Potential estimates for solutions to quasilinear elliptic problems with general growth. Scalar and vectorial case

Iwona Chlebicka

& Flavia Giannetti, Yeoghun Youn, Anna Zatorska-Goldstein

MIMUW @ University of Warsaw

Nonlinear Potential Theoretic Methods in PDE BIRS workshop Banff 7.09.2021

1 of 25

We study

$$-\operatorname{div} \mathcal{A}(x, Du) = \mu$$
 in $\Omega \subset \mathbb{R}^n$

with bounded measure μ and Carathéodory's function \mathcal{A} having Orlicz growth (it's family of nonlinear operators including Δ and Δ_p).

We study

$$-\operatorname{div}\mathcal{A}(x,Du) = \mu$$
 in $\Omega \subset \mathbb{R}^n$

with bounded measure μ and Carathéodory's function \mathcal{A} having Orlicz growth (it's family of nonlinear operators including Δ and Δ_p). Solutions can be unbounded, but we can control them precisely by a certain potential and infer local properties such as Hölder continuity.

We study

$$-\operatorname{div} \mathcal{A}(x, Du) = \mu$$
 in $\Omega \subset \mathbb{R}^n$

with bounded measure μ and Carathéodory's function \mathcal{A} having Orlicz growth (it's family of nonlinear operators including Δ and Δ_p).

Solutions can be unbounded, but we can control them precisely by a certain potential and infer local properties such as Hölder continuity. SCALAR:

C., Giannetti, Zatorska–Goldstein, Wolff potentials and local behaviour of solutions to measure data elliptic problems with Orlicz growth, arXiv:2006.02172

We study

$$-\operatorname{div} \mathcal{A}(x, Du) = \mu$$
 in $\Omega \subset \mathbb{R}^n$

with bounded measure μ and Carathéodory's function \mathcal{A} having Orlicz growth (it's family of nonlinear operators including Δ and Δ_p).

Solutions can be unbounded, but we can control them precisely by a certain potential and infer local properties such as Hölder continuity.

SCALAR:

C., Giannetti, Zatorska–Goldstein, Wolff potentials and local behaviour of solutions to measure data elliptic problems with Orlicz growth, arXiv:2006.02172 VECTORIAL:

C., Youn, Zatorska–Goldstein, Wolff potentials and measure data vectorial problems with Orlicz growth, arXiv:2102.09313

C., Y., Z.-G., Measure data systems with Orlicz growth, arXiv:2106.11639

2 of 25

Measure data problems with power growth

$$-\Delta_p u = -\operatorname{div}(|Du|^{p-2}Du) = \mu, \qquad 1$$

Measure data problems with power growth

$$-\Delta_p u = -\operatorname{div}(|Du|^{p-2}Du) = \mu, \qquad 1$$

Already for $-\Delta_p u = \delta_0$ in B(0,1) we deal with the so-called fundamental solution

$$G(x) = c_{n,p} \left(|x|^{rac{p-n}{p-1}} - 1
ight) ext{ if } 1$$

which does not belong to $W_0^{1,p}(B(0,1))$, for small p, but we like it!

Measure data problems with power growth

$$-\Delta_p u = -\operatorname{div}(|Du|^{p-2}Du) = \mu, \qquad 1$$

Already for $-\Delta_p u = \delta_0$ in B(0,1) we deal with the so-called fundamental solution

$$G(x) = c_{n,p} \left(|x|^{rac{p-n}{p-1}} - 1
ight) ext{ if } 1$$

which does not belong to $W_0^{1,p}(B(0,1))$, for small p, but we like it!

One may study various kids of very weak solutions:

SOLA (Boccardo&Gallouët '89), renormalized solutions (DiPerna&Lions '89, Boccardo, Giachetti, Diaz, Murat '93), entropy solution (Bénilan, Boccardo, Gallouët, Gariepy, Pierre, Vazquez, Murat '95), or (Kilpeläinen, Kuusi, Tuhola-Kujanpää '11) *A*-superharmonic functions.

Be careful: if $1 , then it is possible that <math>u \notin W_{loc}^{1,1}$.

We study

$$-\mathrm{div}\mathcal{A}(x,Du)=\mu,$$

where $\mathcal{A}(x,\xi) \cdot \xi \simeq G(|\xi|)$

We study

$$-\mathrm{div}\mathcal{A}(x, Du) = \mu,$$

where $\mathcal{A}(x,\xi) \cdot \xi \simeq G(|\xi|) \Leftarrow$ here $G \in \Delta_2 \cap \nabla_2$, e.g. $G_{p,\alpha}(s) = s^p \log^{\alpha}(1+s), \ 1 .$

We study

$$-\mathrm{div}\mathcal{A}(x, Du) = \mu,$$

where $\mathcal{A}(x,\xi) \cdot \xi \simeq G(|\xi|) \Leftarrow$ here $G \in \Delta_2 \cap \nabla_2$, e.g. $G_{p,\alpha}(s) = s^p \log^{\alpha}(1+s), \ 1 .$

Scalar problem

We study

$$-\mathrm{div}\mathcal{A}(x, Du) = \mu,$$

where $\mathcal{A}(x,\xi) \cdot \xi \simeq G(|\xi|) \Leftarrow$ here $G \in \Delta_2 \cap \nabla_2$, e.g. $G_{p,\alpha}(s) = s^p \log^{\alpha}(1+s), \ 1 .$

Scalar problem

 μ is a bounded measure, $\mathcal{A}: \Omega \times \mathbb{R}^n \to \mathbb{R}^n$ is a monotone Carathéodory's function, $G \in C^1((0,\infty))$ is a nonnegative, increasing, and convex function such that $G \in \Delta_2 \cap \nabla_2$ and

$$\begin{cases} c_1^{\mathcal{A}} \mathsf{G}(|\xi|) \leqslant \mathcal{A}(x,\xi) \cdot \xi, \\ |\mathcal{A}(x,\xi)| \leqslant c_2^{\mathcal{A}} \mathsf{g}(|\xi|), \end{cases}$$

where g is the derivative of G.

4 of 25

Who can be called 'a solution'?

\mathcal{A} -harmonicity

A <u>continuous</u> function $u \in W_{loc}^{1,G}(\Omega)$ is an *A*-harmonic function in an open set Ω if it is a (weak) solution to $-\operatorname{div} \mathcal{A}(x, Du) = 0$.

\mathcal{A} -super/subharmonicity

We say that a lower semicontinuous function u is A-superharmonic if for any $K \subseteq \Omega$ and any A-harmonic $h \in C(\overline{K})$ in K, $u \ge h$ on ∂K implies $u \ge h$ in K (u is A-subharmonic if (-u) is A-superharmonic).

Who can be called 'a solution'?

\mathcal{A} -harmonicity

A <u>continuous</u> function $u \in W_{loc}^{1,G}(\Omega)$ is an *A*-harmonic function in an open set Ω if it is a (weak) solution to $-\operatorname{div} \mathcal{A}(x, Du) = 0$.

\mathcal{A} -super/subharmonicity

We say that a lower semicontinuous function u is \mathcal{A} -superharmonic if for any $K \Subset \Omega$ and any \mathcal{A} -harmonic $h \in C(\overline{K})$ in K, $u \ge h$ on ∂K implies $u \ge h$ in K (u is \mathcal{A} -subharmonic if (-u) is \mathcal{A} -superharmonic).

An A-superharmonic function

- is defined everywhere,
- can be unbounded,
- generates a measure.

Who can be called 'a solution'?

\mathcal{A} -harmonicity

A <u>continuous</u> function $u \in W_{loc}^{1,G}(\Omega)$ is an *A*-harmonic function in an open set Ω if it is a (weak) solution to $-\operatorname{div} \mathcal{A}(x, Du) = 0$.

\mathcal{A} -super/subharmonicity

We say that a lower semicontinuous function u is A-superharmonic if for any $K \Subset \Omega$ and any A-harmonic $h \in C(\overline{K})$ in K, $u \ge h$ on ∂K implies $u \ge h$ in K (u is A-subharmonic if (-u) is A-superharmonic).

An A-superharmonic function

- is defined everywhere,
- can be unbounded,
- generates a measure.

This guy we want to 'control by a potential' and prove its regularity.

Potential estimate in the linear case 1/2 Global case

If u solves $-\Delta u = \mu$ in \mathbb{R}^n , then

$$u(x) = \int_{\mathbb{R}^n} G(x, y) \, d\mu(y)$$

with Green's function

$$G(x)=\frac{c_n}{|x-y|^{n-2}} \quad \text{if } n>2,$$

Potential estimate in the linear case 1/2 Global case

If u solves $-\Delta u = \mu$ in \mathbb{R}^n , then

$$u(x) = \int_{\mathbb{R}^n} G(x, y) \, d\mu(y)$$

with Green's function

$$G(x) = \frac{c_n}{|x-y|^{n-2}} \quad \text{if } n > 2,$$

so it can be estimated as follows

$$|u(x)| \lesssim \int_{\mathbb{R}^n} \frac{d|\mu|(y)}{|x-y|^{n-2}} =: \mathrm{I}_2(|\mu|)(x) \quad \Leftarrow \mathsf{Riesz \ potential}$$

Potential estimate in the linear case 2/2

Local behaviour of solutions to $-\Delta u = \mu$

Localized/trucated Riesz potential of a nonnegative measure

$$\begin{split} \mathbf{I}_{2}^{\mu}(x,R) &:= \int_{0}^{R} \frac{|\mu|(B_{\varrho}(x))}{\varrho^{n-2}} \frac{d\varrho}{\varrho} \lesssim_{n} \int_{B_{R}(x)} \frac{d|\mu|(y)}{|x-y|^{n-2}} \\ &\leqslant \int_{\mathbb{R}^{n}} \frac{d|\mu|(y)}{|x-y|^{n-2}} = \mathbf{I}_{2}(|\mu|)(x) \quad \Leftarrow \text{Riesz potential} \end{split}$$

Then locally

 $|u(x)| \leq C \left(\mathrm{I}_{2}^{\mu}(x,R) + \mathrm{`sth} \, \mathrm{not} \, \mathrm{that} \, \mathrm{much} \, \mathrm{important'} \right).$

Potential estimate in the linear case 2/2

Local behaviour of solutions to $-\Delta u = \mu$

Localized/trucated Riesz potential of a nonnegative measure

$$\begin{split} \mathbf{I}_{2}^{\mu}(x,R) &:= \int_{0}^{R} \frac{|\mu|(B_{\varrho}(x))}{\varrho^{n-2}} \frac{d\varrho}{\varrho} \lesssim_{n} \int_{B_{R}(x)} \frac{d|\mu|(y)}{|x-y|^{n-2}} \\ &\leqslant \int_{\mathbb{R}^{n}} \frac{d|\mu|(y)}{|x-y|^{n-2}} = \mathbf{I}_{2}(|\mu|)(x) \quad \Leftarrow \text{Riesz potential} \end{split}$$

Then locally

 $|u(x)| \leq C \left(\mathrm{I}_{2}^{\mu}(x,R) + \mathrm{`sth} \, \mathrm{not} \, \mathrm{that} \, \mathrm{much} \, \mathrm{important'} \right).$

Potential estimate in the power growth case

 $-\Delta_p u = -\operatorname{div}(|Du|^{p-2}Du) = \mu \text{ for } 1$

Expecting

 $|u(x)| \leq C \left(\mathcal{W}_{p}^{\mu}(x,R) + 'sth(u,R) \text{ not that much important}' \right),$

we have to employ another potential

$$\mathcal{W}^{\mu}_{p}(x,R) = \int_{0}^{R} \left(\frac{|\mu|(B_{\varrho}(x))}{\varrho^{n-1}}\right)^{\frac{1}{p-1}} d\varrho$$

called Wolff potential (similar ones were considered by Havin & Maz'ya).

Potential estimate in the power growth case

 $-\Delta_p u = -\operatorname{div}(|Du|^{p-2}Du) = \mu \text{ for } 1$

Expecting

 $|u(x)| \leq C \left(\mathcal{W}_{p}^{\mu}(x,R) + \operatorname{sth}(u,R) \text{ not that much important}' \right),$

we have to employ another potential

$$\mathcal{W}^{\mu}_{\rho}(x,R) = \int_{0}^{R} \left(\frac{|\mu|(B_{\varrho}(x))}{\varrho^{n-1}} \right)^{rac{1}{\rho-1}} d\varrho$$

called Wolff potential (similar ones were considered by Havin & Maz'ya). For p = 2 we are back with Riesz potential.

Potential estimate in the power growth case

 $-\Delta_p u = -\operatorname{div}(|Du|^{p-2}Du) = \mu \text{ for } 1$

Expecting

 $|u(x)| \leq C \left(\mathcal{W}_{p}^{\mu}(x,R) + 'sth(u,R) \text{ not that much important}' \right),$

we have to employ another potential

$$\mathcal{W}^{\mu}_{\rho}(x,R) = \int_{0}^{R} \left(\frac{|\mu|(B_{\varrho}(x))}{\varrho^{n-1}} \right)^{rac{1}{\rho-1}} d\varrho$$

called Wolff potential (similar ones were considered by Havin & Maz'ya). For p = 2 we are back with Riesz potential.

Kilpeläinen & Malý ['92,'94] proven that for $\mu \ge 0$ we actually have $\mathcal{W}^{\mu}_{p}(x, R) \lesssim u(x) \lesssim \mathcal{W}^{\mu}_{p}(x, 2R) + 'sth(u, R)'$

next proofs: Trudinger & Wang [2002] and Korte & Kuusi [2010]

8 of 25

Estimates for scalar A-superharmonic functions Theorem by C, Giannetti, Zatorska-Goldstein, arXiv:2006.02172

Assume that u is a nonnegative function being \mathcal{A} -superharmonic and finite a.e. in $B(x_0, R_W) \Subset \Omega$ for some R_W , μ_u is generated by u and g = G'. Let (Havin-Mazy'a-)Wolff potential be given by

$$\mathcal{W}_{G}^{\mu_{u}}(x_{0},R) = \int_{0}^{R} g^{-1}\left(\frac{\mu_{u}(B(x_{0},r))}{r^{n-1}}\right) dr.$$

Estimates for scalar A-superharmonic functions Theorem by C, Giannetti, Zatorska-Goldstein, arXiv:2006.02172

Assume that u is a nonnegative function being \mathcal{A} -superharmonic and finite a.e. in $B(x_0, R_W) \Subset \Omega$ for some R_W , μ_u is generated by u and g = G'. Let (Havin-Mazy'a-)Wolff potential be given by

$$\mathcal{W}_{G}^{\mu_{u}}(x_{0},R) = \int_{0}^{R} g^{-1}\left(\frac{\mu_{u}(B(x_{0},r))}{r^{n-1}}\right) dr.$$

Then for $R \in (0, R_{\mathcal{W}}/2)$ we have

$$C_L\left(\mathcal{W}_G^{\mu_u}(x_0,R)-R\right) \leqslant u(x_0) \leqslant C_U\left(\inf_{B(x_0,R)} u(x)+\mathcal{W}_G^{\mu_u}(x_0,R)+R\right)$$

with $C_L, C_U > 0$ depending only on parameters $i_G, s_G, c_1^A, c_2^A, n$.

Estimates for scalar A-superharmonic functions Theorem by C, Giannetti, Zatorska-Goldstein, arXiv:2006.02172

Assume that u is a nonnegative function being \mathcal{A} -superharmonic and finite a.e. in $B(x_0, R_W) \Subset \Omega$ for some R_W , μ_u is generated by u and g = G'. Let (Havin-Mazy'a-)Wolff potential be given by

$$\mathcal{W}_{G}^{\mu_{u}}(x_{0},R) = \int_{0}^{R} g^{-1}\left(\frac{\mu_{u}(B(x_{0},r))}{r^{n-1}}\right) dr.$$

Then for $R \in (0, R_{\mathcal{W}}/2)$ we have

$$C_L\left(\mathcal{W}_G^{\mu_u}(x_0,R)-R\right) \leqslant u(x_0) \leqslant C_U\left(\inf_{B(x_0,R)} u(x) + \mathcal{W}_G^{\mu_u}(x_0,R)+R\right)$$

with $C_L, C_U > 0$ depending only on parameters $i_G, s_G, c_1^A, c_2^A, n$.

* Similar upper bound was proven by Malý in 2003 for A-superminimizer.

9 of 25

Consequences

Quick remarks

- The result is sharp as the same potential controls bounds from above and from below.
- Let $u \ge 0$ be \mathcal{A} -superharmonic, finite a.e., $\mu_u := -\text{div}\mathcal{A}(x, Du)$. Then u is continuous in $x_0 \iff \mathcal{W}_G^{\mu_u}(x, r)$ is small for $x \in B_{x_0}(r)$.

Consequences

Quick remarks

- The result is sharp as the same potential controls bounds from above and from below.
- Let $u \ge 0$ be \mathcal{A} -superharmonic, finite a.e., $\mu_u := -\text{div}\mathcal{A}(x, Du)$. Then u is continuous in $x_0 \iff \mathcal{W}_G^{\mu_u}(x, r)$ is small for $x \in B_{x_0}(r)$.

Orlicz version of Hedberg–Wolff Theorem

Let μ be a nonnegative bounded measure compactly supported in bounded open set $\Omega \subset \mathbb{R}^n$. Then

$$\mu \in (W_0^{1,G}(\Omega))' \quad \Longleftrightarrow \quad \int_{\Omega} \mathcal{W}_G^{\mu}(x,R) \, d\mu(x) < \infty \text{ for some } R > 0.$$

Fundamental solution

for operators of Zygmund growth

Suppose that $1 , <math>\alpha \in \mathbb{R}$, $0 < a \in L^{\infty}(\Omega)$ separated from zero, and u is a nonnegative A-superharmonic function in Ω , such that

$$-\mathrm{div}\mathcal{A}(x,Du) = -\mathrm{div}\left(a(x)|Du|^{p-2}\log^{\alpha}(e+|Du|)Du\right) = \delta_{0}$$

in the sense of distributions. Then

$$c^{-1}|x|^{-\frac{n-p}{p-1}}\log^{-\frac{\alpha}{p-1}}(\mathbf{e}+|x|) \leq u(x)$$
$$\leq c\left(|x|^{-\frac{n-p}{p-1}}\log^{-\frac{\alpha}{p-1}}(\mathbf{e}+|x|) + \inf_{B(x,2|x|)}u\right).$$

Lorentz data \implies continuity of solutions

Let *u* be a nonnegative A-superharmonic function in Ω and $F_u := -\text{div} A(x, Du)$ in the sense of distributions. If F_u satisfies

$$\int_0^\infty t^{\frac{1}{n}} g^{-1} \left(t^{\frac{1}{n}} F_u^{**}(t) \right) \frac{dt}{t} < \infty$$

for $\Omega_0 \Subset \Omega$, then $\underline{u \in C(\Omega_0)}$.

٠

Lorentz data \implies continuity of solutions

Let *u* be a nonnegative A-superharmonic function in Ω and $F_u := -\text{div} A(x, Du)$ in the sense of distributions. If F_u satisfies

$$\int_{0}^{\infty} t^{\frac{1}{n}} g^{-1} \left(t^{\frac{1}{n}} F_{u}^{**}(t) \right) \frac{dt}{t} < \infty$$

for $\Omega_0 \Subset \Omega$, then $\underline{u \in C(\Omega_0)}$.

p-Laplace case If u is nonnegative & p-superharmonic, p > 1, and $F_u \in L(\frac{n}{p}, \frac{1}{p-1})(\Omega)$, then u is continuous.

Lorentz data \implies continuity of solutions

Let *u* be a nonnegative \mathcal{A} -superharmonic function in Ω and $F_u := -\operatorname{div} \mathcal{A}(x, Du)$ in the sense of distributions. If F_u satisfies

$$\int_{0}^{\infty} t^{\frac{1}{n}} g^{-1} \left(t^{\frac{1}{n}} F_{u}^{**}(t) \right) \frac{dt}{t} < \infty$$

for $\Omega_0 \Subset \Omega$, then $\underline{u \in C(\Omega_0)}$.

p-Laplace case If *u* is nonnegative & *p*-superharmonic, p > 1, and $F_u \in L(\frac{n}{p}, \frac{1}{p-1})(\Omega)$, then *u* is continuous. **Zygmund-growth operator case** If $u \ge 0$, $-\operatorname{div}(a(x)|Du|^{p-2}\log^{\alpha}(e + |Du|)Du) = F_u \ge 0$, p > 1, $\alpha \in \mathbb{R}$, and F_u is as above with $g^{-1}(\lambda) \simeq \lambda^{\frac{1}{p-1}}\log^{-\frac{\alpha}{p-1}}(e + \lambda)$, then *u* is continuous.

12 of 25

Morrey data \iff Hölder continuity of solutions

Consider the density condition

$$\mu_{\theta}(B(x,r)) \leqslant cr^{n-1}g(r^{\theta-1}) \simeq r^{n-\theta}G(r^{\theta-1}). \tag{M}$$

Suppose $u \ge 0$ is \mathcal{A} -superharmonic and $\mu_u := -\text{div}\mathcal{A}(x, Du)$.

- If $u \in C^{0,\theta}_{loc}(\Omega)$ with certain $\theta \in (0,1)$, then μ satisfies (M).
- If μ_θ satisfies (M) for θ ∈ (0, 1), then u is locally Hölder continuous.

Morrey data \iff Hölder continuity of solutions

Consider the density condition

$$\mu_{\theta}(B(x,r)) \leqslant cr^{n-1}g(r^{\theta-1}) \simeq r^{n-\theta}G(r^{\theta-1}). \tag{M}$$

Suppose $u \ge 0$ is \mathcal{A} -superharmonic and $\mu_u := -\text{div}\mathcal{A}(x, Du)$.

- If $u \in C^{0,\theta}_{loc}(\Omega)$ with certain $\theta \in (0,1)$, then μ satisfies (M).
- If μ_θ satisfies (M) for θ ∈ (0, 1), then u is locally Hölder continuous.

p-Laplace case

(M) reads $\mu(B(x,r)) \leqslant cr^{n-p+\theta(p-1)}$

Zygmund-growth operator case (M) reads $\mu(B(x, r)) \leq cr^{n-p+\theta(p-1)} \log^{\alpha}(e + r^{\theta-1})$

Morrey data \iff Hölder continuity of solutions

Consider the density condition

$$\mu_{\theta}(B(x,r)) \leqslant cr^{n-1}g(r^{\theta-1}) \simeq r^{n-\theta}G(r^{\theta-1}). \tag{M}$$

Suppose $u \ge 0$ is \mathcal{A} -superharmonic and $\mu_u := -\text{div}\mathcal{A}(x, Du)$.

- If $u \in C^{0,\theta}_{loc}(\Omega)$ with certain $\theta \in (0,1)$, then μ satisfies (M).
- If μ_θ satisfies (M) for θ ∈ (0, 1), then u is locally Hölder continuous.

p-Laplace case

(M) reads $\mu(B(x,r)) \leq cr^{n-p+\theta(p-1)}$

Zygmund-growth operator case

(M) reads $\mu(B(x,r)) \leqslant cr^{n-p+\theta(p-1)} \log^{\alpha}(e+r^{\theta-1})$

* we provide natural Marcinkiewicz-type characterization relating to $\mu \in L(\frac{n}{p+\theta(p-1)},\infty)(\Omega)$ for some $\theta \in (0,1)$ implying that μ satisfies (M) and consequently Hölder continuity of a solution.

Methods

for scalar equations

Harmonic analysis

a range of generalized harmonic tools (Maximum principle, Harnack inequality, Poisson modification) prepared for generalized Orlicz framework in [C, Zatorska-Goldstein, Generalized superharmonic functions with strongly nonlinear operator, Potential Analysis]

• Björn, Björn, Nonlinear potential theory on metric spaces, 2011

Wolff potential estimates

influential for our proof: Trudinger&Wang 2002, Korte&Kuusi 2010, for regularity consequences: Kuusi&Mingione 2014.

Let's go to systems

Literature on existence and regularity to systems

p-growth

- weak solutions studied from 60's (Uraltseva, Uhlenbeck,...)
- measure data systems
 - J. M. Rakotoson 1993, Lewis 1993, Fuchs and Reuling 1995, Leonetti and Petricca (a few),

Literature on existence and regularity to systems

p-growth

- weak solutions studied from 60's (Uraltseva, Uhlenbeck,...)
- measure data systems
 - J. M. Rakotoson 1993, Lewis 1993, Fuchs and Reuling 1995, Leonetti and Petricca (a few),
 - Dolzmann, Hungerbühler, and Müller
 - [AIHP 1997, Math. Z. 1997, J. Reine Angew. Math. 2000]

Literature on existence and regularity to systems

p-growth

- weak solutions studied from 60's (Uraltseva, Uhlenbeck,...)
- measure data systems

 M. Rakotoson 1993, Lewis 1993, Fuchs and Reuling 1995, Leonetti and Petricca (a few),
 Dolzmann, Hungerbühler, and Müller

 [AIHP 1997, Math. Z. 1997, J. Reine Angew. Math. 2000]

OPEN

uniqueness for measure data problems

Vectorial problem

Notion of solutions * Solutions Obtained as a Limit of Approximation (SOLA)

A map $\boldsymbol{u} \in W_0^{1,1}(\Omega, \mathbb{R}^m)$ such that $\int_{\Omega} g(|D\boldsymbol{u}|) dx < \infty$ is called a SOLA to (S), if there exists a sequence $(\boldsymbol{u}_h) \subset W^{1,G}(\Omega, \mathbb{R}^m)$ of local energy solutions to the systems

 $-\mathbf{div}\mathcal{A}(x,D\boldsymbol{u}_h)=\boldsymbol{\mu}_h$

such that $\boldsymbol{u}_h \to \boldsymbol{u}$ locally in $W^{1,1}(\Omega, \mathbb{R}^m)$ and $(\boldsymbol{\mu}_h) \subset L^{\infty}(\Omega, \mathbb{R}^m)$ is a sequence of maps that converges to $\boldsymbol{\mu}$ weakly in the sense of measures and satisfies

 $\limsup |\boldsymbol{\mu}_h|(B) \leqslant |\boldsymbol{\mu}|(B) \quad \text{for } B \subset \Omega.$

C., Youn, Zatorska–Goldstein, arXiv:2106.11639

Assume that $\mathcal{A}: \Omega \times \mathbb{R}^{n \times m} \to \mathbb{R}^{n \times m}$ is strictly monotone, $\mathcal{A}(x, 0) = 0$, and \mathcal{A} satisfies the following conditions

 $\mathcal{A}(x,\xi): \xi \ge c_1 G(|\xi|), \qquad |\mathcal{A}(x,\xi)| \le c_2 (g(|\xi|) + b(x)),$

for some $b \in L^{\widetilde{G}}(\Omega)$. Furthermore, we require \mathcal{A} to satisfy

 $\mathcal{A}(x,\xi): ((\mathsf{Id} - w \otimes w)\xi) \ge 0$

for a.a. $x \in \Omega$, all $\xi \in \mathbb{R}^{n \times m}$, and every vector $w \in \mathbb{R}^m$ with $|w| \leq 1$.

C., Youn, Zatorska–Goldstein, arXiv:2106.11639

Assume that $\mathcal{A} : \Omega \times \mathbb{R}^{n \times m} \to \mathbb{R}^{n \times m}$ is strictly monotone, $\mathcal{A}(x, 0) = 0$, and \mathcal{A} satisfies the following conditions

 $\mathcal{A}(x,\xi): \xi \ge c_1 G(|\xi|), \qquad |\mathcal{A}(x,\xi)| \le c_2 (g(|\xi|) + b(x)),$

for some $b \in L^{\widetilde{G}}(\Omega)$. Furthermore, we require \mathcal{A} to satisfy

 $\mathcal{A}(x,\xi): ((\mathsf{Id} - w \otimes w)\xi) \ge 0$

for a.a. $x \in \Omega$, all $\xi \in \mathbb{R}^{n \times m}$, and every vector $w \in \mathbb{R}^m$ with $|w| \leq 1$.

We show existence for *approximable solution* \boldsymbol{u} and $\boldsymbol{\mu}$ with bounded TV.

C., Youn, Zatorska–Goldstein, arXiv:2106.11639

Assume that $\mathcal{A}: \Omega \times \mathbb{R}^{n \times m} \to \mathbb{R}^{n \times m}$ is strictly monotone, $\mathcal{A}(x, 0) = 0$, and \mathcal{A} satisfies the following conditions

 $\mathcal{A}(x,\xi): \xi \ge c_1 G(|\xi|), \qquad |\mathcal{A}(x,\xi)| \le c_2 (g(|\xi|) + b(x)),$

for some $b \in L^{\widetilde{G}}(\Omega)$. Furthermore, we require \mathcal{A} to satisfy

 $\mathcal{A}(x,\xi): ((\mathsf{Id} - w \otimes w)\xi) \ge 0$

for a.a. $x \in \Omega$, all $\xi \in \mathbb{R}^{n \times m}$, and every vector $w \in \mathbb{R}^m$ with $|w| \leq 1$.

We show existence for *approximable solution* \boldsymbol{u} and $\boldsymbol{\mu}$ with bounded TV. If *G* grows 'slowly' ($\approx p < n$), we provide Marcinkiewicz-type regularity for $|\boldsymbol{u}|$ and $|D\boldsymbol{u}|$.

C., Youn, Zatorska–Goldstein, arXiv:2106.11639

Assume that $\mathcal{A} : \Omega \times \mathbb{R}^{n \times m} \to \mathbb{R}^{n \times m}$ is strictly monotone, $\mathcal{A}(x, 0) = 0$, and \mathcal{A} satisfies the following conditions

 $\mathcal{A}(x,\xi): \xi \ge c_1 G(|\xi|), \qquad |\mathcal{A}(x,\xi)| \le c_2 (g(|\xi|) + b(x)),$

for some $b \in L^{\widetilde{G}}(\Omega)$. Furthermore, we require \mathcal{A} to satisfy

 $\mathcal{A}(x,\xi): ((\mathsf{Id} - w \otimes w)\xi) \ge 0$

for a.a. $x \in \Omega$, all $\xi \in \mathbb{R}^{n \times m}$, and every vector $w \in \mathbb{R}^m$ with $|w| \leq 1$.

We show existence for approximable solution \boldsymbol{u} and $\boldsymbol{\mu}$ with bounded TV. If G grows 'slowly' ($\approx p < n$), we provide Marcinkiewicz-type regularity for $|\boldsymbol{u}|$ and $|D\boldsymbol{u}|$. If we impose a growth condition on G ($\approx p > 2 - \frac{1}{n}$), we prove that $\boldsymbol{u} \in W^{1,1}(\Omega, \mathbb{R}^m)$ and $\int_{\Omega} g(|D\boldsymbol{u}|) dx < \infty$, hence it is a SOLA.

C., Youn, Zatorska–Goldstein, arXiv:2106.11639

Assume that $\mathcal{A} : \Omega \times \mathbb{R}^{n \times m} \to \mathbb{R}^{n \times m}$ is strictly monotone, $\mathcal{A}(x, 0) = 0$, and \mathcal{A} satisfies the following conditions

 $\mathcal{A}(x,\xi):\xi \ge c_1 \mathcal{G}(|\xi|), \qquad |\mathcal{A}(x,\xi)| \le c_2 \left(g(|\xi|) + b(x)\right),$

for some $b \in L^{\widetilde{G}}(\Omega)$. Furthermore, we require \mathcal{A} to satisfy

 $\mathcal{A}(x,\xi): ((\mathsf{Id} - w \otimes w)\xi) \ge 0$

for a.a. $x \in \Omega$, all $\xi \in \mathbb{R}^{n \times m}$, and every vector $w \in \mathbb{R}^m$ with $|w| \leq 1$.

We show existence for approximable solution \boldsymbol{u} and $\boldsymbol{\mu}$ with bounded TV. If G grows 'slowly' ($\approx p < n$), we provide Marcinkiewicz-type regularity for $|\boldsymbol{u}|$ and $|D\boldsymbol{u}|$. If we impose a growth condition on G ($\approx p > 2 - \frac{1}{n}$), we prove that $\boldsymbol{u} \in W^{1,1}(\Omega, \mathbb{R}^m)$ and $\int_{\Omega} g(|D\boldsymbol{u}|) dx < \infty$, hence it is a SOLA.

[Balci, Cianchi, Diening, Maz'ya, 'A pointwise differential inequality...' Math Ann, to appear]

Assumptions for potential estimates

We investigate solutions $\boldsymbol{u}: \Omega \to \mathbb{R}^m$ to the problem

$$\begin{cases} -\operatorname{div} \mathcal{A}(x, D\boldsymbol{u}) = \boldsymbol{\mu} & \text{in } \Omega, \\ \boldsymbol{u} = 0 & \text{on } \partial \Omega \end{cases}$$
(S)

with a datum μ being a vector-valued bounded Radon measure, $G \in C^2((0,\infty)) \cap C(\mathbb{R}_+), g = G'$ is increasing and $g \in \Delta_2 \cap \nabla_2$, and $\mathcal{A} : \Omega \times \mathbb{R}^{n \times m} \to \mathbb{R}^{n \times m}$ is assumed to admit a form

$$\mathcal{A}(x,\xi) = a(x)\frac{g(|\xi|)}{|\xi|}\,\xi,$$

with continuous weight $a: \Omega \rightarrow [c_a, C_a], 0 < c_a < C_a$.

Estimates for SOLA to the vectorial problem

Theorem by C, Youn, Zatorska-Goldstein, arXiv:2102.09313

Suppose $\boldsymbol{u}: \Omega \to \mathbb{R}^m$ is a local SOLA to $-\operatorname{div} \mathcal{A}(x, D\boldsymbol{u}) = \boldsymbol{\mu}$ with \mathcal{A} as prescribed, and $\boldsymbol{\mu}$ is bounded. Let $B_r(x_0) \Subset \Omega$ with $r < R_0$ for some $R_0 = R_0(data)$. If $\mathcal{W}^{\boldsymbol{\mu}}_G(x_0, r)$ is finite, then x_0 is a Lebesgue's point of \boldsymbol{u} and

$$|\boldsymbol{u}(x_0) - (\boldsymbol{u})_{B_r(x_0)}| \leq C\left(\mathcal{W}^{\boldsymbol{\mu}}_G(x_0, r) + \int_{B_r(x_0)} |\boldsymbol{u} - (\boldsymbol{u})_{B_r(x_0)}| \, dx\right)$$

holds for C > 0 depending only on *data*. In particular, we have the following pointwise estimate

$$|\boldsymbol{u}(x_0)| \leq C\left(\mathcal{W}^{\boldsymbol{\mu}}_G(x_0,r) + \int_{B_r(x_0)} |\boldsymbol{u}(x)| dx\right).$$

p-Laplace problem: [Kuusi&Mingione, JEMS 2018]

Consequences 1/2

VMO criterion

Let **u** be a SOLA to $-\operatorname{div} \mathcal{A}(x, D\mathbf{u}) = \mu$ and let $B_r(x_0) \Subset \Omega$. If

$$\lim_{\varrho \to 0} \varrho g^{-1} \left(\frac{|\boldsymbol{\mu}|(B_{\varrho}(x_0))}{\varrho^{n-1}} \right) = 0,$$

then \boldsymbol{u} has vanishing mean oscillations at x_0 , i.e. $\lim_{\varrho \to 0} \oint_{B_\varrho(x_0)} |\boldsymbol{u} - (\boldsymbol{u})_{B_\varrho(x_0)}| \, dx = 0.$

Consequences 1/2

VMO criterion

Let **u** be a SOLA to $-\operatorname{div} \mathcal{A}(x, D\mathbf{u}) = \mu$ and let $B_r(x_0) \Subset \Omega$. If

$$\lim_{\varrho \to 0} \varrho g^{-1} \left(\frac{|\boldsymbol{\mu}|(B_{\varrho}(x_0))}{\varrho^{n-1}} \right) = 0,$$

then \boldsymbol{u} has vanishing mean oscillations at x_0 , i.e. $\lim_{\varrho \to 0} \oint_{B_\varrho(x_0)} |\boldsymbol{u} - (\boldsymbol{u})_{B_\varrho(x_0)}| \, dx = 0.$

Continuity criterion

Suppose \boldsymbol{u} be a SOLA to $-\operatorname{div} \mathcal{A}(x, D\boldsymbol{u}) = \boldsymbol{\mu}$ and $B_r(x_0) \Subset \Omega$. If $\lim_{\varrho \to 0} \sup_{x \in B_r(x_0)} \mathcal{W}^{\boldsymbol{\mu}}_{G}(x, \varrho) = 0$, then \boldsymbol{u} is continuous in $B_r(x_0)$.

Consequences 1/2

VMO criterion

Let **u** be a SOLA to $-\operatorname{div} \mathcal{A}(x, D\mathbf{u}) = \mu$ and let $B_r(x_0) \Subset \Omega$. If

$$\lim_{\varrho \to 0} \varrho g^{-1} \left(\frac{|\boldsymbol{\mu}|(B_{\varrho}(x_0))}{\varrho^{n-1}} \right) = 0,$$

then \boldsymbol{u} has vanishing mean oscillations at x_0 , i.e. $\lim_{\varrho \to 0} \oint_{B_\varrho(x_0)} |\boldsymbol{u} - (\boldsymbol{u})_{B_\varrho(x_0)}| \, dx = 0.$

Continuity criterion

Suppose \boldsymbol{u} be a SOLA to $-\operatorname{div} \mathcal{A}(x, D\boldsymbol{u}) = \boldsymbol{\mu}$ and $B_r(x_0) \Subset \Omega$. If $\lim_{\varrho \to 0} \sup_{x \in B_r(x_0)} \mathcal{W}^{\boldsymbol{\mu}}_G(x, \varrho) = 0$, then \boldsymbol{u} is continuous in $B_r(x_0)$. \implies any \mathcal{A} -harmonic map is continuous

Consequences 2/2

the same what for the scalar equation results from an upper bound

Lorentz data \implies continuous solutions For $-\operatorname{div} \mathcal{A}(x, D\boldsymbol{u}) = \boldsymbol{F}$ let $f = |\boldsymbol{F}|$. If $\int_0^\infty t^{\frac{1}{n}} g^{-1}(t^{\frac{1}{n}} f^{**}(t)) \frac{dt}{t} < \infty$, then a SOLA \boldsymbol{u} is continuous.

Consequences 2/2

the same what for the scalar equation results from an upper bound

Lorentz data \implies continuous solutions For $-\operatorname{div} \mathcal{A}(x, D\boldsymbol{u}) = \boldsymbol{F}$ let $f = |\boldsymbol{F}|$. If $\int_0^\infty t^{\frac{1}{n}} g^{-1}(t^{\frac{1}{n}} f^{**}(t)) \frac{dt}{t} < \infty$, then a SOLA \boldsymbol{u} is continuous.

Morrey data \implies Hölder continuous solutions If \boldsymbol{u} is a SOLA to $-\operatorname{div} \mathcal{A}(x, D\boldsymbol{u}) = \boldsymbol{\mu}_{\theta}$ and $|\boldsymbol{\mu}_{\theta}|(B(x, r)) \leq cr^{n-1}g(r^{\theta-1})$, then \boldsymbol{u} is locally Hölder continuous.

Consequences 2/2

the same what for the scalar equation results from an upper bound

Lorentz data \implies continuous solutions For $-\operatorname{div} \mathcal{A}(x, D\boldsymbol{u}) = \boldsymbol{F}$ let $f = |\boldsymbol{F}|$. If $\int_0^\infty t^{\frac{1}{n}} g^{-1}(t^{\frac{1}{n}} f^{**}(t)) \frac{dt}{t} < \infty$, then a SOLA \boldsymbol{u} is continuous.

Morrey data \implies Hölder continuous solutions If \boldsymbol{u} is a SOLA to $-\operatorname{div} \mathcal{A}(x, D\boldsymbol{u}) = \boldsymbol{\mu}_{\theta}$ and $|\boldsymbol{\mu}_{\theta}|(B(x, r)) \leq cr^{n-1}g(r^{\theta-1})$, then \boldsymbol{u} is locally Hölder continuous. + natural Marcinkiewicz-type characterization relating to $\boldsymbol{\mu} \in L(\frac{n}{p+\theta(p-1)}, \infty), \ \theta \in (0, 1)$, implying local Hölder continuity of solutions

Methods

for systems

main tool: *A*-harmonic approximation lemma

the approximation of a $W^{1,G}$ -function by an A-harmonic map for weighted operator A of an Orlicz growth being a generalized version of *p*-harmonic version from [Kuusi&Mingione, JEMS 2018]

OPEN

subquadratic case more general structure of the operator

Off-topic

24 of 25

Off-topic

Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces by **C, Gwiazda, Świerczewska-Gwiazda, Wróblewska-Kamińska**, is to appear in series Springer Monographs in Mathematics very soon

Thank you for your attention!

see https://www.mimuw.edu.pl/~ichlebicka/publications

25 of 25