Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

May 19, 2021

Higher representations and cornered Heegaard Floer homology

Andrew Manion (join with Raphaë Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

1 Overview

2 Tensor product: category case

3 Tensor product: algebra case

4 Strands algebras and a gluing formula

5 Further remarks

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Goal: explain a tensor product operation for certain higher representations, and its connections to Heegaard Floer homology

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Goal: explain a tensor product operation for certain higher representations, and its connections to Heegaard Floer homology

Some things appearing in previous talks:

 Invariants in 3d: knot homology theories, homological invariants for 3-manifolds

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks Goal: explain a tensor product operation for certain higher representations, and its connections to Heegaard Floer homology

Some things appearing in previous talks:

- Invariants in 3d: knot homology theories, homological invariants for 3-manifolds
- Invariants in 4d: knot concordance, smooth 4-manifolds

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks Goal: explain a tensor product operation for certain higher representations, and its connections to Heegaard Floer homology

Some things appearing in previous talks:

- Invariants in 3d: knot homology theories, homological invariants for 3-manifolds
- Invariants in 4d: knot concordance, smooth 4-manifolds
- Invariants in 2d: "categorified Hilbert spaces" of the theories on surfaces (coherent sheaves, Fukaya categories, ...)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks Goal: explain a tensor product operation for certain higher representations, and its connections to Heegaard Floer homology

Some things appearing in previous talks:

- Invariants in 3d: knot homology theories, homological invariants for 3-manifolds
- Invariants in 4d: knot concordance, smooth 4-manifolds
- Invariants in 2d: "categorified Hilbert spaces" of the theories on surfaces (coherent sheaves, Fukaya categories, ...)

Focus of this talk: in the case of Heegaard Floer homology, how do the categories for 2d surfaces behave under surface decompositions? ↔ what can we assign to 1-manifolds, 0-manifolds?

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Heegaard Floer homology assigns a surface F a certain Fukaya category of the union of all symmetric powers $Sym^{k}(F)$

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks Heegaard Floer homology assigns a surface F a certain Fukaya category of the union of all symmetric powers $Sym^{k}(F)$

Basic definitions of HF already suggest the above, but it's realized most fully in bordered Heegaard Floer homology (Lipshitz–Ozsváth–Thurston '08; connection between LOT and Fukaya categories due to Auroux '10)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks Cornered Heegaard Floer homology (Douglas–Manolescu '11, Douglas–Lipshitz–Manolescu '13) studies how the bordered HF invariants of surfaces behave under surface decompositions

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Cornered Heegaard Floer homology (Douglas–Manolescu '11, Douglas–Lipshitz–Manolescu '13) studies how the bordered HF invariants of surfaces behave under surface decompositions

Our work reformulates cornered HF and connects it to higher tensor products in categorified representation theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks Cornered Heegaard Floer homology (Douglas–Manolescu '11, Douglas–Lipshitz–Manolescu '13) studies how the bordered HF invariants of surfaces behave under surface decompositions

Our work reformulates cornered HF and connects it to higher tensor products in categorified representation theory

HF invariants of genus-zero surfaces especially important when applying bordered HF ideas to compute knot Floer homology (HFK) in terms of tangle decompositions; in cornered HF one can ask how the algebra / category for multiple tangle endpoints arises from the algebra / category for a single tangle endpoint

Knot polynomials and quantum group representations

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks If we look at Alexander polynomial and Jones polynomial ("decategorified level") instead of HFK and Khovanov homology ("categorified level"): knot polynomials come from tangle invariants taking following form

Knot polynomials and quantum group representations

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks If we look at Alexander polynomial and Jones polynomial ("decategorified level") instead of HFK and Khovanov homology ("categorified level"): knot polynomials come from tangle invariants taking following form

(tangle) \mapsto , in this case, morphism of $U_q(\mathfrak{gl}(1|1))$ -representations (Alexander) or $U_q(\mathfrak{gl}(2))$ -representations (Jones)

 $V \otimes V \otimes V^* \otimes V \otimes V \to V \otimes V \otimes V,$

V = vector representation (2-dimensional)

Knot polynomials and quantum group representations

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks If we look at Alexander polynomial and Jones polynomial ("decategorified level") instead of HFK and Khovanov homology ("categorified level"): knot polynomials come from tangle invariants taking following form

(tangle) \mapsto , in this case, morphism of $U_q(\mathfrak{gl}(1|1))$ -representations (Alexander) or $U_q(\mathfrak{gl}(2))$ -representations (Jones)

 $V \otimes V \otimes V^* \otimes V \otimes V \to V \otimes V \otimes V,$

V = vector representation (2-dimensional)

 \otimes : tensor product of representations of the quantum group (a Hopf algebra, so if V, W are representations then so is $V \otimes_k W$)

The categorified level

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

For Heegaard Floer / Khovanov homology: instead of tangle \mapsto linear map between vector spaces, various constructions give: tangle \mapsto functor between categories, or bimodule over algebras

The categorified level

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks For Heegaard Floer / Khovanov homology: instead of tangle \mapsto linear map between vector spaces, various constructions give: tangle \mapsto functor between categories, or bimodule over algebras

Match decategorified level: want the category / algebra for set of n tangle endpoints to be an n-fold tensor product of categories / algebras for a single endpoint each

The categorified level

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks For Heegaard Floer / Khovanov homology: instead of tangle \mapsto linear map between vector spaces, various constructions give: tangle \mapsto functor between categories, or bimodule over algebras

Match decategorified level: want the category / algebra for set of n tangle endpoints to be an n-fold tensor product of categories / algebras for a single endpoint each

A general construction \bigotimes for categorified representations of Kac–Moody algebras is defined by Rouquier (in preparation)

Summary

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Theorem (M.–Rouquier '20)

There is a version of \bigotimes for $\mathfrak{gl}(1|1)^+$ that explains the algebraic structure of cornered Floer homology (Douglas–Manolescu '11)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Summary

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Theorem (M.–Rouquier '20)

There is a version of \bigotimes for $\mathfrak{gl}(1|1)^+$ that explains the algebraic structure of cornered Floer homology (Douglas–Manolescu '11)

1 Explain a bit about \otimes in the case where we define it

Summary

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Theorem (M.–Rouquier '20)

There is a version of \bigotimes for $\mathfrak{gl}(1|1)^+$ that explains the algebraic structure of cornered Floer homology (Douglas–Manolescu '11)

- 1 Explain a bit about \otimes in the case where we define it
- 2 Discuss relationships to Heegaard Floer "strands algebras" and their gluing formulas as in Douglas–Manolescu

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Our operation \circledast applies to 2-representations of a dg monoidal category ${\cal U}$ defined by Khovanov ('10) (take to be \mathbb{F}_2 -linear here)

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Our operation \circledast applies to 2-representations of a dg monoidal category ${\cal U}$ defined by Khovanov ('10) (take to be \mathbb{F}_2 -linear here)

Categorifies $U_q(\mathfrak{gl}(1|1)^+)$; ignore gradings here and view as categorifying Hopf superalgebra $U(\mathfrak{gl}(1|1)^+) = \mathbb{C}[E]/(E^2)$

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Our operation \bigotimes applies to 2-representations of a dg monoidal category \mathcal{U} defined by Khovanov ('10) (take to be \mathbb{F}_2 -linear here)

Categorifies $U_q(\mathfrak{gl}(1|1)^+)$; ignore gradings here and view as categorifying Hopf superalgebra $U(\mathfrak{gl}(1|1)^+) = \mathbb{C}[E]/(E^2)$

 \mathcal{U} : objects generated under \otimes by one object e (so all objects: 1, e, e^2, \ldots)

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks Our operation \circledast applies to 2-representations of a dg monoidal category ${\cal U}$ defined by Khovanov ('10) (take to be \mathbb{F}_2 -linear here)

Categorifies $U_q(\mathfrak{gl}(1|1)^+)$; ignore gradings here and view as categorifying Hopf superalgebra $U(\mathfrak{gl}(1|1)^+) = \mathbb{C}[E]/(E^2)$

 \mathcal{U} : objects generated under \otimes by one object e (so all objects: 1, e, e^2, \ldots)

 \mathbb{F}_2 -linear morphism spaces generated under composition and \otimes by one endomorphism τ of e^2 with relations $\tau^2 = 0$ and $E\tau \circ \tau E \circ E\tau = \tau E \circ E\tau \circ \tau E$, differential $d(\tau) = 1$

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

2-representation of \mathcal{U} on an \mathbb{F}_2 -linear dg category \mathcal{V} : dg monoidal functor $\mathcal{U} \to \text{End}(\mathcal{V})$ (objects: dg endofunctors of \mathcal{V} with $\otimes :=$ composition; morphisms: natural transformations)

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

2-representation of \mathcal{U} on an \mathbb{F}_2 -linear dg category \mathcal{V} : dg monoidal functor $\mathcal{U} \to \text{End}(\mathcal{V})$ (objects: dg endofunctors of \mathcal{V} with $\otimes :=$ composition; morphisms: natural transformations)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Same data as dg endofunctor E of ${\cal V}$ and natural transformation $\tau:E^2\to E^2$ with correct relations and differential

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

2-representation of \mathcal{U} on an \mathbb{F}_2 -linear dg category \mathcal{V} : dg monoidal functor $\mathcal{U} \to \text{End}(\mathcal{V})$ (objects: dg endofunctors of \mathcal{V} with $\otimes :=$ composition; morphisms: natural transformations)

Same data as dg endofunctor E of ${\cal V}$ and natural transformation $\tau:E^2\to E^2$ with correct relations and differential

2-representation of \mathcal{U} on a dg algebra A over \mathbb{F}_2 : dg monoidal functor \mathcal{U} to End(\mathcal{A}) (objects: dg bimodules over A; morphisms: bimodule maps)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks 2-representation of \mathcal{U} on an \mathbb{F}_2 -linear dg category \mathcal{V} : dg monoidal functor $\mathcal{U} \to \text{End}(\mathcal{V})$ (objects: dg endofunctors of \mathcal{V} with $\otimes :=$ composition; morphisms: natural transformations)

Same data as dg endofunctor E of \mathcal{V} and natural transformation $\tau: E^2 \to E^2$ with correct relations and differential

2-representation of \mathcal{U} on a dg algebra A over \mathbb{F}_2 : dg monoidal functor \mathcal{U} to End(\mathcal{A}) (objects: dg bimodules over A; morphisms: bimodule maps)

Same data as dg bimodule E over A and bimodule map $\tau: E \otimes_A E \to E \otimes_A E$ with correct relations and differential

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks 2-representation of \mathcal{U} on an \mathbb{F}_2 -linear dg category \mathcal{V} : dg monoidal functor $\mathcal{U} \to \text{End}(\mathcal{V})$ (objects: dg endofunctors of \mathcal{V} with $\otimes :=$ composition; morphisms: natural transformations)

Same data as dg endofunctor E of $\mathcal V$ and natural transformation $\tau:E^2\to E^2$ with correct relations and differential

2-representation of \mathcal{U} on a dg algebra A over \mathbb{F}_2 : dg monoidal functor \mathcal{U} to End(\mathcal{A}) (objects: dg bimodules over A; morphisms: bimodule maps)

Same data as dg bimodule E over A and bimodule map $\tau: E \otimes_A E \to E \otimes_A E$ with correct relations and differential

Have version of \otimes in both settings; second is most closely related to cornered Floer homology

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

How to define \bigotimes for 2-representations $(\mathcal{V}_1, E_1, \tau_1), (\mathcal{V}_2, E_2, \tau_2)$ on dg categories? First think about Hom instead of tensor

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

How to define \bigotimes for 2-representations $(\mathcal{V}_1, E_1, \tau_1), (\mathcal{V}_2, E_2, \tau_2)$ on dg categories? First think about Hom instead of tensor

Hom_{\mathcal{U}}($\mathcal{V}_1, \mathcal{V}_2$) should be a dg category with objects: dg functors $F : \mathcal{V}_1 \to \mathcal{V}_2$ "commuting with action of E," so $E_2F \cong FE_1$ as dg functors (isomorphism or weaker notion of equivalence: will be vague here, just say "isomorphism")

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

How to define \bigotimes for 2-representations $(\mathcal{V}_1, E_1, \tau_1), (\mathcal{V}_2, E_2, \tau_2)$ on dg categories? First think about Hom instead of tensor

Hom_{\mathcal{U}}($\mathcal{V}_1, \mathcal{V}_2$) should be a dg category with objects: dg functors $F : \mathcal{V}_1 \to \mathcal{V}_2$ "commuting with action of E," so $E_2F \cong FE_1$ as dg functors (isomorphism or weaker notion of equivalence: will be vague here, just say "isomorphism")

As usual in categorification: should require *choice of* isomorphism $\pi: E_2F \xrightarrow{\cong} FE_1$; can require π to be compatible with τ_1, τ_2

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

How to define \bigotimes for 2-representations $(\mathcal{V}_1, E_1, \tau_1), (\mathcal{V}_2, E_2, \tau_2)$ on dg categories? First think about Hom instead of tensor

Hom_{\mathcal{U}}($\mathcal{V}_1, \mathcal{V}_2$) should be a dg category with objects: dg functors $F : \mathcal{V}_1 \to \mathcal{V}_2$ "commuting with action of E," so $E_2F \cong FE_1$ as dg functors (isomorphism or weaker notion of equivalence: will be vague here, just say "isomorphism")

As usual in categorification: should require *choice of* isomorphism $\pi: E_2F \xrightarrow{\cong} FE_1$; can require π to be compatible with τ_1, τ_2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thus: objects of Hom_{\mathcal{U}}($\mathcal{V}_1, \mathcal{V}_2$) should be pairs (F, π)

Hom and internal Hom

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks For ordinary reps V_1, V_2 of $H := \mathbb{C}[E]/(E^2)$, have Hom_H(V_1, V_2) and Hom_C(V_1, V_2)

Hom and internal Hom

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

For ordinary reps V_1, V_2 of $H := \mathbb{C}[E]/(E^2)$, have Hom_H(V_1, V_2) and Hom_C(V_1, V_2)

Latter has action of H: for $\phi \in \operatorname{Hom}_{\mathbb{C}}(V_1, V_2)$, have

$$(E\phi)(v_1) = (-1)^{|\phi|}(-\phi(Ev_1) + E\phi(v_1))$$

Hom and internal Hom

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks For ordinary reps V_1, V_2 of $H := \mathbb{C}[E]/(E^2)$, have Hom_H(V_1, V_2) and Hom_C(V_1, V_2)

Latter has action of *H*: for $\phi \in \text{Hom}_{\mathbb{C}}(V_1, V_2)$, have

$$(E\phi)(v_1) = (-1)^{|\phi|}(-\phi(Ev_1) + E\phi(v_1))$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

This vanishes iff ϕ commutes with the action of E

Hom and internal Hom

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks For ordinary reps V_1 , V_2 of $H := \mathbb{C}[E]/(E^2)$, have Hom_H(V_1 , V_2) and Hom_{\mathbb{C}}(V_1 , V_2)

Latter has action of H: for $\phi \in Hom_{\mathbb{C}}(V_1, V_2)$, have

$$(E\phi)(v_1) = (-1)^{|\phi|}(-\phi(Ev_1) + E\phi(v_1))$$

This vanishes iff ϕ commutes with the action of *E*

So: for 2-reps want to define $\mathbb{H}om(\mathcal{V}_1, \mathcal{V}_2)$ (dg category with 2-action of \mathcal{U}) such that an object "vanishes" iff it's actually an object of $\text{Hom}_{\mathcal{U}}(\mathcal{V}_1, \mathcal{V}_2)$

Categorifying the internal Hom

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Reasonable way to do this: take objects of $\mathbb{H}om(\mathcal{V}_1, \mathcal{V}_2)$ to be pairs (F, π) as above, but π can be *any map* satisfying compatibility with τ (not necessarily isomorphism or equivalence)

Categorifying the internal Hom

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks Reasonable way to do this: take objects of $\mathbb{H}om(\mathcal{V}_1, \mathcal{V}_2)$ to be pairs (F, π) as above, but π can be *any map* satisfying compatibility with τ (not necessarily isomorphism or equivalence)

Take $E(F, \pi)$ to be (m', π') where m' is the mapping cone of π (should assume \mathcal{V}_1 and \mathcal{V}_2 pretriangulated; will also assume idempotent complete): should have the right "vanishes iff π equivalence" when latter is made precise (won't do this)

Categorifying the internal Hom

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks Reasonable way to do this: take objects of $\mathbb{H}om(\mathcal{V}_1, \mathcal{V}_2)$ to be pairs (F, π) as above, but π can be *any map* satisfying compatibility with τ (not necessarily isomorphism or equivalence)

Take $E(F, \pi)$ to be (m', π') where m' is the mapping cone of π (should assume \mathcal{V}_1 and \mathcal{V}_2 pretriangulated; will also assume idempotent complete): should have the right "vanishes iff π equivalence" when latter is made precise (won't do this)

Can then guess at definitions of π' , action of E on morphisms, and $\tau: E^2 \to E^2$, and show the construction works

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Generalize the above construction: let W be a dg category with endofunctors E_1, E_2 and natural endomorphisms τ_i of E_i^2 satisfying the usual relations (including differential)

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Generalize the above construction: let W be a dg category with endofunctors E_1, E_2 and natural endomorphisms τ_i of E_i^2 satisfying the usual relations (including differential)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Suppose we also have a dg isomorphism $\sigma: E_2E_1 \rightarrow E_1E_2$ satisfying compatibility with τ_i

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Generalize the above construction: let W be a dg category with endofunctors E_1, E_2 and natural endomorphisms τ_i of E_i^2 satisfying the usual relations (including differential)

Suppose we also have a dg isomorphism $\sigma: E_2E_1 \rightarrow E_1E_2$ satisfying compatibility with τ_i

Can build dg category $\Delta_{\sigma} \mathcal{W}$ with endofunctor E and natural transformation $\tau : E^2 \to E^2$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks Generalize the above construction: let W be a dg category with endofunctors E_1, E_2 and natural endomorphisms τ_i of E_i^2 satisfying the usual relations (including differential)

Suppose we also have a dg isomorphism $\sigma: E_2E_1 \rightarrow E_1E_2$ satisfying compatibility with τ_i

Can build dg category $\Delta_{\sigma} \mathcal{W}$ with endofunctor E and natural transformation $\tau : E^2 \to E^2$:

Objects: pairs (m, π) where m is an object of Wⁱ (idem. completion of pretriangulated closure) and
π : E₂(m) → E₁(m) is a morphism in Wⁱ (morphisms in

 $\Delta_{\sigma} \mathcal{W}$: can define)

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks Generalize the above construction: let W be a dg category with endofunctors E_1, E_2 and natural endomorphisms τ_i of E_i^2 satisfying the usual relations (including differential)

Suppose we also have a dg isomorphism $\sigma: E_2E_1 \rightarrow E_1E_2$ satisfying compatibility with τ_i

Can build dg category $\Delta_{\sigma} \mathcal{W}$ with endofunctor E and natural transformation $\tau : E^2 \to E^2$:

- Objects: pairs (m, π) where m is an object of \overline{W}' (idem. completion of pretriangulated closure) and
 - $\pi: E_2(m) \to E_1(m)$ is a morphism in \overline{W}' (morphisms in $\Delta_{\sigma} \mathcal{W}$: can define)
- E(m,π) := (m', π') where m' is the mapping cone of π (makes sense in Wⁱ); can also define π', action of E on morphisms, and τ : E² → E²

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Given $(\mathcal{V}_1, \mathcal{E}_1, \tau_1)$ and $(\mathcal{V}_2, \mathcal{E}_2, \tau_2)$:

• $\mathcal{W} = dg$ functors from \mathcal{V}_1 to \mathcal{V}_2 , E_1 on $\mathcal{W} := - \circ E_1$, E_2 on $\mathcal{W} := E_2 \circ -$, σ natural isomorphism

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Given $(\mathcal{V}_1, \mathcal{E}_1, \tau_1)$ and $(\mathcal{V}_2, \mathcal{E}_2, \tau_2)$:

• $\mathcal{W} = dg$ functors from \mathcal{V}_1 to \mathcal{V}_2 , E_1 on $\mathcal{W} := - \circ E_1$, E_2 on $\mathcal{W} := E_2 \circ -$, σ natural isomorphism

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 \Rightarrow build \mathbb{H} om $(\mathcal{V}_1, \mathcal{V}_2)$ with 2-action of \mathcal{U}

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks Given (V_1, E_1, τ_1) and (V_2, E_2, τ_2) :

• $\mathcal{W} = dg$ functors from \mathcal{V}_1 to \mathcal{V}_2 , E_1 on $\mathcal{W} := - \circ E_1$, E_2 on $\mathcal{W} := E_2 \circ -$, σ natural isomorphism

$$\Rightarrow$$
 build \mathbb{H} om $(\mathcal{V}_1, \mathcal{V}_2)$ with 2-action of \mathcal{U}

• $\mathcal{W} = \mathcal{V}_1 \otimes \mathcal{V}_2$, E_1 on $\mathcal{W} := E_1 \otimes id$, E_2 on $\mathcal{W} := id \otimes E_2$, σ natural isomorphism

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks Given (V_1, E_1, τ_1) and (V_2, E_2, τ_2) :

• $\mathcal{W} = dg$ functors from \mathcal{V}_1 to \mathcal{V}_2 , E_1 on $\mathcal{W} := - \circ E_1$, E_2 on $\mathcal{W} := E_2 \circ -$, σ natural isomorphism

$$\Rightarrow$$
 build $\mathbb{H}\mathrm{om}(\mathcal{V}_1,\mathcal{V}_2)$ with 2-action of \mathcal{U}

• $\mathcal{W} = \mathcal{V}_1 \otimes \mathcal{V}_2$, E_1 on $\mathcal{W} := E_1 \otimes id$, E_2 on $\mathcal{W} := id \otimes E_2$, σ natural isomorphism

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 \Rightarrow build $\mathcal{V}_1 \bigotimes \mathcal{V}_2$ with 2-action of $\mathcal U$

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

This \circledast is for 2-representations of $\mathcal U$ on dg categories; how about dg algebras?

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks This \bigotimes is for 2-representations of \mathcal{U} on dg categories; how about dg algebras?

 Δ_{σ} construction: say we have dg algebra *B* with dg bimodules E_1, E_2 , bimodule endomorphisms τ_i of E_i^2 with usual relations and differential, plus a bimodule isomorphism $\sigma : E_2E_1 \rightarrow E_1E_2$ compatible with τ

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks This \bigotimes is for 2-representations of ${\mathcal U}$ on dg categories; how about dg algebras?

 Δ_{σ} construction: say we have dg algebra *B* with dg bimodules E_1, E_2 , bimodule endomorphisms τ_i of E_i^2 with usual relations and differential, plus a bimodule isomorphism $\sigma : E_2E_1 \rightarrow E_1E_2$ compatible with τ

Can form $\Delta_{\sigma}(B \text{-mod})$; want dg algebra $\Delta_{\sigma}B$ (and dg bimodule *E*, endomorphism τ of E^2) such that

 $\Delta_{\sigma}(B\operatorname{-mod})\cong (\Delta_{\sigma}B)\operatorname{-mod}$

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks This \bigotimes is for 2-representations of ${\mathcal U}$ on dg categories; how about dg algebras?

 Δ_{σ} construction: say we have dg algebra *B* with dg bimodules E_1, E_2 , bimodule endomorphisms τ_i of E_i^2 with usual relations and differential, plus a bimodule isomorphism $\sigma : E_2E_1 \rightarrow E_1E_2$ compatible with τ

Can form $\Delta_{\sigma}(B \operatorname{-mod})$; want dg algebra $\Delta_{\sigma}B$ (and dg bimodule E, endomorphism τ of E^2) such that

$$\Delta_{\sigma}(B\operatorname{\mathsf{-mod}})\cong (\Delta_{\sigma}B)\operatorname{\mathsf{-mod}}$$

Object of $\Delta_{\sigma}(B \operatorname{-mod})$: pair (m, π) ; define $\Delta_{\sigma}B$ so this is same data as a $\Delta_{\sigma}B$ -module

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

m is a *B*-module so a $\Delta_{\sigma}B$ -module should give a *B*-module; true if $\Delta_{\sigma}B$ contains *B*

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks *m* is a *B*-module so a $\Delta_{\sigma}B$ -module should give a *B*-module; true if $\Delta_{\sigma}B$ contains *B*

Can we take $\Delta_{\sigma}B$ to contain B plus something more, so that action of "extra stuff" on m is same data as $\pi: E_2 \otimes_B m \to E_1 \otimes_B m$?

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks *m* is a *B*-module so a $\Delta_{\sigma}B$ -module should give a *B*-module; true if $\Delta_{\sigma}B$ contains *B*

Can we take $\Delta_{\sigma}B$ to contain B plus something more, so that action of "extra stuff" on m is same data as $\pi: E_2 \otimes_B m \to E_1 \otimes_B m$?

Yes, if we assume our given data $(B, E_1, E_2, ...)$ has E_1 finitely generated and projective as a (non-differential) right *B*-module

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks *m* is a *B*-module so a $\Delta_{\sigma}B$ -module should give a *B*-module; true if $\Delta_{\sigma}B$ contains *B*

Can we take $\Delta_{\sigma}B$ to contain B plus something more, so that action of "extra stuff" on m is same data as $\pi: E_2 \otimes_B m \to E_1 \otimes_B m$?

Yes, if we assume our given data $(B, E_1, E_2, ...)$ has E_1 finitely generated and projective as a (non-differential) right *B*-module

Let $E_1^{\vee} = \text{Hom}_{B^{\text{op}}}(E_1, B)$ be the right dual (left adjoint) of E_1 ; then $\sigma : E_2E_1 \to E_1E_2$ is dual to a map $\lambda : E_1^{\vee}E_2 \to E_2E_1^{\vee}$ which we will also assume to be an isomorphism

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Now: π same data as $\zeta : E_1^{\vee} \otimes_B E_2 \otimes_B m \to m$: looks like " $E_1^{\vee} \otimes_B E_2$ acting on m"!

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Now: π same data as $\zeta : E_1^{\vee} \otimes_B E_2 \otimes_B m \to m$: looks like " $E_1^{\vee} \otimes_B E_2$ acting on m"!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Thus: want $\Delta_{\sigma}B$ to contain $E_1^{\vee} \otimes_B E_2$

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Now: π same data as $\zeta : E_1^{\vee} \otimes_B E_2 \otimes_B m \to m$: looks like " $E_1^{\vee} \otimes_B E_2$ acting on m"!

Thus: want $\Delta_{\sigma}B$ to contain $E_1^{\vee} \otimes_B E_2$

No multiplication on (B, B) bimodule $E_1^{\vee} \otimes_B E_2$: build $\Delta_{\sigma} B$ from the tensor algebra $T_B^*(E_1^{\vee} \otimes_B E_2)$ (also contains B)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks Now: π same data as $\zeta : E_1^{\vee} \otimes_B E_2 \otimes_B m \to m$: looks like " $E_1^{\vee} \otimes_B E_2$ acting on m"!

Thus: want $\Delta_{\sigma}B$ to contain $E_1^{\vee} \otimes_B E_2$

No multiplication on (B, B) bimodule $E_1^{\vee} \otimes_B E_2$: build $\Delta_{\sigma} B$ from the tensor algebra $T_B^*(E_1^{\vee} \otimes_B E_2)$ (also contains B)

Define $\Delta_{\sigma}B := \frac{T_B^*(E_1^{\vee} \otimes_B E_2)}{(...)}$ where the relation ideal is specified below (we'll just do tensor product case)

The relation ideal: tensor product case

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks For $B = A_1 \otimes A_2$ with endofunctors $\mathcal{E}_1 := E_1 \otimes A_2$ (dual: $\mathcal{E}_1^{\vee} = E_1^{\vee} \otimes A_2$) and $\mathcal{E}_2 := A_1 \otimes E_2...$

The relation ideal: tensor product case

Higher representations and cornered Heegaard Floer homology

Andrew Manion (join with Raphaë Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

For $B = A_1 \otimes A_2$ with endofunctors $\mathcal{E}_1 := E_1 \otimes A_2$ (dual: $\mathcal{E}_1^{\vee} = E_1^{\vee} \otimes A_2$) and $\mathcal{E}_2 := A_1 \otimes E_2...$

can write

$$T^*_B(\mathcal{E}_1^{\vee}\otimes_B \mathcal{E}_2) \cong \bigoplus_{m=0}^{\infty} (\mathcal{E}_1^{\vee})^m \otimes_{\mathbb{F}_2} \mathcal{E}_2^m$$

The relation ideal: tensor product case

Higher representations and cornered Heegaard Floer homology

Andrew Manion (join with Raphaë Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

For
$$B = A_1 \otimes A_2$$
 with endofunctors $\mathcal{E}_1 := E_1 \otimes A_2$ (dual:
 $\mathcal{E}_1^{\vee} = E_1^{\vee} \otimes A_2$) and $\mathcal{E}_2 := A_1 \otimes E_2...$

can write

$$\mathcal{T}^*_B(\mathcal{E}_1^{ee}\otimes_B\mathcal{E}_2)\cong \bigoplus_{m=0}^\infty (\mathcal{E}_1^{ee})^m\otimes_{\mathbb{F}_2}\mathcal{E}_2^m$$

Define the relation ideal so that

$$A_1 \bigotimes A_2 := \Delta_{\sigma} B \cong \bigoplus_{m=0}^{\infty} (E_1^{\vee})^m \otimes_{H_m} E_2^m,$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $H_m :=$ endomorphism dg algebra of e^m in \mathcal{U}

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Fact: $((m, \pi)$ encodes action of tensor algebra on m that descends to action of quotient $A_1 \otimes A_2$ iff (π satisfies "compatibility with τ " condition)

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Fact: $((m, \pi)$ encodes action of tensor algebra on m that descends to action of quotient $A_1 \otimes A_2$ iff (π satisfies "compatibility with τ " condition)

So: dg module over $A_1 \bigotimes A_2 = \Delta_{\sigma} B$ is same data as object of $\Delta_{\sigma}(B \operatorname{-mod})$, as desired

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Fact: $((m, \pi)$ encodes action of tensor algebra on m that descends to action of quotient $A_1 \otimes A_2$ iff $(\pi \text{ satisfies}$ "compatibility with τ " condition)

So: dg module over $A_1 \bigotimes A_2 = \Delta_{\sigma} B$ is same data as object of $\Delta_{\sigma}(B \operatorname{-mod})$, as desired

Example: $A_1 \bigotimes A_2$ as left dg module over itself: equivalent to some (m, π) where *m* is a left dg module over $A_1 \otimes A_2$

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks Fact: $((m, \pi)$ encodes action of tensor algebra on m that descends to action of quotient $A_1 \otimes A_2$ iff (π satisfies "compatibility with τ " condition)

So: dg module over $A_1 \bigotimes A_2 = \Delta_{\sigma} B$ is same data as object of $\Delta_{\sigma}(B \operatorname{-mod})$, as desired

Example: $A_1 \otimes A_2$ as left dg module over itself: equivalent to some (m, π) where m is a left dg module over $A_1 \otimes A_2$

Define bimodule *E* over $A_1 \otimes A_2$ to be mapping cone of

 $\pi: E_2 \otimes_{A_1 \otimes A_2} A_1 \bigotimes A_2 \to E_1 \otimes_{A_1 \otimes A_2} A_1 \bigotimes A_2$

as bimodule over $(A_1 \otimes A_2, A_1 \otimes A_2)$; natural way to define left action of $A_1 \otimes A_2$ and endomorphism τ of E^2

Arc / chord diagrams

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Now we'll discuss a key family of 2-representations of \mathcal{U} on dg algebras: *strands algebras* $\mathcal{A}(\mathcal{Z})$ in bordered Heegaard Floer homology (first examples: Lipshitz–Ozsváth–Thurston '08)

Arc / chord diagrams

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks Now we'll discuss a key family of 2-representations of \mathcal{U} on dg algebras: *strands algebras* $\mathcal{A}(\mathcal{Z})$ in bordered Heegaard Floer homology (first examples: Lipshitz–Ozsváth–Thurston '08)

For us: \mathcal{Z} will be an "arc diagram" (or "chord diagram") like those in Zarev '11: compact oriented 1-manifold \mathcal{Z} with boundary (drawn in black) and 2-1 matching of finitely many points in interior of \mathcal{Z} (drawn with red arcs)

Arc / chord diagrams (continued)

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Examples: β , taken to represent "sutured surfaces" (compact surfaces with boundary and extra data on boundary: "stopped regions" S_{-} and "unstopped regions" S_{+} interfacing

(日) (四) (日) (日) (日)

along a 0-manifold Λ of "sutures"

Arc / chord diagrams (continued)

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks Examples: β , taken to represent "sutured surfaces" (compact surfaces with boundary and extra data on boundary: "stopped regions" S_{-} and "unstopped regions" S_{+} interfacing

along a 0-manifold Λ of "sutures"

Compare: LOT's pointed matched circles \mathcal{Z} , taken to represent closed surfaces with basepoint $\mathfrak{P} \sim \mathfrak{D}$: Zarev cuts open and views as chord diagram for corresponding surface with S^1

boundary and one stop on boundary

R in B

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

For chord diagram \mathcal{Z} : have dg "strands algebra" $\mathcal{A}(\mathcal{Z})$. Precise definition in paper, generalizing Zarev and LOT; same basic idea, sketched below

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Higher representations and cornered Heegaard Floer homology

Strands algebras and gluing

For chord diagram \mathcal{Z} : have dg "strands algebra" $\mathcal{A}(\mathcal{Z})$. Precise definition in paper, generalizing Zarev and LOT; same basic idea. sketched below

Basis over \mathbb{F}_2 : strands pictures like e.g. \square (p) up to isotopy

(including

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

For chord diagram \mathcal{Z} : have dg "strands algebra" $\mathcal{A}(\mathcal{Z})$. Precise definition in paper, generalizing Zarev and LOT; same basic idea, sketched below

(including

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Basis over \mathbb{F}_2 : strands pictures like e.g. (212) up to isotopy

• Drawn in $[0,1] \times \mathcal{Z}$

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks For chord diagram \mathcal{Z} : have dg "strands algebra" $\mathcal{A}(\mathcal{Z})$. Precise definition in paper, generalizing Zarev and LOT; same basic idea, sketched below

(including

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Basis over \mathbb{F}_2 : strands pictures like e.g. \mathcal{D} up to isotopy

- \blacksquare Drawn in $[0,1]\times \mathcal{Z}$
- Strands compatible with orientation

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks For chord diagram \mathcal{Z} : have dg "strands algebra" $\mathcal{A}(\mathcal{Z})$. Precise definition in paper, generalizing Zarev and LOT; same basic idea, sketched below

Basis over \mathbb{F}_2 : strands pictures like e.g. (2000) up to isotopy

- Drawn in $[0,1] \times \mathcal{Z}$
- Strands compatible with orientation
- No double-occupied matchings on right or left, except: any horizontal strands come in matched pairs (and are drawn dotted)

(including

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

↓ = 0, ---- ↓ = ↓

人口 医水黄 医水黄 医水黄素 化甘油

Multiplication: concatenate,

Higher representations and cornered Heegaard Floer homology

Strands algebras and gluing

Multiplication: concatenate,

◆□▶ ◆冊▶ ◆臣▶ ◆臣▶ ─ 臣 ─

Differential: $f \mapsto f$, $f \mapsto f$,

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

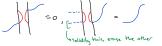
Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Multiplication: concatenate,



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Differential: $f \mapsto f$, $f \mapsto f$,

Auroux ICM '10 (sketch): these algebras describe partially wrapped Fukaya categories of symmetric powers of sutured surfaces

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

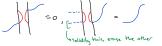
Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks Multiplication: concatenate,



Differential: $f \mapsto f$, $f \mapsto f$,

Auroux ICM '10 (sketch): these algebras describe partially wrapped Fukaya categories of symmetric powers of sutured surfaces

Heegaard Floer homology in general is based on Fukaya categories of these symmetric powers, explaining why these particular algebras are so natural for Heegaard Floer

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Douglas-Manolescu '11: asked how to recover algebra of e.g.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

from data associated to 💎, 🍤

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Douglas–Manolescu '11: asked how to recover algebra of e.g. from data associated to recover algebra of e.g.

Their answer: associate certain algebraic constructions to top and bottom half, based on strands pictures like \square , \square

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Douglas–Manolescu '11: asked how to recover algebra of e.g. from data associated to recover algebra of e.g.

Their answer: associate certain algebraic constructions to top and bottom half, based on strands pictures like \square , \square

Algebra for glued diagram: $\bigoplus_{m=0}^{\infty}$ (top piece with *m* strands) \otimes_{H_m} (bottom piece with *m* strands)

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

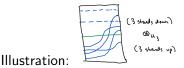
Strands algebras and gluing

Further remarks Douglas–Manolescu '11: asked how to recover algebra of e.g. from data associated to recover algebra of e.g.

Their answer: associate certain algebraic constructions to top and bottom half, based on strands pictures like \square , \square

Algebra for glued diagram: $\bigoplus_{m=0}^{\infty}$ (top piece with *m* strands) \otimes_{H_m} (bottom piece with *m* strands)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Our perspective (following Zarev): trying to recover algebra of e.g. (with 2-action) from top piece with 2-action and bottom piece with 2-action

人口 医水黄 医水黄 医水黄素 化甘油

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Our perspective (following Zarev): trying to recover algebra of e.g. (with 2-action) from top piece with 2-action and bottom piece with 2-action

To a chord diagram \mathcal{Z} with a *distinguished interval component*, use pictures like where 1 strand leaves upward on distinguished component to define a dg bimodule E over $\mathcal{A}(\mathcal{Z})$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks Our perspective (following Zarev): trying to recover algebra of e.g. (with 2-action) from top piece with 2-action and bottom piece with 2-action

To a chord diagram \mathcal{Z} with a *distinguished interval component*, use pictures like where 1 strand leaves upward on distinguished component to define a dg bimodule E over $\mathcal{A}(\mathcal{Z})$

Differential on E, left and right actions of $\mathcal{A}(\mathcal{Z})$ on E: like in definition of $\mathcal{A}(\mathcal{Z})$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks Our perspective (following Zarev): trying to recover algebra of e.g. (with 2-action) from top piece with 2-action and bottom piece with 2-action

To a chord diagram \mathcal{Z} with a *distinguished interval component*, use pictures like where 1 strand leaves upward on distinguished component to define a dg bimodule E over $\mathcal{A}(\mathcal{Z})$

Differential on E, left and right actions of $\mathcal{A}(\mathcal{Z})$ on E: like in definition of $\mathcal{A}(\mathcal{Z})$

 $E \otimes_{\mathcal{A}(\mathcal{Z})} \cdots \otimes_{\mathcal{A}(\mathcal{Z})} E$ (*m* factors) is isomorphic to the bimodule where *m* strands leave upward on distinguished component

Our perspective (continued)

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks Dual E^{\vee} of E is isomorphic to the bimodule where one strand leaves downward on distinguished component, e.g. $(E^{\vee})^m$: m strands leave downward)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Our perspective (continued)

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Dual E^{\vee} of E is isomorphic to the bimodule where one strand leaves downward on distinguished component, e.g. $(E^{\vee})^m$: m strands leave downward)

 $E^{2} = E \otimes_{\mathcal{A}(\mathcal{Z})} E: \text{ have endomorphism } \tau \text{ sending } \stackrel{\frown}{\longrightarrow} \stackrel{\frown}{\longleftarrow} \stackrel{\frown}{\longrightarrow} \stackrel{\frown}{\longrightarrow} \stackrel{\frown}{\longrightarrow} \stackrel{\frown}{\longrightarrow} \stackrel{\frown}{\longrightarrow} \stackrel{\frown}{\longrightarrow} \stackrel{\frown}{\longrightarrow} \stackrel{\frown}{\longrightarrow} \stackrel{\frown}{\longrightarrow} \stackrel{\bullet}{\longrightarrow} \stackrel{$

Our perspective (continued)

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks Dual E^{\vee} of E is isomorphic to the bimodule where one strand leaves downward on distinguished component, e.g. $(E^{\vee})^m$: m strands leave downward)

 $E^{2} = E \otimes_{\mathcal{A}(\mathcal{Z})} E: \text{ have endomorphism } \tau \text{ sending}$ $\stackrel{\sim}{\vdash} \stackrel{\sim}{\vdash} \stackrel{\sim}{\vdash} \stackrel{\sim}{\bullet}$

So: for each interval component of $\mathcal Z,$ have a 2-action of $\mathcal U$ on $\mathcal A(\mathcal Z)$

Expanding on the gluing formula

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

In our language:

Theorem (Douglas–Manolescu '11)

(For Z_i with one interval, in bijection with LOT's pointed matched circles): if Z is obtained by gluing Z_1 and Z_2 end-to-end, then $\mathcal{A}(Z) \cong \mathcal{A}(Z_1) \otimes \mathcal{A}(Z_2)$ as dg algebras

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Expanding on the gluing formula

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

In our language:

Theorem (Douglas–Manolescu '11)

(For Z_i with one interval, in bijection with LOT's pointed matched circles): if Z is obtained by gluing Z_1 and Z_2 end-to-end, then $\mathcal{A}(Z) \cong \mathcal{A}(Z_1) \bigotimes \mathcal{A}(Z_2)$ as dg algebras

From this perspective: no more extra structure to consider on $\mathcal{A}(\mathcal{Z})$; extra structure comes from e.g. \checkmark but $\mathcal{A}(\mathcal{Z})$ comes from $\overset{\textcircled{}}{\bigcirc}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Expanding on the gluing formula (continued)

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Theorem (M.–Rouquier '20)

(For any Z_i with distinguished interval components): if Z is obtained by gluing Z_1 and Z_2 end-to-end as above, then $\mathcal{A}(Z) \cong \mathcal{A}(Z_1) \otimes \mathcal{A}(Z_2)$ as 2-representations of \mathcal{U} (so E, τ also agree on both sides)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Expanding on the gluing formula (continued)

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Theorem (M.–Rouquier '20)

(For any \mathcal{Z}_i with distinguished interval components): if \mathcal{Z} is obtained by gluing \mathcal{Z}_1 and \mathcal{Z}_2 end-to-end as above, then $\mathcal{A}(\mathcal{Z}) \cong \mathcal{A}(\mathcal{Z}_1) \otimes \mathcal{A}(\mathcal{Z}_2)$ as 2-representations of \mathcal{U} (so E, τ also agree on both sides)

We also prove more involved version of this result for self-gluings like $\downarrow \longrightarrow \bigcirc$ based on a version of Δ_{σ} for 2-actions that "lax-commute" (in this case: we don't define 2-action on result, only for intervals rather than circles)

3 ways to view the gluing operation

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks What does this end-to-end gluing $Z_1, Z_2 \mapsto Z$ look like on the sutured surfaces F_1, F_2, F that these chord diagrams represent? (At least) 3 equivalent ways to view it:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1 Glue small neighborhood of suture in ∂F_1 to small

neighborhood of suture in ∂F_2 :

3 ways to view the gluing operation

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overviev

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

What does this end-to-end gluing $Z_1, Z_2 \mapsto Z$ look like on the sutured surfaces F_1, F_2, F that these chord diagrams represent? (At least) 3 equivalent ways to view it:

1 Glue small neighborhood of suture in ∂F_1 to small neighborhood of suture in ∂F_2 :

2 View sutured surfaces as cobordisms from S₋ to S₊ restricting to id_Λ on the boundary; glue along an interval in id_Λ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

3 ways to view the gluing operation

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overviev

Tensor product: categories

Tensor product: algebras

3

Strands algebras and gluing

Further remarks What does this end-to-end gluing $Z_1, Z_2 \mapsto Z$ look like on the sutured surfaces F_1, F_2, F that these chord diagrams represent? (At least) 3 equivalent ways to view it:

1 Glue small neighborhood of suture in ∂F_1 to small neighborhood of suture in ∂F_2 :

- 2 View sutured surfaces as cobordisms from S₋ to S₊ restricting to id_Λ on the boundary; glue along an interval in id_Λ
 - Non-self-gluing case: glue "open pair of pants" to S_+ interval in F_1 and S_+ interval in F_2 :

• Self-gluing case: glue \square to S_+ interval in F

Open and closed pairs of pants

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Compare the last interpretation with: tensor products for representations of (e.g.) $U_q(\mathfrak{sl}(2))$ and gluing *closed* pairs of

(日) (四) (日) (日) (日)

pants:

Open and closed pairs of pants

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks Compare the last interpretation with: tensor products for representations of (e.g.) $U_q(\mathfrak{sl}(2))$ and gluing *closed* pairs of

pants:

Related to: $\mathfrak{gl}(1|1)^+$ (intervals?) vs. $\mathfrak{gl}(1|1)$ (circles?); note that higher actions for circles are not apparent on the algebras $\mathcal{A}(\mathcal{Z})$ (need larger algebras?)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Ozsváth-Szabó's bordered HFK

Higher representations and cornered Heegaard Floer homology

Andrew Manion (join with Raphaë Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks Ozsváth–Szabó's algebras related to $\mathcal{Z} = \emptyset'$ are not *n*-fold end-to-end gluings like the ones considered here...

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Ozsváth-Szabó's bordered HFK

Higher representations and cornered Heegaard Floer homology

Andrew Manion (join with Raphaë Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks Ozsváth–Szabó's algebras related to $\mathcal{Z} = \emptyset'$ are not *n*-fold end-to-end gluings like the ones considered here...

instead, doing these end-to-end gluings for the n = 1 case of the above chord diagram gives $\mathcal{Z} = \int_{0}^{0}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Ozsváth–Szabó's bordered HFK

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks Ozsváth–Szabó's algebras related to $\mathcal{Z} = \emptyset'$ are not *n*-fold end-to-end gluings like the ones considered here...

instead, doing these end-to-end gluings for the n = 1 case of the above chord diagram gives $\mathcal{Z} =$

These chord diagrams \mathcal{Z} : part of algebraic approach to HFK (work in preparation / progress) closely related to \otimes , similar in spirit to Ozsváth–Szabó's bordered HFK '16

Т	han	ks
-		

Higher representations and cornered Heegaard Floer homology

Andrew Manion (joint with Raphaël Rouquier)

Outline

Overview

Tensor product: categories

Tensor product: algebras

Strands algebras and gluing

Further remarks

Thanks for your time!

ヘロト 人間ト 人間ト 人間ト

æ