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The Gauss curvature flow
Anisotropic flows

Ω⊂ Rn+1 bounded convex domain, M = ∂Ω.
X : M→ Rn+1 position vector, K(x) the Gauss curvature.

The Gauss curvature flow:

∂X(x, t)
∂ t

=−K(x, t)ν (1.1)

Introduced and studied under symmetry by W. Firey;

Existence, convergence to a point z∞ after finite time. (K.S. Chou).

The shape of z∞?
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The Gauss curvature flow
Anisotropic flows

The normalization (volume preserved to be |B1|):

∂X(x, t)
∂ t

= (−K(x, t)+u)ν , (1.2)

u =< x,ν >, the support function.

For flow (1.2),

convergent to sphere when n = 2, (Andrews).

convergent to a soliton for n≥ 3: K = u, (Guan-Ni).

Soliton is the unit sphere! (Brendle-Choi-Daskopolous)
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The Gauss curvature flow
Anisotropic flows

Entropy functionals

Ω⊂ Rn+1 bounded closed convex body, ∀z0 ∈Ω, the support function
with respect to z0

uz0(x)+ sup
z∈Ω

〈x,z− z0〉.

Define two entropy functional E (Ω), C (Ω):

E (Ω)+ sup
uz0>0

∮
Sn

loguz0(x)dθ(x). (Firey, Andrews)

C (Ω)+
∮
Sn

K logK dθ(x). (Chow)
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The Gauss curvature flow
Anisotropic flows

Guan-Ni:

E (Ω)≥ logV(Ω)− logV(B1)

n+1
.

E (Ω)≤ C (Ω), ”=” if u≡ K.

ρ−(Ω) inner radius, ρ+(Ω) outer radius,

ρ+(Ω)≤ CneE (Ω), ρ−(Ω)≥ C′nV(Ω)e−nE (Ω).

The entropy point: there exists a unique ze(Ω) ∈ Int(Ω)

E (Ω) =
∮

Sn
loguze(x),

∫
Sn

xj

ue(x)
dθ(x) = 0.

∃δ (ρ+(Ω),V(Ω),n)> 0, d(ze(Ω),∂Ω)≥ δ .
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The Gauss curvature flow
Anisotropic flows

Along flow (1.2),

E (Ωt),C (Ωt) monotone non-increasing.

ρ+(Ω(t))≤ C1, ρ−(Ω(t))≥ C2 > 0.

u≥ c0 independent t.

0 < C3 ≤ KΩ(t) ≤ C4.

(1.2) is a quasi-gradient flow.

Flow (1.2) converges to a soliton u = K.

The soliton is a critical point of E (Ω) under the constraint
|Ω)|= |B1|.
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The Gauss curvature flow
Anisotropic flows

Flow by power of Gauss curvature

Consider
Xt =−Kα

ν , α > 0. (1.3)

Cα(Ω) : =
α

α−1
log
(∮

Sn
Kα−1 dθ(x)

)
Eα(Ω) : = sup

z0∈Ω

Eα(Ω,z0),

where

Eα(Ω,z0) :=
α

α−1
log
(∮

Sn
uz0(x)

1− 1
α dθ(x)

)
.
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The Gauss curvature flow
Anisotropic flows

Andrews-Guan-Ni:
∀z0 ∈ Int(Ω), Eα(Ω,z0) is continuous and increasing in α .
If |Ω|= |B(1)|, ∀α > 1

n+2 ,

Eα(Ω)≥ 0, equality iff Ω is a ball..

∃! ze ∈ Int(Ω) such that Eα(Ω) = Eα(Ω,ze),∫
Sn

xj

u
1
α
ze (x)

dθ(x) = 0.

∀α > 1
n+2 , ∃β (α,n)> 0,C(α,n)> 0 , ∀Ω with |Ω|= |B(1)|,

ρ−(Ω)≥ C−1e−βEα (Ω), ρ+(Ω)≤ CenβEα (Ω).

∃δ (ρ+(Ω),V(Ω),α,n)> 0,

d(ze(Ω),∂Ω)≥ δ .
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The Gauss curvature flow
Anisotropic flows

Normalized flow

∂

∂ t
X(x, t) =− Kα(x, t)∮

Sn Kα−1 ν(x, t)+X(x, t). (1.4)

Under the normalized flow (1.4), Cα(Ω(t)) and Eα(Ω(t)) are
non-increasing.

∀α ≥ 1
n+2 , E ∞

α := limt→∞ Eα(Ωt) exists,

E ∞
α −Eα(Ω(t0))≤−

∫
∞

t0

[∫
Sn f 1+ 1

α dσt ·
∫
Sn dσt∫

Sn f
1
α dσt ·

∫
Sn f dσt

−1

]
dt ≤ 0.

Here f (x, t) = Kα (x,t)
u(x,t) , dσt(x) =

u(x,t)
K(x,t) dθ(x).
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The Gauss curvature flow
Anisotropic flows

Convergence of (1.4)

∀α ≥ 1
n+2 , along flow (1.4),

u≥ c0 independent of t.

0 < C3 ≤ KΩ(t) ≤ C4.

(1.4) is a quasi-gradient flow.

Flow (1.4) converges to a soliton ηu = Kα , η =
∫
Sn Kα−1.

The soliton is a critical point of Eα(Ω) under the constraint
|Ω)|= |B1|.

Classification of solitons:

α = 1
n+2 , solitons are ellipsoids. (Andrews)

∀α > 1
n+2 , soliton is the sphere. (Brendle-Choi-Daskopolous)
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The Gauss curvature flow
Anisotropic flows

Anisotropic flows

Joint work of Andrews-Boroczky-Guan-Ni.

Xt =−f α(ν)Kα
ν , α > 0, 0 < f ∈ C2(Sn). (2.1)

The normalized flow

Xt =−
f α(ν)Kα∮
Sn f αKα−1 ν +X. (2.2)

Entropy functionals

Cα,f (Ω) :=
α

α−1
log
(∮

Sn
Kα−1 f (x)dθ(x)

)
.

Eα,f (Ω) := sup
z0∈Ω

α

α−1
log
(∮

Sn
uz0(x)

1− 1
α f (x)dθ(x)

)
.
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The Gauss curvature flow
Anisotropic flows

If V(Ω) = V(B(1)), ∀α > 1
n+2 , ∃β (α,n, f )> 0, C(α,n, f )> 0, ∀Ω,

ρ−(Ω)≥ C−1e−βEα,f (Ω), ρ+(Ω)≤ CenβEα,f (Ω).

Eα,f (Ωt2 ,z)−Eα,f (Ωt1 ,z=
∫ t2

t1

( ∮
Sn hα+1(x, t)dσt∮

Sn h(x, t)dσt ·
∮
Sn hα(x, t)dσt

−1
)

dt≤ 0,

with equality if and only if h(x, t) = const.

h(x, t)+ f (x)u
− 1

α
z (x, t)K(x, t), dσt(x) =

uz(x,t)
K(x,t) dθ(x) which satisfies

that
∮
Sn dσt(x) =

∮
Sn dθ(x) = 1.
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The Gauss curvature flow
Anisotropic flows

Non-collapsing estimates

If V(Ω) = V(B(1)), ∀α > 1
n+2 , ∃β (α,n, f )> 0, C(α,n, f )> 0, ∀Ω,

ρ−(Ω)≥ C−1e−βEα,f (Ω), ρ+(Ω)≤ CenβEα,f (Ω).

For solution to (2.2) with V(Ω(t)) = V(B(1)) and α ≥ 1
n+2 ,

ρ+(Ωt)≤ C, ρ−(Ωt)≥
1
C
, ∀t > 0.

Ω(t) solution to the un-normalized flow (2.1),

ρ+(Ωt)

ρ−(Ωt)
≤ C, 0 < K(t)≤ C

ρn
+(Ωt)

.
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The Gauss curvature flow
Anisotropic flows

As a consequence, solution to (2.2) sequentially converges to

ηu = f α(ν)Kα , on Sn.

u is a solution of Lp-Minkowski problem (p = 1
α

)

σn(uij +uδij) = fu−p,on Sn. (2.3)

Regularity on f can be weakened.

Normalize
∫
Sn f = ωn, V(Ω) = V(B(1)). Set diamΩ = D.

∀δ > 0,z ∈ Sn, set Ξδ ,z = {x ∈ Sn| |< x,z > | ≤ δ}. Let σ be the
centroid of Ω.
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The Gauss curvature flow
Anisotropic flows

(i) 0 < p < 1, ∃ε > 0, δ ∈ (0, 1
2), D≥ 2 and∫

Ξδ ,z

f ≤ (1−ε)ωn, for any z ∈ Sn, then
∫

Sn
fu1−p

σ ≥ γ1(δD)1−p.

(ii) p = 1, δ ∈ (0, 1
2), D≥ 2 and∫

Ξδ ,z

f ≤ ωn

2n
for any z ∈ Sn, then,

1
ωn

∫
Sn

f loguσ ≥
1
2

logD+logδ−γ2.

(iii) 1 < p < n+2, ζ ∈ (0, 1
2), f ∈ L

n+1
n+2−p (Sn), D = diamΩ is large

enough to satisfy D
(1−p)(n+1)
2(n+2−p) ≤ ζ and∫

Ξ 16n√
D
,z

f
n+1

n+2−p ≤ ζ for any z ∈ Sn, then,
∫

Sn
u1−p

σ ≤ γ3ζ
n+2−p

n+1 .
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The Gauss curvature flow
Anisotropic flows

For each 1
n+2 < α < ∞, p = 1

α
. Under the corresponding

assumptions on f as in the previous page, there is a solution
u ∈ C0,1(Sn) of (2.3) with Ωu ⊂ Rn+1 bounded and non-degenerate.

If 0 < f ∈ L∞(Sn), then the Gauss curvature of the boundary of Ω is
bounded from below and above by two positive constants, and
∂Ω ∈ C1,β for 0 < β < 1. If 0 < f ∈ Cβ (Sn), then ∂Ω ∈ C2,β .

A parabolic proof of Chou-Wang’s result with weakened assumption.
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The Gauss curvature flow
Anisotropic flows

Thank you
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