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Goals

We study
−divA(x ,Du) = µ in Ω ⊂ Rn

with bounded measure µ and Carathéodory’s function A having
Orlicz growth (it’s family of nonlinear operators including ∆ and ∆p).

Solutions can be unbounded, but we can control them precisely by a
certain potential and infer local properties such as Hölder continuity.
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Orlicz growth (it’s family of nonlinear operators including ∆ and ∆p).

Solutions can be unbounded, but we can control them precisely by a
certain potential and infer local properties such as Hölder continuity.
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Measure data problems with power growth

−∆pu = −div(|Du|p−2Du) = µ, 1 < p <∞

Already for −∆pu = δ0 in B(0, 1) we deal with the so-called fundamental
solution

G (x) = cn,p
(
|x |

p−n
p−1 − 1

)
if 1 < p < n,

which does not belong to W 1,p0 (B(0, 1)), for small p, but we like it!

One may study various kids of very weak solutions:
SOLA (Boccardo&Gallouët ’89), renormalized solutions (DiPerna&Lions ’89,
Boccardo, Giachetti, Diaz, Murat ’93), entropy solution (Bénilan, Boccardo,
Gallouët, Gariepy, Pierre, Vazquez, Murat ’95), or (Kilpeläinen, Kuusi,
Tuhola-Kujanpää ’11) A-superharmonic functions.

Be careful: if 1 < p < 2− 1n , then it is possible that u 6∈W 1,1loc .
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Measure data problems with Orlicz growth

We study
−divA(x ,Du) = µ,

where A(x , ξ) · ξ ' G (|ξ|)

⇐ here G ∈ ∆2 ∩∇2,
e.g. Gp,α(s) = sp logα(1 + s), 1 < p <∞, α ∈ R.

Scalar problem
µ is a bounded measure, A : Ω× Rn → Rn is a monotone
Carathéodory’s function, G ∈ C 1((0,∞)) is a nonnegative, increasing,
and convex function such that G ∈ ∆2 ∩∇2 and{

cA1 G (|ξ|) ¬ A(x , ξ) · ξ,
|A(x , ξ)| ¬ cA2 g(|ξ|),

where g is the derivative of G .
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Who can be called ‘a solution’?

A-harmonicity
A continuous function u ∈W 1,Gloc (Ω) is an A-harmonic function in an
open set Ω if it is a (weak) solution to −divA(x ,Du) = 0.

A-super/subharmonicity
We say that a lower semicontinuous function u is A-superharmonic if
for any K b Ω and any A-harmonic h ∈ C (K ) in K , u ­ h on ∂K
implies u ­ h in K (u is A-subharmonic if (−u) is A-superharmonic).

An A-superharmonic function
• is defined everywhere,
• can be unbounded,
• generates a measure.

This guy we want to ‘control by a potential’ and prove its regularity.
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Potential estimate in the linear case 1/2
Global case

If u solves −∆u = µ in Rn, then

u(x) =

∫
Rn

G (x , y) dµ(y)

with Green’s function

G (x) =
cn

|x − y |n−2
if n > 2,

so it can be estimated as follows

|u(x)| .
∫
Rn

d |µ|(y)

|x − y |n−2
=: I2(|µ|)(x) ⇐ Riesz potential
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Potential estimate in the linear case 2/2
Local behaviour of solutions to −∆u = µ

Localized/trucated Riesz potential of a nonnegative measure

Iµ2 (x ,R) :=

∫ R

0

|µ|(B%(x))

%n−2
d%

%
.n

∫
BR(x)

d |µ|(y)

|x − y |n−2

¬
∫
Rn

d |µ|(y)

|x − y |n−2
= I2(|µ|)(x) ⇐ Riesz potential

Then locally

|u(x)| ¬ C
(
Iµ2 (x ,R) + ‘sth not that much important ′

)
.
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Potential estimate in the power growth case
−∆pu = −div(|Du|p−2Du) = µ for 1 < p <∞

Expecting

|u(x)| ¬ C
(
Wµ

p (x ,R) + ‘sth(u,R) not that much important ′
)
,

we have to employ another potential

Wµ
p (x ,R) =

∫ R

0

(
|µ|(B%(x))

%n−1

) 1
p−1

d%

called Wolff potential (similar ones were considered by Havin & Maz’ya).

For p = 2 we are back with Riesz potential.

Kilpeläinen & Malý [’92,’94] proven that for µ ­ 0 we actually have

Wµ
p (x ,R) . u(x) .Wµ

p (x , 2R) + ‘sth(u,R)′

next proofs: Trudinger & Wang [2002] and Korte & Kuusi [2010]
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Estimates for scalar A-superharmonic functions
Theorem by C, Giannetti, Zatorska-Goldstein, arXiv:2006.02172

Assume that u is a nonnegative function being A-superharmonic and
finite a.e. in B(x0,RW) b Ω for some RW , µu is generated by u and
g = G ′. Let (Havin-Mazy’a-)Wolff potential be given by

Wµu
G (x0,R) =

∫ R

0
g−1

(
µu(B(x0, r))

rn−1

)
dr .

Then for R ∈ (0,RW/2) we have

CL

(
Wµu

G (x0,R)− R
)
¬ u(x0) ¬ CU

(
inf

B(x0,R)
u(x) +Wµu

G (x0,R) + R

)

with CL,CU > 0 depending only on parameters iG , sG , c
A
1 , c

A
2 , n.

* Similar upper bound was proven by Malý in 2003 for A-superminimizer.
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Consequences

Quick remarks

• The result is sharp as the same potential controls bounds from
above and from below.

• Let u ­ 0 be A-superharmonic, finite a.e., µu := −divA(x ,Du).
Then u is continuous in x0 ⇐⇒ Wµu

G (x , r) is small for x ∈ Bx0(r).

Orlicz version of Hedberg–Wolff Theorem
Let µ be a nonnegative bounded measure compactly supported in
bounded open set Ω ⊂ Rn. Then

µ ∈ (W 1,G0 (Ω))′ ⇐⇒
∫

Ω
Wµ

G (x ,R) dµ(x) <∞ for some R > 0.
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Fundamental solution
for operators of Zygmund growth

Suppose that 1 < p < n, α ∈ R, 0 < a ∈ L∞(Ω) separated from zero,
and u is a nonnegative A-superharmonic function in Ω, such that

−divA(x ,Du) = −div
(
a(x)|Du|p−2 logα(e+ |Du|)Du

)
= δ0

in the sense of distributions. Then

c−1|x |−
n−p
p−1 log−

α
p−1 (e+ |x |) ¬ u(x)

¬ c

(
|x |−

n−p
p−1 log−

α
p−1 (e+ |x |) + inf

B(x ,2|x |)
u

)
.
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Lorentz data =⇒ continuity of solutions

Let u be a nonnegative A-superharmonic function in Ω and
Fu := −divA(x ,Du) in the sense of distributions. If Fu satisfies∫ ∞

0
t
1
n g−1

(
t
1
nFu
∗∗(t)

) dt

t
<∞

for Ω0 b Ω, then u ∈ C (Ω0).

p-Laplace case
If u is nonnegative & p-superharmonic, p > 1, and
Fu ∈ L(np ,

1
p−1)(Ω), then u is continuous.

Zygmund-growth operator case
If u ­ 0, −div

(
a(x)|Du|p−2 logα(e+ |Du|)Du

)
= Fu ­ 0, p > 1,

α ∈ R, and Fu is as above with g−1(λ) ' λ
1

p−1 log−
α

p−1 (e+ λ), then
u is continuous.
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Morrey data ⇐⇒ Hölder continuity of solutions

Consider the density condition

µθ(B(x , r)) ¬ crn−1g(rθ−1) ' rn−θG (rθ−1). (M)

Suppose u ­ 0 is A-superharmonic and µu := −divA(x ,Du).
• If u ∈ C 0,θloc (Ω) with certain θ ∈ (0, 1), then µ satisfies (M).
• If µθ satisfies (M) for θ ∈ (0, 1), then u is locally Hölder

continuous.

p-Laplace case
(M) reads µ(B(x , r)) ¬ crn−p+θ(p−1)

Zygmund-growth operator case
(M) reads µ(B(x , r)) ¬ crn−p+θ(p−1) logα(e+ rθ−1)

* we provide natural Marcinkiewicz-type characterization relating to
µ ∈ L( n

p+θ(p−1) ,∞)(Ω) for some θ ∈ (0, 1) implying that µ satisfies
(M) and consequently Hölder continuity of a solution.
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Methods
for scalar equations

Harmonic analysis
a range of generalized harmonic tools (Maximum principle, Harnack
inequality, Poisson modification) prepared for generalized Orlicz
framework in [C, Zatorska-Goldstein, Generalized superharmonic
functions with strongly nonlinear operator, Potential Analysis]

• Björn, Björn, Nonlinear potential theory on metric spaces, 2011

Wolff potential estimates
influential for our proof: Trudinger&Wang 2002, Korte&Kuusi 2010,
for regularity consequences: Kuusi&Mingione 2014.
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Let’s go to systems
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Literature on existence and regularity to systems
p-growth

• weak solutions studied from 60’s
(Uraltseva, Uhlenbeck,...)

• measure data systems
J. M. Rakotoson 1993, Lewis 1993, Fuchs and Reuling 1995,
Leonetti and Petricca (a few),

Dolzmann, Hungerbühler, and Müller
[AIHP 1997, Math. Z. 1997, J. Reine Angew. Math. 2000]

OPEN
uniqueness for measure data problems
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Vectorial problem
Notion of solutions * Solutions Obtained as a Limit of Approximation (SOLA)

A map u ∈W 1,10 (Ω,Rm) such that
∫

Ω g(|Du|) dx <∞ is called a
SOLA to (S), if there exists a sequence (uh) ⊂W 1,G (Ω,Rm) of local
energy solutions to the systems

−divdivdivA(x ,Duh) = µµµh

such that uh → u locally in W 1,1(Ω,Rm) and (µµµh) ⊂ L∞(Ω,Rm) is a
sequence of maps that converges to µµµ weakly in the sense of
measures and satisfies

lim sup |µµµh|(B) ¬ |µµµ|(B) for B ⊂ Ω.
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Measure data systems with Orlicz growth
C., Youn, Zatorska–Goldstein, arXiv:2106.11639

Assume that A : Ω× Rn×m → Rn×m is strictly monotone, A(x , 0) = 0, and
A satisfies the following conditions

A(x , ξ) : ξ ­ c1G (|ξ|), |A(x , ξ)| ¬ c2 (g(|ξ|) + b(x)) ,

for some b ∈ LG̃ (Ω). Furthermore, we require A to satisfy

A(x , ξ) :
(
(Id− w ⊗ w)ξ

)
­ 0

for a.a. x ∈ Ω, all ξ ∈ Rn×m, and every vector w ∈ Rm with |w | ¬ 1.

We show existence for approximable solution u and µµµ with bounded TV. If
G grows ‘slowly’ (≈ p < n), we provide Marcinkiewicz-type regularity for |u|
and |Du|. If we impose a growth condition on G (≈ p > 2− 1n ), we prove
that u ∈W 1,1(Ω,Rm) and

∫
Ω
g(|Du|) dx <∞, hence it is a SOLA.

[Balci, Cianchi, Diening, Maz’ya, ‘A pointwise differential inequality...’ Math
Ann, to appear]
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Assumptions for potential estimates
Vectorial problem

We investigate solutions u : Ω→ Rm to the problem{
−divdivdivA(x ,Du) = µµµ in Ω,

u = 0 on ∂Ω
(S)

with a datum µµµ being a vector-valued bounded Radon measure,
G ∈ C 2((0,∞))∩C (R+), g = G ′ is increasing and g ∈ ∆2 ∩∇2, and
A : Ω× Rn×m → Rn×m is assumed to admit a form

A(x , ξ) = a(x)
g(|ξ|)
|ξ|

ξ,

with continuous weight a : Ω→ [ca,Ca], 0 < ca < Ca.

19 of 25



Estimates for SOLA to the vectorial problem
Theorem by C, Youn, Zatorska-Goldstein, arXiv:2102.09313

Suppose u : Ω→ Rm is a local SOLA to −divdivdivA(x ,Du) = µµµ with A
as prescribed, and µµµ is bounded. Let Br (x0) b Ω with r < R0 for
some R0 = R0(data). If Wµµµ

G (x0, r) is finite, then x0 is a Lebesgue’s
point of u and

|u(x0)− (u)Br (x0)| ¬ C

(
Wµµµ

G (x0, r) +

∫
Br (x0)

|u − (u)Br (x0)| dx
)

holds for C > 0 depending only on data. In particular, we have the
following pointwise estimate

|u(x0)| ¬ C

(
Wµµµ

G (x0, r) +

∫
Br (x0)

|u(x)|dx
)
.

p-Laplace problem: [Kuusi&Mingione, JEMS 2018]
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Consequences 1/2

VMO criterion
Let u be a SOLA to −divdivdivA(x ,Du) = µµµ and let Br (x0) b Ω. If

lim
%→0

% g−1
( |µµµ|(B%(x0))

%n−1

)
= 0,

then u has vanishing mean oscillations at x0, i.e.

lim%→0

∫
B%(x0)

|u − (u)B%(x0)| dx = 0.

Continuity criterion
Suppose u be a SOLA to −divdivdivA(x ,Du) = µµµ and Br (x0) b Ω. If
lim%→0 supx∈Br (x0)W

µµµ
G (x , %) = 0, then u is continuous in Br (x0).

=⇒ any A-harmonic map is continuous
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Consequences 2/2
the same what for the scalar equation results from an upper bound

Lorentz data =⇒ continuous solutions
For −divdivdivA(x ,Du) = F let f = |F |. If

∫∞
0 t

1
n g−1

(
t
1
n f ∗∗(t)

) dt
t <∞,

then a SOLA u is continuous.

Morrey data =⇒ Hölder continuous solutions
If u is a SOLA to −divdivdivA(x ,Du) = µµµθ and
|µµµθ|(B(x , r)) ¬ crn−1g(rθ−1), then u is locally Hölder continuous.

+ natural Marcinkiewicz-type characterization relating to
µ ∈ L( n

p+θ(p−1) ,∞), θ ∈ (0, 1), implying local Hölder continuity of
solutions

22 of 25



Consequences 2/2
the same what for the scalar equation results from an upper bound

Lorentz data =⇒ continuous solutions
For −divdivdivA(x ,Du) = F let f = |F |. If

∫∞
0 t

1
n g−1

(
t
1
n f ∗∗(t)

) dt
t <∞,

then a SOLA u is continuous.
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Methods
for systems

main tool: A-harmonic approximation lemma
the approximation of a W 1,G -function by an A-harmonic map for
weighted operator A of an Orlicz growth being a generalized version
of p-harmonic version from [Kuusi&Mingione, JEMS 2018]

OPEN
subquadratic case
more general structure of the operator
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Off-topic

Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces
by C, Gwiazda, Świerczewska-Gwiazda, Wróblewska-Kamińska,
is to appear in series Springer Monographs in Mathematics very soon
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Thank you for your attention!

see https://www.mimuw.edu.pl/~ichlebicka/publications
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