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Measure data problems with power growth

—Apu = —div(|DulP~2Du) = 4, l<p<o

Already for —A,u = dg in B(0,1) we deal with the so-called fundamental
solution

G(x) = cnp (|x\% - 1) if1<p<n,
which does not belong to Wi?(B(0,1)), for small p, but we like it!

One may study various kids of very weak solutions:

SOLA (Boccardo& Gallouét '89), renormalized solutions (DiPerna&Lions '89,
Boccardo, Giachetti, Diaz, Murat '93), entropy solution (Bénilan, Boccardo,
Gallouét, Gariepy, Pierre, Vazquez, Murat '95), or (Kilpeldinen, Kuusi,
Tuhola-Kujanpaa '11) A-superharmonic functions.

Be careful: if 1 < p <2 — % then it is possible that u & W

loc
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Measure data problems with Orlicz growth

We study
—divA(x, Du) = i

where A(x,€) - & ~ G(|¢]|) < here G € A, N V5,
e.g. Gpo(s) =sPlog*(1+s), 1< p<oo, aeR.

Scalar problem

i is a bounded measure, A : Q x R" — R"” is a monotone
Carathéodory's function, G € C1((0,00)) is a nonnegative, increasing,
and convex function such that G € A> NV, and

{ £G(IE]) < A(x,€) - €,
|A(x, )] < cs'g(1¢]),

where g is the derivative of G.
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Who can be called ‘a solution’?

A-harmonicity

A continuous function u € W,(I)’CG(Q) is an A-harmonic function in an
open set Q if it is a (weak) solution to —div.A(x, Du) = 0.
A-super/subharmonicity

We say that a lower semicontinuous function u is A-superharmonic if
for any K € Q and any A-harmonic h € C(K) in K, u > h on 0K
implies u > h in K (u is A-subharmonic if (—u) is A-superharmonic).
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Who can be called ‘a solution’?

A-harmonicity

A continuous function u € W,(I)’CG(Q) is an A-harmonic function in an
open set Q if it is a (weak) solution to —div.A(x, Du) = 0.
A-super/subharmonicity

We say that a lower semicontinuous function u is A-superharmonic if
for any K € Q and any A-harmonic h € C(K) in K, u > h on 0K
implies u > h in K (u is A-subharmonic if (—u) is A-superharmonic).

An A-superharmonic function
e is defined everywhere,

e can be unbounded,

e generates a measure.

This guy we want to ‘control by a potential’ and prove its regularity.
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Potential estimate in the linear case 1/2

Global case

If usolves —Au = p in R", then
u(x) = /R G(x,y) duly)

with Green's function

G(x) = =y if n>2,
so it can be estimated as follows
dlul(y) . _
u(x)| < / — =1 x) <= Riesz potential
|lu(x)] o T — y |72 2(|p) (%) P
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Potential estimate in the linear case 2/2

Local behaviour of solutions to —Au = p
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Potential estimate in the power growth case
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Potential estimate in the power growth case
—Apu = —div(|DulP™2Du) = p for 1 < p < oo

Expecting
lu(x)| < C (WHh(x, R) + ‘sth(u, R) not that much important') ,
we have to employ another potential
1l(Bo(x))
Wh(x, R):/O ( Qngl dg

called Wolff potential (similar ones were considered by Havin & Maz'ya).
For p = 2 we are back with Riesz potential.

Kilpeldinen & ['92,'94] proven that for ;2 > 0 we actually have
WE(x, R) < u(x) S WhH(x,2R) + 'sth(u, R)'

next proofs: Trudinger & Wang [2002] and Korte & Kuusi [2010]
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Estimates for scalar A-superharmonic functions
Theorem by C, Giannetti, Zatorska-Goldstein, arXiv:2006.02172

Assume that v is a nonnegative function being A-superharmonic and
finite a.e. in B(xp, Ry) € Q for some Ry, 1, is generated by u and
g = G'. Let (Havin-Mazy'a-)Wolff potential be given by

Wi (x0, R) = /ORg_l (MU(iSfcl)’ r))) dr.



Estimates for scalar A-superharmonic functions
Theorem by C, Giannetti, Zatorska-Goldstein, arXiv:2006.02172

Assume that v is a nonnegative function being A-superharmonic and
finite a.e. in B(xp, Ry) € Q for some Ry, 1, is generated by u and
g = G'. Let (Havin-Mazy'a-)Wolff potential be given by

Wi (x0, R) = /ORg_l (MU(iSfcl)’ r))) dr.

Then for R € (0, Ry /2) we have

x0,R

CL (WZU(XQ, R) - R) < U(Xo) < CU ( inf )U(X) + Wléu(Xo, R) + R)

with C;, Cy > 0 depending only on parameters ig, s¢, cf‘, c§4, n.
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Estimates for scalar A-superharmonic functions
Theorem by C, Giannetti, Zatorska-Goldstein, arXiv:2006.02172

Assume that v is a nonnegative function being A-superharmonic and
finite a.e. in B(xp, Ry) € Q for some Ry, 1, is generated by u and
g = G'. Let (Havin-Mazy'a-)Wolff potential be given by

Wi (x0, R) = /ORg_l (MU(iSfcl)’ r))) dr.

Then for R € (0, Ry /2) we have

CL (WZU(XQ, R) — R) < U(Xo) < CU ( inf U(X) + Wléu(Xo, R) + R)

x0,R

with C;, Cy > 0 depending only on parameters ig, s¢, cf‘, c§4, n.
* Similar upper bound was proven by in 2003 for A-superminimizer.
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Consequences

Quick remarks

e The result is sharp as the same potential controls bounds from
above and from below.

e Let u > 0 be A-superharmonic, finite a.e., u, := —div.A(x, Du).
Then u is continuous in xp <= W/ (x, r) is small for x € By (r).



Consequences

Quick remarks

e The result is sharp as the same potential controls bounds from
above and from below.

e Let u > 0 be A-superharmonic, finite a.e., u, := —div.A(x, Du).
Then u is continuous in xp <= W/ (x, r) is small for x € By (r).

Orlicz version of Hedberg—Wolff Theorem
Let u be a nonnegative bounded measure compactly supported in

bounded open set 2 C R". Then

pe (W (@) <« / W (x, R) dp(x) < oo for some R > 0.
Q
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Fundamental solution

for operators of Zygmund growth

Suppose that 1 < p < n, « € R, 0 < a € L*°(Q) separated from zero,
and u is a nonnegative A-superharmonic function in €2, such that

—divA(x, Du) = —div (a(x)|Du]”*2 log™(e + ]Du\)Du) =
in the sense of distributions. Then

¢ Ux| 7T log 7T (e + |x]) < w(x)

<c (\XI_H Iog_ﬁ(e + |x]) + B(i':]21:|x|) u) .



Lorentz data — continuity of solutions

Let v be a nonnegative A-superharmonic function in € and
Fy := —divA(x, Du) in the sense of distributions. If F, satisfies

1 —1( L s dt
/0 thg (tnFu (t))7<oo

for Qo € Q, then u € C(Qp).
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Lorentz data — continuity of solutions

Let v be a nonnegative A-superharmonic function in € and
Fy := —divA(x, Du) in the sense of distributions. If F, satisfies

1 —1( L s dt
tn tn () ) —
| e (s R ) T <o
for Qo € Q, then u € C(Qp).

p-Laplace case

If u is nonnegative & p-superharmonic, p > 1, and

Fu e L(3, ﬁ)(ﬂ) then u is continuous.

Zygmund-growth operator case

If u>0, —div (a(x)|DulP~?log®(e + |Du|)Du) = F, > 0, p > 1,

1 [
a € R, and F, is as above with g71(\) ~ Ap—T log™ 71 (e + \), then
u is continuous.

S s o



Morrey data <= Holder continuity of solutions

Consider the density condition
po(B(x,r)) < cr" tg(rf71) ~ 0G0, (M)

Suppose u > 0 is A-superharmonic and p, := —div.A(x, Du).
e lfue C,%CQ(Q) with certain 6 € (0, 1), then p satisfies (M).

e If py satisfies (M) for 6 € (0,1), then u is locally Holder
continuous.
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Morrey data <= Holder continuity of solutions

Consider the density condition
po(B(x,r)) < cr" tg(rf71) ~ 0G0, (M)
Suppose u > 0 is A-superharmonic and p, := —div.A(x, Du).
e lfue C,%CQ(Q) with certain 6 € (0, 1), then p satisfies (M).
e If py satisfies (M) for 6 € (0,1), then u is locally Holder
continuous.
p-Laplace case
(M) reads u(B(x, r)) < cr"—P+o(p=1)
Zygmund-growth operator case
(M) reads pu(B(x, r)) < cr"PH0(P=1) Jog®(e 4 rf~1)
* we provide natural Marcinkiewicz-type characterization relating to
JIRS L(m, 00)(€2) for some 6 € (0, 1) implying that y satisfies
(M) and consequently Hélder continuity of a solution.
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Methods

for scalar equations

Harmonic analysis

a range of generalized harmonic tools (Maximum principle, Harnack
inequality, Poisson modification) prepared for generalized Orlicz
framework in [C, Zatorska-Goldstein, Generalized superharmonic
functions with strongly nonlinear operator, Potential Analysis|

e Bjorn, Bjorn, Nonlinear potential theory on metric spaces, 2011

Wolff potential estimates
influential for our proof: Trudinger&Wang 2002, Korte&Kuusi 2010,
for regularity consequences: Kuusi&Mingione 2014.
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Literature on existence and regularity to systems
p-growth

e weak solutions studied from 60's
(Uraltseva, Uhlenbeck,...)
e measure data systems

J. M. Rakotoson 1993, Lewis 1993, Fuchs and Reuling 1995,
Leonetti and Petricca (a few),

Dolzmann, Hungerbiihler, and Miiller
[AIHP 1997, Math. Z. 1997, J. Reine Angew. Math. 2000]

OPEN
uniqueness for measure data problems



Vectorial problem
Notion of solutions * Solutions Obtained as a Limit of Approximation (SOLA)

A map u € Wol’l(Q,Rm) such that [, g(|Du|) dx < oo is called a
SOLA to (S), if there exists a sequence (uy) C WL ¢(Q,R™) of local
energy solutions to the systems

—diV.A(X, Duh) = Kp

such that up — u locally in WL, R™) and (u;,) C L°(Q,R™) is a
sequence of maps that converges to u weakly in the sense of
measures and satisfies

limsup |p,|(B) < |p|(B) for B C Q.



Measure data systems with Orlicz growth
C., Youn, Zatorska—Goldstein, arXiv:2106.11639

Assume that A : Q x R"™™ — R" ™ js strictly monotone, A(x,0) = 0, and
A satisfies the following conditions

A(x,€) €2 a6(E]), AKXl < e (g(lE]) + b(x)),
for some b € LE(Q). Furthermore, we require A to satisfy
A€ : (14— w e w)e) >0

for a.a. x € Q, all £ € R™™ and every vector w € R™ with |w| < 1.
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Measure data systems with Orlicz growth
C., Youn, Zatorska—Goldstein, arXiv:2106.11639

Assume that A : Q x R"™™ — R" ™ js strictly monotone, A(x,0) = 0, and
A satisfies the following conditions

A(x,€) €2 a6(E]), AKXl < e (g(lE]) + b(x)),
for some b € LE(Q). Furthermore, we require A to satisfy
A(x,8) : (Id—=wow)é) >0
for a.a. x € Q, all £ € R™™ and every vector w € R™ with |w| < 1.
We show existence for approximable solution u and p with bounded TV. If
G grows ‘slowly’ (= p < n), we provide Marcinkiewicz-type regularity for |u|

and |Du|. If we impose a growth condition on G (~ p > 2 — 1), we prove
that u € WH(Q,R™) and [, g(|Dul) dx < oo, hence it is a SOLA.
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Measure data systems with Orlicz growth
C., Youn, Zatorska—Goldstein, arXiv:2106.11639

Assume that A : Q x R"™™ — R" ™ js strictly monotone, A(x,0) = 0, and
A satisfies the following conditions

A(x,€) €2 a6(E]), AKXl < e (g(lE]) + b(x)),
for some b € LE(Q). Furthermore, we require A to satisfy
A(x,8) : (Id—=wow)é) >0
for a.a. x € Q, all £ € R™™ and every vector w € R™ with |w| < 1.
We show existence for approximable solution u and p with bounded TV. If
G grows ‘slowly’ (= p < n), we provide Marcinkiewicz-type regularity for |u|

and |Du|. If we impose a growth condition on G (~ p > 2 — 1), we prove
that u € WH(Q,R™) and [, g(|Dul) dx < oo, hence it is a SOLA.

[Balci, Cianchi, Diening, Maz'ya, ‘A pointwise differential inequality...” Math

AW io appear]



Assumptions for potential estimates

Vectorial problem

We investigate solutions u : 2 — R™ to the problem

{—divA(x, Du)=p in Q, (s)

u=0 on 0Q
with a datum g being a vector-valued bounded Radon measure,

G € C%((0,00))N C(Ry), g = G' is increasing and g € Ay N V3, and
A Q x R™M — R™™ is assumed to admit a form

with continuous weight a: Q — [c,, G,], 0 < ¢ < C.

S o



Estimates for SOLA to the vectorial problem
Theorem by C, Youn, Zatorska-Goldstein, arXiv:2102.09313

Suppose u : Q2 — R™ is a local SOLA to —div.A(x, Du) = p with A
as prescribed, and p is bounded. Let B,(xp) € Q with r < Ry for
some Ry = Ro(data). If W (xo, r) is finite, then xg is a Lebesgue's
point of u and

[u(x0) = (U)g,(x)| < C (W’é(Xo,r) + u— (U)5, ()] dX)

Br(x0)

holds for C > 0 depending only on data. In particular, we have the
following pointwise estimate

() < € (W*g(xo, )+ u(x)|dx> .

p-Laplace problem: [Kuusi&Mingione, JEMS 2018]

Br(xo0)

e o



Consequences 1/2

VMO criterion
Let u be a SOLA to —divA(x, Du) = p and let B.(x) € Q. If

S B,y(%0))

| 1 (|1l(B, _
limeog ( = 0,
then u has vanishing mean oscillations at xp, i.e.

limy—o ][ (o — (), ()| dx = 0.
o(X0
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S B,y(%0))

| 1 (|1l(B, _
limeog ( = 0,
then u has vanishing mean oscillations at xp, i.e.

limy—o ][ (o — (), ()| dx = 0.
o(X0

Continuity criterion

Suppose u be a SOLA to —divA(x, Du) = p and B,(xp) € Q. If
limy 0 SUPxeB, (x) W (X, @) = 0, then u is continuous in B,(xp).
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Consequences 1/2

VMO criterion
Let u be a SOLA to —divA(x, Du) = p and let B.(x) € Q. If

S B,y(%0))

| 1 (|1l(B, _
limeog ( = 0,
then u has vanishing mean oscillations at xp, i.e.

limy—o ][ (o — (), ()| dx = 0.
o(X0

Continuity criterion

Suppose u be a SOLA to —divA(x, Du) = p and B,(xp) € Q. If
limy 0 SUPxeB, (x) W (X, @) = 0, then u is continuous in B,(xp).

= any A-harmonic map is continuous

e o



Consequences 2/2

the same what for the scalar equation results from an upper bound

Lorentz data — continuous solutions ) .
For —div.A(x, Du) = F let f = |F|. If [§° tog(tnf™(t)) ¢ < oo,
then a SOLA u is continuous.
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Consequences 2/2

the same what for the scalar equation results from an upper bound

Lorentz data — continuous solutions ) .
For —div.A(x, Du) = F let f = |F|. If [§° tog(tnf™(t)) ¢ < oo,
then a SOLA u is continuous.

Morrey data —> Hdlder continuous solutions

If uis a SOLA to —div.A(x, Du) = py and

lgl(B(x,r)) < cr"1g(rf~1), then u is locally Holder continuous.
4+ natural Marcinkiewicz-type characterization relating to

JINS L(m,oo), 6 € (0,1), implying local Holder continuity of
solutions



Methods

for systems

main tool: A-harmonic approximation lemma

the approximation of a WC-function by an .A-harmonic map for
weighted operator A of an Orlicz growth being a generalized version
of p-harmonic version from [Kuusi&Mingione, JEMS 2018]

OPEN
subquadratic case
more general structure of the operator



Off-topic




Off-topic

Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces
by C, Gwiazda, Swierczewska-Gwiazda, Wréblewska-Kaminska,
is to appear in series Springer Monographs in Mathematics very soon



Thank you for your attention!

see https://www.mimuw.edu.pl/ ichlebicka/publications

e o ——————————



