\left.\mathcal{E}_{1}^{\vee}=E_{1}^{\vee} \otimes A_{2}\right)$ and $\mathcal{E}_{2}:=A_{1} \otimes E_{2} \ldots$
can write

$$
T_{B}^{*}\left(\mathcal{E}_{1}^{\vee} \otimes_{B} \mathcal{E}_{2}\right) \cong \bigoplus_{m=0}^{\infty}\left(E_{1}^{\vee}\right)^{m} \otimes_{\mathbb{F}_{2}} E_{2}^{m}
$$

Define the relation ideal so that

$$
A_{1} \otimes A_{2}:=\Delta_{\sigma} B \cong \bigoplus_{m=0}^{\infty}\left(E_{1}^{\vee}\right)^{m} \otimes_{H_{m}} E_{2}^{m}
$$

$H_{m}:=$ endomorphism dg algebra of e^{m} in \mathcal{U}

Defining the bimodule E

Higher representations and
cornered
Heegaard
Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview

Tensor
product
categories
Tensor product: algebras

Strands
algebras and gluing

Further remarks

Fact: $((m, \pi)$ encodes action of tensor algebra on m that descends to action of quotient $A_{1} \otimes A_{2}$) iff (π satisfies "compatibility with τ " condition)

Defining the bimodule E

Higher representations and
cornered
Heegaard
Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Fact: $((m, \pi)$ encodes action of tensor algebra on m that descends to action of quotient $A_{1} \otimes A_{2}$) iff (π satisfies "compatibility with τ " condition)

So: dg module over $A_{1}(8) A_{2}=\Delta_{\sigma} B$ is same data as object of $\Delta_{\sigma}(B-\mathrm{mod})$, as desired

Defining the bimodule E

Higher repre-
cornered
Heegaard
Floer
homology
Andrew Manion (joint with Raphaël
Rouquier)

Outline
Overview
Tensor
product:
categories
Tensor product:
algebras
Strands

Fact: $((m, \pi)$ encodes action of tensor algebra on m that descends to action of quotient $A_{1} \otimes\left(A_{2}\right)$ iff (π satisfies "compatibility with τ " condition)

So: dg module over $A_{1}(\otimes) A_{2}=\Delta_{\sigma} B$ is same data as object of $\Delta_{\sigma}(B-\mathrm{mod})$, as desired

Example: $A_{1} \otimes A_{2}$ as left dg module over itself: equivalent to some (m, π) where m is a left dg module over $A_{1} \otimes A_{2}$

Defining the bimodule E

Heegaard Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Fact: $((m, \pi)$ encodes action of tensor algebra on m that descends to action of quotient $A_{1} \otimes\left(A_{2}\right)$ iff (π satisfies "compatibility with τ " condition)

So: dg module over $A_{1}(\otimes) A_{2}=\Delta_{\sigma} B$ is same data as object of $\Delta_{\sigma}(B-\mathrm{mod})$, as desired

Example: $A_{1} \otimes A_{2}$ as left dg module over itself: equivalent to some (m, π) where m is a left dg module over $A_{1} \otimes A_{2}$

Define bimodule E over $A_{1}(8) A_{2}$ to be mapping cone of

$$
\pi: E_{2} \otimes A_{1} \otimes A_{2} A_{1} \otimes A_{2} \rightarrow E_{1} \otimes_{A_{1} \otimes A_{2}} A_{1} \otimes A_{2}
$$

as bimodule over $\left(A_{1} \otimes A_{2}, A_{1} \otimes A_{2}\right)$; natural way to define left action of $A_{1} \otimes A_{2}$ and endomorphism τ of E^{2}

Arc / chord diagrams

Higher representations and
cornered
Heegaard
Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor
product.
categories
Tensor
product
algebras
Strands
algebras and gluing

Further
remarks

Now we'll discuss a key family of 2-representations of \mathcal{U} on dg algebras: strands algebras $\mathcal{A}(\mathcal{Z})$ in bordered Heegaard Floer homology (first examples: Lipshitz-Ozsváth-Thurston '08)

Arc / chord diagrams

Higher repre-
cornered
Heegaard
Floer
homology
Andrew Manion (joint with Raphaël

Rouquier)

Outline
Overview
Tensor
product:
categories
Tensor
product:
algebras
Strands

Now we'll discuss a key family of 2-representations of \mathcal{U} on dg algebras: strands algebras $\mathcal{A}(\mathcal{Z})$ in bordered Heegaard Floer homology (first examples: Lipshitz-Ozsváth-Thurston '08)

For us: \mathcal{Z} will be an "arc diagram" (or "chord diagram") like those in Zarev '11: compact oriented 1-manifold \mathcal{Z} with boundary (drawn in black) and 2-1 matching of finitely many points in interior of \mathcal{Z} (drawn with red arcs)

Arc / chord diagrams (continued)

Higher representations and cornered Heegaard Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor
product:
categories
Tensor
product:
algebras
Strands
algebras and gluing

Further
remarks

Examples: Q, taken to represent "sutured surfaces" (compact surfaces with boundary and extra data on boundary: "stopped regions" S_{-}and "unstopped regions" S_{+}interfacing
along a 0 -manifold Λ of "sutures"

Arc / chord diagrams (continued)

Heegaard
Floer
homology
Andrew

Examples: Q, taken to represent "sutured surfaces" (compact surfaces with boundary and extra data on boundary: "stopped regions" S_{-}and "unstopped regions" S_{+}interfacing
along a 0 -manifold Λ of "sutures"

Compare: LOT's pointed matched circles \mathcal{Z}, taken to represent closed surfaces with basepoint $\beta-(Q)$: Zarev cuts open and views as chord diagram for corresponding surface with S^{1}

$$
\beta
$$

boundary and one stop on boundary

Strands algebras

Higher repre-

 sentations andcornered
Heegaard
Floer
homology
Andrew
Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor
product:
categories
Tensor
product:
algebras
Strands
algebras and gluing

Further
remarks

For chord diagram \mathcal{Z} : have dg "strands algebra" $\mathcal{A}(\mathcal{Z})$. Precise definition in paper, generalizing Zarev and LOT; same basic idea, sketched below

Strands algebras

Higher representations and
cornered
Heegaard
Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview

Tensor
product
categories
Tensor
product
algebras
Strands
algebras and gluing

Further
remarks

For chord diagram \mathcal{Z} : have dg "strands algebra" $\mathcal{A}(\mathcal{Z})$. Precise definition in paper, generalizing Zarev and LOT; same basic idea, sketched below

Basis over \mathbb{F}_{2} : strands pictures like

\square (including e.g. up to isotopy

Strands algebras

Higher representations and
cornered
Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview

Tensor
product:
categories
Tensor
product
algebras
Strands
algebras and gluing

Further
remarks

For chord diagram \mathcal{Z} : have dg "strands algebra" $\mathcal{A}(\mathcal{Z})$. Precise definition in paper, generalizing Zarev and LOT; same basic idea, sketched below

Basis over \mathbb{F}_{2} : strands pictures like

\square (including e.g. $)^{2}$ up to isotopy

- Drawn in $[0,1] \times \mathcal{Z}$

Strands algebras

Higher representations and
cornered
Heegaard
Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor
product
categories
Tensor
product
algebras
Strands
algebras and gluing

Further
remarks

For chord diagram \mathcal{Z} : have dg "strands algebra" $\mathcal{A}(\mathcal{Z})$. Precise definition in paper, generalizing Zarev and LOT; same basic idea, sketched below

Basis over \mathbb{F}_{2} : strands pictures like

 (including e.g. $\Delta \sqrt{0})$ up to isotopy

- Drawn in $[0,1] \times \mathcal{Z}$
- Strands compatible with orientation

Strands algebras

Heegaard Floer
homology
Andrew Manion (joint with Raphaël
Rouquier)

Outline
Overview
Tensor
product:
categories
Tensor
product:
algebras
Strands

For chord diagram \mathcal{Z} : have dg "strands algebra" $\mathcal{A}(\mathcal{Z})$.
Precise definition in paper, generalizing Zarev and LOT; same basic idea, sketched below

Basis over \mathbb{F}_{2} : strands pictures like

\square (including e.g. $\Delta \sqrt{0}$) up to isotopy

- Drawn in $[0,1] \times \mathcal{Z}$
- Strands compatible with orientation
- No double-occupied matchings on right or left, except: any horizontal strands come in matched pairs (and are drawn dotted)

Strands algebras (continued)

```
Higher repre-
sentations and
    cornered
    Heegaard
        Floer
    homology
    Andrew
Manion (joint
with Raphaël
    Rouquier)
Outline
Overview
Tensor
product:
categories
Tensor
product:
algebras
Strands
algebras and
gluing
Further
remarks
```

Multiplication: concatenate,

Strands algebras (continued)

```
Higher repre-
sentations and
    cornered
    Heegaard
        Floer
    homology
    Andrew
Manion (joint
with Raphaël
    Rouquier)
Outline
Overview
Tensor
product:
categories
Tensor
product:
algebras
Strands

Multiplication: concatenate,



\section*{Strands algebras (continued)}

\section*{Strands}

Multiplication: concatenate,


Auroux ICM '10 (sketch): these algebras describe partially wrapped Fukaya categories of symmetric powers of sutured surfaces

\section*{Strands algebras (continued)}

Multiplication: concatenate,


Andrew

Differential: \(f \mapsto \int, \nLeftarrow \mapsto \int^{\prime}+\int_{\rho}\)
Auroux ICM '10 (sketch): these algebras describe partially wrapped Fukaya categories of symmetric powers of sutured surfaces

Heegaard Floer homology in general is based on Fukaya categories of these symmetric powers, explaining why these particular algebras are so natural for Heegaard Floer

\section*{Douglas-Manolescu's gluing formula}

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview

Tensor
product:
categories
Tensor
product:
algebras
Strands
algebras and gluing

Further
remarks

Douglas-Manolescu '11: asked how to recover algebra of e.g. * from data associated to \(P, \not \subset B\)

\section*{Douglas-Manolescu's gluing formula}

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor
product
categories
Tensor
product
algebras
Strands
algebras and gluing

Further remarks

Douglas-Manolescu '11: asked how to recover algebra of e.g. * from data associated to \(\times, \%\)

Their answer: associate certain algebraic constructions to top and bottom half, based on strands pictures like


\section*{Douglas-Manolescu's gluing formula}

Higher representations and
cornered
Heegaard
Floer
homology
Andrew Manion (joint with Raphaël
Rouquier)

Outline
Overview
Tensor
product:
categories
Tensor
product:
algebras
Strands

Douglas-Manolescu '11: asked how to recover algebra of e.g. F from data associated to \(\mathcal{F}, \underset{\beta}{ }\)

Their answer: associate certain algebraic constructions to top and bottom half, based on strands pictures like


Algebra for glued diagram: \(\bigoplus_{m=0}^{\infty}\) (top piece with \(m\) strands) \(\otimes_{H_{m}}\) (bottom piece with \(m\) strands)

\section*{Douglas-Manolescu's gluing formula}

Higher representations and
cornered
Heegaard Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor
product:
categories
Tensor
product:
algebras
Strands

Douglas-Manolescu '11: asked how to recover algebra of e.g. F from data associated to \(\mathcal{F}, \notin\)

Their answer: associate certain algebraic constructions to top and bottom half, based on strands pictures like


Algebra for glued diagram: \(\bigoplus_{m=0}^{\infty}\) (top piece with \(m\) strands) \(\otimes_{H_{m}}\) (bottom piece with \(m\) strands)

Illustration:


\section*{Our perspective}

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview

Tensor
product
categories
Tensor
product
algebras
Strands
algebras and gluing

Further
remarks

Our perspective (following Zarev): trying to recover algebra of e.g. \(\beta^{8}\) (with 2-action) from top piece + with 2-action and bottom piece \(F\) with 2-action

\section*{Our perspective}

Higher representations and
cornered
Heegaard Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview

Tensor
product:
categories
Tensor
product
algebras
Strands

Our perspective (following Zarev): trying to recover algebra of e.g. (with 2-action) from top piece \({ }^{3}\) with 2-action and bottom piece \(f\) with 2-action

To a chord diagram \(\mathcal{Z}\) with a distinguished interval component, use pictures like where 1 strand leaves upward on distinguished component to define a dg bimodule \(E\) over \(\mathcal{A}(\mathcal{Z})\)

\section*{Our perspective}

Higher representations and
cornered
Heegaard Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor
product: categories

Tensor
product:
algebras
Strands

Our perspective (following Zarev): trying to recover algebra of e.g. (with 2-action) from top piece \(\&\) with 2-action and bottom piece with 2-action

To a chord diagram \(\mathcal{Z}\) with a distinguished interval component, use pictures like where 1 strand leaves upward on distinguished component to define a dg bimodule \(E\) over \(\mathcal{A}(\mathcal{Z})\)

Differential on \(E\), left and right actions of \(\mathcal{A}(\mathcal{Z})\) on \(E\) : like in definition of \(\mathcal{A}(\mathcal{Z})\)

\section*{Our perspective}

Higher repre-

Heegaard Floer
homology
Andrew

Our perspective (following Zarev): trying to recover algebra of e.g. \(\beta\) (with 2-action) from top piece with 2-action and bottom piece + with 2-action

To a chord diagram \(\mathcal{Z}\) with a distinguished interval component, use pictures like where 1 strand leaves upward on distinguished component to define a dg bimodule \(E\) over \(\mathcal{A}(\mathcal{Z})\)

Differential on \(E\), left and right actions of \(\mathcal{A}(\mathcal{Z})\) on \(E\) : like in definition of \(\mathcal{A}(\mathcal{Z})\)
\(E \otimes_{\mathcal{A}(\mathcal{Z})} \cdots \otimes_{\mathcal{A}(\mathcal{Z})} E\) ( \(m\) factors) is isomorphic to the bimodule where \(m\) strands leave upward on distinguished component

\section*{Our perspective (continued)}

\author{
Higher representations and cornered Heegaard \\ Floer \\ homology \\ Andrew Manion (joint with Raphaël Rouquier) \\ Outline \\ Overview \\ Tensor \\ product \\ categories \\ Tensor \\ product \\ algebras \\ Strands \\ algebras and gluing \\ Further
}
remarks
Dual \(E^{\vee}\) of \(E\) is isomorphic to the bimodule where one strand leaves downward on distinguished component, e.g.
 \(\left(\left(E^{\vee}\right)^{m}: m\right.\) strands leave downward)

\section*{Our perspective (continued)}

Higher representations and
cornered
Heegaard
Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor
product
categories
Tensor
product:
algebras
Strands
algebras and gluing

Further
remarks

Dual \(E^{\vee}\) of \(E\) is isomorphic to the bimodule where one strand leaves downward on distinguished component, e.g.
 ( \(\left(E^{\vee}\right)^{m}: m\) strands leave downward)
\(E^{2}=E \otimes_{\mathcal{A}(\mathcal{Z})} E\) : have endomorphism \(\tau\) sending


\section*{Our perspective (continued)}

Higher representations and
cornered
Heegaard
Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor
product
categories
Tensor
product:
algebras
Strands
algebras and gluing

Further remarks

Dual \(E^{\vee}\) of \(E\) is isomorphic to the bimodule where one strand leaves downward on distinguished component, e.g.
 \(\left(\left(E^{\vee}\right)^{m}: m\right.\) strands leave downward)
\(E^{2}=E \otimes_{\mathcal{A}(\mathcal{Z})} E:\) have endomorphism \(\tau\) sending


So: for each interval component of \(\mathcal{Z}\), have a 2-action of \(\mathcal{U}\) on \(\mathcal{A}(\mathcal{Z})\)

\section*{Expanding on the gluing formula}

In our language:

\section*{Theorem (Douglas-Manolescu '11)}
(For \(\mathcal{Z}_{i}\) with one interval, in bijection with LOT's pointed matched circles): if \(\mathcal{Z}\) is obtained by gluing \(\mathcal{Z}_{1}\) and \(\mathcal{Z}_{2}\) end-to-end, then \(\mathcal{A}(\mathcal{Z}) \cong \mathcal{A}\left(\mathcal{Z}_{1}\right) \otimes \mathcal{A}\left(\mathcal{Z}_{2}\right)\) as dg algebras

\section*{Expanding on the gluing formula}

Andrew

In our language:

\section*{Theorem (Douglas-Manolescu '11)}
(For \(\mathcal{Z}_{i}\) with one interval, in bijection with LOT's pointed matched circles): if \(\mathcal{Z}\) is obtained by gluing \(\mathcal{Z}_{1}\) and \(\mathcal{Z}_{2}\) end-to-end, then \(\mathcal{A}(\mathcal{Z}) \cong \mathcal{A}\left(\mathcal{Z}_{1}\right) \otimes \mathcal{A}\left(\mathcal{Z}_{2}\right)\) as dg algebras

From this perspective: no more extra structure to consider on \(\mathcal{A}(\mathcal{Z})\); extra structure comes from e.g. \(\cap\) but \(\mathcal{A}(\mathcal{Z})\) comes from


\section*{Expanding on the gluing formula (continued)}

Higher representations and
cornered
Heegaard
Floer
homology
Andrew Manion (joint with Raphaël
Rouquier)

Outline
Overview
Tensor
product:
categories
Tensor
product:
algebras
Strands

Theorem (M.-Rouquier '20)
(For any \(\mathcal{Z}_{i}\) with distinguished interval components): if \(\mathcal{Z}\) is obtained by gluing \(\mathcal{Z}_{1}\) and \(\mathcal{Z}_{2}\) end-to-end as above, then \(\mathcal{A}(\mathcal{Z}) \cong \mathcal{A}\left(\mathcal{Z}_{1}\right) \otimes \mathcal{A}\left(\mathcal{Z}_{2}\right)\) as 2-representations of \(\mathcal{U}\) (so \(E, \tau\) also agree on both sides)

\section*{Expanding on the gluing formula (continued)}

Heegaard
Floer
homology
Andrew

Outline

Tensor
product:
categories
Tensor
product:
algebras
Strands

Theorem (M.-Rouquier '20)
(For any \(\mathcal{Z}_{i}\) with distinguished interval components): if \(\mathcal{Z}\) is obtained by gluing \(\mathcal{Z}_{1}\) and \(\mathcal{Z}_{2}\) end-to-end as above, then \(\mathcal{A}(\mathcal{Z}) \cong \mathcal{A}\left(\mathcal{Z}_{1}\right) \otimes \mathcal{A}\left(\mathcal{Z}_{2}\right)\) as 2-representations of \(\mathcal{U}\) (so \(E, \tau\) also agree on both sides)

We also prove more involved version of this result for self-gluings like \(\downarrow \longmapsto \bigcap_{\text {based on a version of } \Delta_{\sigma} \text { for }}\) 2-actions that "lax-commute" (in this case: we don't define 2-action on result, only for intervals rather than circles)

\section*{3 ways to view the gluing operation}

Higher representations and cornered
Heegaard
Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor
product:
categories
Tensor
product
algebras
Strands

What does this end-to-end gluing \(\mathcal{Z}_{1}, \mathcal{Z}_{2} \mapsto \mathcal{Z}\) look like on the sutured surfaces \(F_{1}, F_{2}, F\) that these chord diagrams represent?
(At least) 3 equivalent ways to view it:
1 Glue small neighborhood of suture in \(\partial F_{1}\) to small neighborhood of suture in \(\partial F_{2}: \stackrel{\square}{\square} \mid\)

\section*{3 ways to view the gluing operation}

Higher repre-

Heegaard Floer
homology
Andrew Manion (joint with Raphaël
Rouquier)

Outline
Overview
Tensor
product:
categories
Tensor
product:
algebras
Strands

What does this end-to-end gluing \(\mathcal{Z}_{1}, \mathcal{Z}_{2} \mapsto \mathcal{Z}\) look like on the sutured surfaces \(F_{1}, F_{2}, F\) that these chord diagrams represent?
(At least) 3 equivalent ways to view it:
1 Glue small neighborhood of suture in \(\partial F_{1}\) to small neighborhood of suture in \(\partial F_{2}\) : \(\quad \stackrel{\square}{\square}\)
2 View sutured surfaces as cobordisms from \(S_{-}\)to \(S_{+}\) restricting to id \({ }_{\Lambda}\) on the boundary; glue along an interval in \(\mathrm{id}_{\Lambda}\) \(\square\)

\section*{3 ways to view the gluing operation}

Heegaard Floer
homology
Andrew Manion (joint with Raphaël

Rouquier)

Outline
Overview
Tensor
product:
categories
Tensor
product:
algebras
Strands

What does this end-to-end gluing \(\mathcal{Z}_{1}, \mathcal{Z}_{2} \mapsto \mathcal{Z}\) look like on the sutured surfaces \(F_{1}, F_{2}, F\) that these chord diagrams represent?
(At least) 3 equivalent ways to view it:
1 Glue small neighborhood of suture in \(\partial F_{1}\) to small neighborhood of suture in \(\partial F_{2}\) : \(\quad \stackrel{\square}{\square}\)
2 View sutured surfaces as cobordisms from \(S_{-}\)to \(S_{+}\) restricting to id \({ }_{\Lambda}\) on the boundary; glue along an interval in \(\mathrm{id}_{\Lambda}\)
3 ■ Non-self-gluing case: glue "open pair of pants" to \(S_{+}\) interval in \(F_{1}\) and \(S_{+}\)interval in \(F_{2}\) :
- Self-gluing case: glue \(\square\) to \(S_{+}\)interval in \(F\)

\section*{Open and closed pairs of pants}

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview

Tensor
product:
categories
Tensor
product
algebras
Strands
algebras and gluing

Further
remarks

Compare the last interpretation with: tensor products for representations of (e.g.) \(U_{q}(\mathfrak{s l}(2))\) and gluing closed pairs of pants:


\section*{Open and closed pairs of pants}

Higher representations and
cornered
Heegaard
Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor
product:
categories
Tensor
product:
algebras
Strands

Compare the last interpretation with: tensor products for representations of (e.g.) \(U_{q}(\mathfrak{s l}(2))\) and gluing closed pairs of
pants:


Related to: \(\mathfrak{g l}(1 \mid 1)^{+}\)(intervals?) vs. \(\mathfrak{g l}(1 \mid 1)\) (circles?); note that higher actions for circles are not apparent on the algebras \(\mathcal{A}(\mathcal{Z})\) (need larger algebras?)

\section*{Ozsváth-Szabó's bordered HFK}

\author{
Higher representations and cornered Heegaard Floer homology \\ Andrew Manion (joint with Raphaël Rouquier)
}

Ozsváth-Szabó's algebras related to \(\mathcal{Z}=\sigma\) are not \(n\)-fold end-to-end gluings like the ones considered here...

\section*{Ozsváth-Szabó's bordered HFK}

Outline
Overview
Tensor
product
categories
Tensor
product
algebras
Strands
algebras and gluing

Further
remarks

Ozsváth-Szabó's algebras related to \(\mathcal{Z}=\sigma\) are not \(n\)-fold end-to-end gluings like the ones considered here...
instead, doing these end-to-end gluings for the \(n=1\) case of
the above chord diagram gives \(\mathcal{Z}=F^{-1}\)

\section*{Ozsváth-Szabó's bordered HFK}

Higher repre-

Heegaard Floer
homology
Andrew Manion (joint with Raphaël Rouquier)

Outline
Overview
Tensor
product:
categories
Tensor
product:
algebras
Strands

Ozsváth-Szabó's algebras related to \(\mathcal{Z}=\sigma\) are not \(n\)-fold end-to-end gluings like the ones considered here...
instead, doing these end-to-end gluings for the \(n=1\) case of
the above chord diagram gives \(\mathcal{Z}=م\)
These chord diagrams \(\mathcal{Z}\) : part of algebraic approach to HFK (work in preparation / progress) closely related to © , similar in spirit to Ozsváth-Szabó's bordered HFK '16

\section*{Thanks}
Higher repre-sentations andcorneredHeegaard
        Floer
    homology
    Andrew
Manion (joint
with Raphaël
    Rouquier)
Outline
Overview
Tensor
product:
categories
Tensor
product:
algebras
Strands
algebras and
gluing
Further
remarks

Thanks for your time!```

