Lipschitz bounds and non-uniform ellipticity

Lisa Beck

University of Augsburg

Workshop

"Nonlinear Potential Theoretic Methods in Partial Differential Equations"

Banff (online), September 7, 2021

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Plan of the talk

- Introduction to the general topic
 - non-uniform ellipticity and relevance of Lipschitz regularity
 - $\bullet\,$ model examples: $(p,q)\mbox{-}{\rm growth}$ and exponential growth functionals
- Lipschitz regularity criteria for uniformly elliptic problems
 - Lipschitz regularity criteria for the Poisson equation
 - Extension to more general equations and minimization problems
- Solution Lipschitz regularity criteria for (p,q)-growth problems
 - Regularity results under smallness of the gap q p
 - Strategy of proof fake it till you make it

based on the joint paper

L. B., G. Mingione:

Lipschitz bounds and non-uniform ellipticity Comm. Pure Appl. Math. 73 (2020)

Introduction to the general topic

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We study the minimization of variational integrals of the form

$$w \mapsto \int_{\Omega} \left[F(\mathbf{D}w) - f \cdot w \right] \mathrm{d}x$$

among all functions $w \in W^{1,1}(\Omega, \mathbb{R}^N)$, with $\Omega \subset \mathbb{R}^n$ open and $n \ge 2, N \ge 1$.

Aim: Identify sharp conditions on the datum *f* which guarantee local Lipschitz continuity of minimizers for integrands $F : \mathbb{R}^{N \times n} \to \mathbb{R}$ satisfying suitable convexity and growth assumptions, in particular in non-uniformly elliptic settings.

► The Euler-Lagrange equation reads formally as - div ∂F(Du) = f and non-uniform ellipticity refers to the situation when the ellipticity ratio

$$\mathcal{R}(z) := \frac{\text{largest eigenvalue of } \partial^2 F(z)}{\text{smallest eigenvalue of } \partial^2 F(z)}$$

is unbounded for $|z| \to \infty$.

Once Lipschitz continuity of minimizers is known, then the equation becomes uniformly elliptic at infinity and classical methods apply. We study the minimization of variational integrals of the form

$$w \mapsto \int_{\Omega} \left[F(\mathbf{D}w) - f \cdot w \right] \mathrm{d}x$$

among all functions $w \in W^{1,1}(\Omega, \mathbb{R}^N)$, with $\Omega \subset \mathbb{R}^n$ open and $n \ge 2, N \ge 1$.

Aim: Identify sharp conditions on the datum *f* which guarantee local Lipschitz continuity of minimizers for integrands $F : \mathbb{R}^{N \times n} \to \mathbb{R}$ satisfying suitable convexity and growth assumptions, in particular in non-uniformly elliptic settings.

► In the vectorial case N > 1 there are many examples of elliptic systems of variational and non-variational type, which admit irregular (discontinuous) solutions.

[De Giorgi 1968, Giusti & Miranda 1968, Frehse 1973, Nečas 1975, Šverák & Yan 2000, ...]

and here one usually supposes radial structure $F(z) = \widetilde{F}(|z|)$ which is known to rule out singularities, e.g. for the *p*-Laplacean system.

[Uhlenbeck 1977]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Polynomial, but unbalanced growth conditions:

This is the case for anisotropic variational functionals (used e.g. for the modeling of electrorheological fluids), where

$$F(z) = |z|^{p} + \sum_{i=1}^{n} |z_{i}|^{q_{i}}$$
 with $p, q_{1}, \dots, q_{n} > 1$,

or for perturbations of standard *p*-growth variational functionals, where

$$F(z) = |z|^p \log(e + |z|)$$
 with $p > 1$.

These are special examples of integrands satisfying a (p, q)-growth condition

$$\left\{ \begin{array}{c} |z|^p \lesssim F(z) \lesssim |z|^q + 1 \\ |z|^{p-2} |\xi|^2 \lesssim \partial^2 F(z) \xi \cdot \xi \quad \text{and} \quad |\partial^2 F(z)| \lesssim |z|^{q-2} + 1 \end{array} \right.$$

meaning that the ellipticity ratio $\mathcal{R}(z) \leq |z|^{q-p} + 1$ becomes unbounded as $|z| \to \infty$ with a speed which is proportional to the gap q - p.

(investigated extensively starting from the papers [Marcellini 1989 & 1991] for $f \equiv 0$)

Very fast growth conditions:

This happens for instance for variational functionals of exponential growth, e.g.

 $F(z) = \exp(|z|^p)$ with p > 1

or the iterated versions

 $F(z) = \exp(\exp(\ldots \exp(|z|^p)\ldots))$ with p > 1.

These can be formulated as growth conditions of the form

$$g_1(|z|)|\xi|^2 \lesssim \partial^2 F(z)\xi \cdot \xi$$
 and $|\partial^2 F(z)| \lesssim g_2(|z|)$

with functions g_1, g_2 , and in the above examples, the ellipticity ratio $\mathcal{R}(z) = g_2(|z|)/g_1(|z|)$ is bounded by a polynomial function or a lower order exponential function.

(research initiated starting from the papers [Duc & Eells 1991, Lieberman 1992, Marcellini 1996] for $f\equiv 0)$

Lipschitz regularity criteria for uniformly elliptic problems

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A prototypic example of a uniformly elliptic equation is the Poisson equation

$$-\Delta u = f$$
 in $\Omega \subset \mathbb{R}^n$ for $n \ge 3$,

with a source term $f: \Omega \to \mathbb{R}$, which is the Euler–Lagrange equation of the variational integral

$$w \mapsto \int_{\Omega} \left[|\mathrm{D}w|^2 - fw \right] \mathrm{d}x \,.$$

Regularity criteria for weak solutions $u \in W^{1,2}(\Omega)$:

Schauder theory:

Natural candidate for a solution is the Newton-potential

$$N_f(x_0) := \int_{\Omega} \Phi(x_0 - y) f(y) \mathrm{d}y$$

with $\Phi(x) \sim |x|^{2-n}$ the fundamental solution to the Laplace equation, and we have

• $f \in L^{\infty} \Rightarrow N_f \in C^{1,\beta}$ for all $\beta \in [0,1)$

•
$$f \in C^{0,\alpha} \Rightarrow N_f \in C^{2,\alpha}$$
 for $\alpha \in (0,1)$ and solution property
(but $N_f \notin C^2$ is possible for $f \in C^0$ only!)

[Hölder 1882]

A prototypic example of a uniformly elliptic equation is the Poisson equation

$$-\Delta u = f$$
 in $\Omega \subset \mathbb{R}^n$ for $n \ge 3$,

with a source term $f: \Omega \to \mathbb{R}$, which is the Euler–Lagrange equation of the variational integral

$$w \mapsto \int_{\Omega} \left[|\mathrm{D}w|^2 - fw \right] \mathrm{d}x \,.$$

Regularity criteria for weak solutions $u \in W^{1,2}(\Omega)$:

• Schauder theory: $f \in C^{0,\alpha} \Rightarrow u \in C^{2,\alpha}$ for $\alpha \in (0,1)$

A prototypic example of a uniformly elliptic equation is the Poisson equation

$$-\Delta u = f$$
 in $\Omega \subset \mathbb{R}^n$ for $n \ge 3$,

with a source term $f: \Omega \to \mathbb{R}$, which is the Euler–Lagrange equation of the variational integral

$$w \mapsto \int_{\Omega} \left[|\mathrm{D}w|^2 - fw \right] \mathrm{d}x \,.$$

Regularity criteria for weak solutions $u \in W^{1,2}(\Omega)$:

- ► Schauder theory: $f \in C^{0,\alpha} \Rightarrow u \in C^{2,\alpha}$ for $\alpha \in (0,1)$
- L^p theory:
 - For solutions $v \in W_0^{1,2}(\Omega)$ to the Poisson equation $\Delta v = \operatorname{div} g$ with data in divergence form, we have

 $\|\mathrm{D}v\|_{L^2} \lesssim \|g\|_{L^2}$ and $\|\mathrm{D}v\|_{\mathrm{BMO}} \lesssim \|g\|_{L^{\infty}}$,

and an interpolation argument shows

 $\|\mathrm{D}v\|_{L^p} \lesssim \|g\|_{L^p} \,.$

• Passage to the differentiated equation

$$\Delta D_k u = D_k f$$

and a localization argument then show $f \in L^p \Rightarrow u \in W^{2,p}_{loc}$.

A prototypic example of a uniformly elliptic equation is the Poisson equation

$$-\Delta u = f$$
 in $\Omega \subset \mathbb{R}^n$ for $n \ge 3$,

with a source term $f: \Omega \to \mathbb{R}$, which is the Euler–Lagrange equation of the variational integral

$$w \mapsto \int_{\Omega} \left[|\mathrm{D}w|^2 - fw \right] \mathrm{d}x \,.$$

Regularity criteria for weak solutions $u \in W^{1,2}(\Omega)$:

• Schauder theory: $f \in C^{0,\alpha} \Rightarrow u \in C^{2,\alpha}$ for $\alpha \in (0,1)$

► L^{*p*} theory:
$$f \in L^p \Rightarrow u \in W^{2,p}_{loc}$$

in particular: $f \in L^{n+\varepsilon} \Rightarrow u \in C^1$ for each $\varepsilon > 0$

A prototypic example of a uniformly elliptic equation is the Poisson equation

$$-\Delta u = f$$
 in $\Omega \subset \mathbb{R}^n$ for $n \ge 3$,

with a source term $f: \Omega \to \mathbb{R}$, which is the Euler–Lagrange equation of the variational integral

$$w \mapsto \int_{\Omega} \left[|\mathrm{D}w|^2 - fw \right] \mathrm{d}x \,.$$

Regularity criteria for weak solutions $u \in W^{1,2}(\Omega)$:

- ► Schauder theory: $f \in C^{0,\alpha} \Rightarrow u \in C^{2,\alpha}$ for $\alpha \in (0,1)$
- ► L^{*p*} theory: $f \in L^p \Rightarrow u \in W^{2,p}_{loc}$ in particular: $f \in L^{n+\varepsilon} \Rightarrow u \in C^1$ for each $\varepsilon > 0$
- Riesz potential theory:
 - · Again by representation via the fundamental solution

$$|N_f(x_0)| \lesssim \int_{\mathbb{R}^n} |x_0 - y|^{2-n} |f(y)| \, \mathrm{d}y =: \mathbb{I}_2^f(x_0)$$

and after differentiation

$$|\mathrm{D}N_f(x_0)| \lesssim \int_{\mathbb{R}^n} |x_0 - y|^{1-n} |f(y)| \,\mathrm{d}y =: \mathbb{I}_1^f(x_0)$$

[Riesz 1949]

A prototypic example of a uniformly elliptic equation is the Poisson equation

$$-\Delta u = f$$
 in $\Omega \subset \mathbb{R}^n$ for $n \ge 3$,

with a source term $f: \Omega \to \mathbb{R}$, which is the Euler–Lagrange equation of the variational integral

$$w \mapsto \int_{\Omega} \left[|\mathrm{D}w|^2 - fw \right] \mathrm{d}x \,.$$

Regularity criteria for weak solutions $u \in W^{1,2}(\Omega)$:

- ► Schauder theory: $f \in C^{0,\alpha} \Rightarrow u \in C^{2,\alpha}$ for $\alpha \in (0,1)$
- L^p theory: $f \in L^p \Rightarrow u \in W^{2,p}_{loc}$

in particular: $f \in L^{n+\varepsilon} \Rightarrow u \in C^1$ for each $\varepsilon > 0$

• Riesz potential theory: $\mathbb{I}_1^f \in \mathcal{L}^{\infty} \Rightarrow u \in \mathcal{C}^1$

A prototypic example of a uniformly elliptic equation is the Poisson equation

$$-\Delta u = f$$
 in $\Omega \subset \mathbb{R}^n$ for $n \ge 3$,

with a source term $f: \Omega \to \mathbb{R}$, which is the Euler–Lagrange equation of the variational integral

$$w \mapsto \int_{\Omega} \left[|\mathrm{D}w|^2 - fw \right] \mathrm{d}x \, .$$

Regularity criteria for weak solutions $u \in W^{1,2}(\Omega)$:

- ► Schauder theory: $f \in C^{0,\alpha} \Rightarrow u \in C^{2,\alpha}$ for $\alpha \in (0,1)$
- L^p theory: $f \in L^p \Rightarrow u \in W^{2,p}_{loc}$

in particular: $f \in L^{n+\varepsilon} \Rightarrow u \in C^1$ for each $\varepsilon > 0$

• Riesz potential theory: $\mathbb{I}_1^f \in \mathcal{L}^\infty \Rightarrow u \in \mathcal{C}^1$

By considering truncated Riesz potentials, we also obtain local Lipschitz estimates

$$|\mathrm{D}u(x_{0})| \lesssim \int_{B_{R}(x_{0})} |\mathrm{D}u(x)| \,\mathrm{d}x + \underbrace{\int_{0}^{R} \rho^{1-n} \int_{B_{\rho}(x_{0})} |f(y)| \,\mathrm{d}y \,\frac{\mathrm{d}\rho}{\rho}}_{=:\mathbb{I}_{1}^{f}(x_{0},R)}$$

・ロト・西ト・ヨト ・ヨト・ 白ト

A prototypic example of a uniformly elliptic equation is the Poisson equation

$$-\Delta u = f$$
 in $\Omega \subset \mathbb{R}^n$ for $n \ge 3$,

with a source term $f: \Omega \to \mathbb{R}$, which is the Euler–Lagrange equation of the variational integral

$$w \mapsto \int_{\Omega} \left[|\mathrm{D}w|^2 - fw \right] \mathrm{d}x \, .$$

Regularity criteria for weak solutions $u \in W^{1,2}(\Omega)$:

- ► Schauder theory: $f \in C^{0,\alpha} \Rightarrow u \in C^{2,\alpha}$ for $\alpha \in (0,1)$
- L^p theory: $f \in L^p \Rightarrow u \in W^{2,p}_{loc}$

in particular: $f \in L^{n+\varepsilon} \Rightarrow u \in C^1$ for each $\varepsilon > 0$

- Riesz potential theory: $\mathbb{I}_1^f \in \mathcal{L}^\infty \Rightarrow u \in \mathcal{C}^1$
- ► Sharp Lipschitz regularity criterion: $f \in L^{n,1} \Rightarrow u \in C^1$

[Stein 1981, Cianchi 1992]

The Lorentz spaces $\mathbf{L}^{p,\gamma}$ are refinements of the classical Lebesgue spaces, with quasi-norm

$$\|f\|_{\mathbf{L}^{p,\gamma}} = \left(p\int_0^\infty \left(\lambda^p |\{y \in \Omega \colon |f(y)| > \lambda\}|\right)^{\frac{\gamma}{p}} \frac{\mathrm{d}\lambda}{\lambda}\right)^{\frac{1}{\gamma}},$$

< ロ > < 同 > < 三 > < 三 > 、 三 の Q (?)

with the properties

- $L^{p,p} = L^p$ (Cavalieri principle)
- $\mathbf{L}^{p,\gamma} \subset \mathbf{L}^{p,\gamma'}$ for $\gamma \leq \gamma'$
- $L^q \subset L^{p,1} \subset L^p$ for all q > p

The Lorentz spaces $\mathbf{L}^{p,\gamma}$ are refinements of the classical Lebesgue spaces, with quasi-norm

$$\|f\|_{\mathbf{L}^{p,\gamma}} = \left(p\int_0^\infty \left(\lambda^p |\{y\in\Omega\colon |f(y)|>\lambda\}|\right)^{\frac{\gamma}{p}} \frac{\mathrm{d}\lambda}{\lambda}\right)^{\frac{1}{\gamma}},$$

with the properties

- $L^{p,p} = L^p$ (Cavalieri principle)
- $\mathbf{L}^{p,\gamma} \subset \mathbf{L}^{p,\gamma'}$ for $\gamma \leq \gamma'$

•
$$L^q \subset L^{p,1} \subset L^p$$
 for all $q > p$

For the critical space $L^{n,1}$ in our setting we have $L^{n+\varepsilon} \subset L^{n,1} \subset L^n$ for each $\varepsilon > 0$ and a connection to the truncated Riesz potential and a nonlinear Riesz potential via the estimate

$$\mathbb{I}_1^f(x_0, R) \lesssim \mathbb{P}^f(x_0, R) \coloneqq \int_0^R \left(\rho^2 \oint_{B_\rho(x_0)} |f(y)|^2 \,\mathrm{d}y\right)^{1/2} \frac{\mathrm{d}\rho}{\rho} \lesssim \|f\|_{\mathbf{L}^{n,1}}$$

An example of a nontrivial function $f \in L^{n,1} \setminus L^{n+\varepsilon}$ is given by

$$f(x) = \frac{1}{|x| \log^{\beta}(1/|x|)} \text{ for } \beta > 1$$
 .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We now pass to quasi-linear equations

 $-\operatorname{div}(a(\operatorname{D} u)) = f$

or the minimization of the variational integral

$$w \mapsto \int_{\Omega} \left[F(\mathbf{D}w) - fw \right] \mathrm{d}x$$

among all functions $w \in W^{1,p}(\Omega)$, under suitable uniform *p*-growth and ellipticity / convexity assumptions with $p \ge 2$. The prototypic example here is the *p*-Laplace equation with $a(z) = |z|^{p-2}z$ and $F(z) = |z|^p$.

Surprisingly, for solutions $u \in W^{1,p}(\Omega)$ very similar estimates (in Lebesgue points of Du) are available as in the linear case:

$$|\mathrm{D}u(x_0)|^{p-1} \lesssim \left(\int_{B_R(x_0)} |\mathrm{D}u(x)| \,\mathrm{d}x\right)^{p-1} + \mathbb{I}_1^f(x_0, R) + 1$$

[Kuusi & Mingione 2013]

For solutions $u \in W^{1,p}(\Omega)$ to $-\operatorname{div}(|\mathrm{D}u|^{p-2}\mathrm{D}u) = f$ very similar estimates are available as in the linear case:

$$|\mathrm{D}u(x_0)|^{p-1} \lesssim \left(\int_{B_R(x_0)} |\mathrm{D}u(x)| \,\mathrm{d}x\right)^{p-1} + \mathbb{I}_1^f(x_0, R)$$

[Kuusi & Mingione 2013]

Notice:

- We still have f ∈ L^{n,1} ⇒ I^f₁(·, R) ∈ L[∞]_{loc} ⇒ u ∈ W^{1,∞}_{loc}, independently from p ∈ (1,∞) (or more generally, of the equation or variational functional considered).
- ► For $f \equiv 0$, this is the classical $L^{\infty}-L^{p}$ -estimate for *p*-harmonic functions.

[Manfredi 1988]

 From a pointwise version, local higher integrability or gradient estimates are recovered.

[Iwaniec 1983, Di Benedetto & Manfredi 1993, ...]

The result extends to the vectorial case.

[Kuusi & Mingione 2018]

For solutions $u \in W^{1,p}(\Omega)$ to $-\operatorname{div}(|\mathrm{D}u|^{p-2}\mathrm{D}u) = f$ very similar estimates are available as in the linear case:

$$|\mathrm{D}u(x_0)|^{p-1} \lesssim \left(\int_{B_R(x_0)} |\mathrm{D}u(x)| \,\mathrm{d}x\right)^{p-1} + \mathbb{I}_1^f(x_0, R)$$

[Kuusi & Mingione 2013]

Some heuristic explanation of the linearization phenomenon:

Though the equation is non-linear in the solution u, it is linear in some intrinsic quantity

 $\operatorname{div} v = f$ for $v = |\mathrm{D}u|^{p-2}\mathrm{D}u$.

▶ Thus, we might expect $\mathbb{I}_1^f(\cdot, R) \in L_{loc}^{\infty} \Rightarrow v \in L_{loc}^{\infty}$ with pointwise estimate

$$|v(x_0)| \lesssim \oint_{B_R(x_0)} |v(x)| \,\mathrm{d}x + \mathbb{I}_1^f(x_0, R)$$

which leads to the above estimate when setting $|v| = |Du|^{p-1}$ (and using a reverse Hölder inequality).

For solutions $u \in W^{1,p}(\Omega)$ to $-\operatorname{div}(|\mathrm{D}u|^{p-2}\mathrm{D}u) = f$ very similar estimates are available as in the linear case:

$$|\mathrm{D}u(x_0)|^{p-1} \lesssim \left(\int_{B_R(x_0)} |\mathrm{D}u(x)| \,\mathrm{d}x\right)^{p-1} + \mathbb{I}_1^f(x_0, R)$$

[Kuusi & Mingione 2013]

More general uniformly elliptic problems of general growth:

Similarly, for solutions $u \in W^{1,1}(\Omega)$ to $-\operatorname{div}(g(|\mathrm{D}u|)\mathrm{D}u/|\mathrm{D}u|) = f$ where g is a positive function of class C^1 satisfying the uniform ellipticity condition

$$1 \le \nu \le \frac{g'(t)t}{g(t)} \le L$$

plus non-degeneracy-conditions $\lim_{t \to 0} g(t)/t = 0$ and $\lim_{t \to \infty} g(t)/t = \infty$, one has (in Lebesgue points of Du) the intrinsic estimate

$$g(|\mathrm{D}u(x_0)|) \lesssim g\left(\int_{B_R(x_0)} |\mathrm{D}u(x)| \,\mathrm{d}x\right) + \mathbb{I}_1^f(x_0, R) \,.$$
[Baroni 2015]
(Baroni 2015]

Lipschitz regularity criteria for (p, q)-growth problems

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

We first consider the minimization of the variational integral

$$w \mapsto \int_{\Omega} F(\mathrm{D}w) \,\mathrm{d}x$$

among all functions $w \in W^{1,1}(\Omega)$ (with given boundary values) without source term f, for an integrand F satisfying a (p,q)-growth condition (for 1)

$$\left\{\begin{array}{c} |z|^p \lesssim F(z) \lesssim |z|^q + 1\\ |z|^{p-2} |\xi|^2 \lesssim \partial^2 F(z) \xi \cdot \xi \quad \text{and} \quad |\partial^2 F(z)| \lesssim |z|^{q-2} + 1\end{array}\right.$$

Existence of minimizers: follows by the direct method (minimizing sequences are bounded in W^{1,p}(Ω)).

We first consider the minimization of the variational integral

 $w \mapsto \int_{\Omega} F(\mathbf{D}w) \, \mathrm{d}x$

among all functions $w \in W^{1,1}(\Omega)$ (with given boundary values) without source term f, for an integrand F satisfying a (p,q)-growth condition (for 1)

$$\begin{cases} |z|^p \lesssim F(z) \lesssim |z|^q + 1\\ |z|^{p-2} |\xi|^2 \lesssim \partial^2 F(z) \xi \cdot \xi \quad \text{and} \quad |\partial^2 F(z)| \lesssim |z|^{q-2} + 1 \end{cases}$$

- Existence of minimizers: follows by the direct method (minimizing sequences are bounded in W^{1,p}(Ω)).
- ► Existence of irregular minimizers: a condition on the gap q/p ≤ 1 + o(n) is necessary for boundedness/regularity.

[Marcellini 1987 & 1991, Giaquinta 1987, Hong 1992]

For the variational integral with integrand

$$F(z) = \frac{1}{2} \sum_{i=1}^{n-1} |z_i|^2 + \frac{1}{q} |z_n|^q \quad \text{ with } q > 2 \frac{n-1}{n-3} \,,$$

there exists an unbounded minimizer with a discontinuity along a line!

We first consider the minimization of the variational integral

$$w \mapsto \int_{\Omega} F(\mathrm{D}w) \,\mathrm{d}x$$

among all functions $w \in W^{1,1}(\Omega)$ (with given boundary values) without source term f, for an integrand F satisfying a (p,q)-growth condition (for 1)

$$\left\{\begin{array}{c} |z|^p \lesssim F(z) \lesssim |z|^q + 1\\ |z|^{p-2} |\xi|^2 \lesssim \partial^2 F(z) \xi \cdot \xi \quad \text{and} \quad |\partial^2 F(z)| \lesssim |z|^{q-2} + 1\end{array}\right.$$

► Regularity of minimizers: the condition q/p ≤ 1 + o(n) is also sufficient for W^{1,∞}-regularity of solutions.

A lot of results, starting from

 $\bullet \ u \in \mathrm{W}^{1,q} \Rightarrow u \in \mathrm{W}^{1,\infty} \text{ if } q/p < n/(n-2)$

[Marcellini 1991]

• $u \in W^{1,p} \Rightarrow u \in W^{1,q}$ if q/p < 1 + 2/n < n/(n-2)[Esposito, Leonetti & Mingione 1999]

with local Lipschitz estimate reflecting the unbalanced polynomial growth

$$\|\mathrm{D} u\|_{\mathrm{L}^{\infty}(B_{R}(x_{0}))} \lesssim \left(\int\limits_{B_{2R}(x_{0})} F(\mathrm{D} u) \,\mathrm{d} x\right)^{\frac{2}{(n+2)p-nq}} + 1$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

We first consider the minimization of the variational integral

 $w\mapsto \int_{\Omega}F(\mathrm{D}w)\,\mathrm{d}x$

among all functions $w \in W^{1,1}(\Omega)$ (with given boundary values) without source term f, for an integrand F satisfying a (p,q)-growth condition (for 1)

$$\begin{cases} |z|^p \lesssim F(z) \lesssim |z|^q + 1\\ |z|^{p-2} |\xi|^2 \lesssim \partial^2 F(z) \xi \cdot \xi \quad \text{and} \quad |\partial^2 F(z)| \lesssim |z|^{q-2} + 1 \end{cases}$$

► Regularity of minimizers: the condition q/p ≤ 1 + o(n) is also sufficient for W^{1,∞}-regularity of solutions.

A lot of results, starting from

 $\bullet \ u \in \mathrm{W}^{1,q} \Rightarrow u \in \mathrm{W}^{1,\infty} \text{ if } q/p < n/(n-2)$

[Marcellini 1991]

• $u \in W^{1,p} \Rightarrow u \in W^{1,q}$ if q/p < 1 + 2/n < n/(n-2)[Esposito, Leonetti & Mingione 1999]

This bound was recently improved in this general setting to q/p < 1 + 2/(n - 1). [Bella & Schäffner 2019]

A Caccioppoli inequality for an intrinsic quantity

We next include a source term and consider minimizers of the variational integral $w \mapsto \int_{\Omega} [F(Dw) - fw] dx$ under (p, q)-growth assumptions (for $2 \le p \le q$)

$$\begin{cases} |z|^p \lesssim F(z) \lesssim |z|^q + 1\\ |z|^{p-2} |\xi|^2 \lesssim \partial^2 F(z) \xi \cdot \xi \quad \text{and} \quad |\partial^2 F(z)| \lesssim |z|^{q-2} + 1 \end{cases}$$

Theorem (Caccioppoli inequality)

Consider a ball B_r in \mathbb{R}^n , $f \in L^2(B_r)$, and a minimizer $u \in W^{1,\infty}(B_r)$. Then, for each $k \in \mathbb{R}^+$, we have

$$\begin{split} \int_{B_{r/2}} \big| \mathbf{D}(|\mathbf{D}u|^p - k)_+ \big|^2 \, \mathrm{d}x \\ \lesssim r^{-2} \int_{B_r} |\mathbf{D}u|^{q-p} (|\mathbf{D}u|^p - k)_+^2 \, \mathrm{d}x + \int_{B_r} |\mathbf{D}u|^2 |f|^2 \, \mathrm{d}x \end{split}$$

(independently of r).

 $(W^{1,\infty}$ -regularity to be justified in the end by approximation)

うして 山田 マイボマ エリア しょう

Strategy of proof:

Pass to the Euler–Lagrange equation

$$\int_{B_r} \partial F(\mathrm{D} u) \cdot \mathrm{D} \varphi \, \mathrm{d} x = \int_{B_r} f \varphi \, \mathrm{d} x \quad \text{for all } \varphi \in \mathrm{C}^1_0(B_r) \, .$$

O Due to the $\mathrm{W}^{1,\infty}$ assumption, standard regularity theory applies and we have

$$u \in \mathrm{W}^{2,2}_{\mathrm{loc}}(B_r) \,.$$

9 Pass to the differentiated Euler–Lagrange equation ($\varphi \rightarrow D_s \varphi$)

$$\int_{B_r} \partial^2 F(\mathrm{D} u) \mathrm{D} \mathrm{D}_s u \cdot \mathrm{D} \varphi \, \mathrm{d} x = - \int_{B_r} f \mathrm{D}_s \varphi \, \mathrm{d} x \quad \text{for all } \varphi \in \mathrm{C}^1_0(B_r) \, .$$

• Use $\varphi = D_s u(|Du|^p - k)_+ \eta^2$, with a localization function $\eta \in C_0^1(B_r; [0, 1])$ (which is then chosen with $\eta \equiv 1$ in $B_{r/2}$ and $|D\eta| \leq r^{-1}$) and employ the growth assumptions on $\partial^2 F$.

So far ... a minimizer $u \in W^{1,\infty}(B_r)$ satisfies

$$\begin{split} \int_{B_{r/2}} |\mathbf{D}(|\mathbf{D}u|^p - k)_+|^2 \, \mathrm{d}x \\ \lesssim r^{-2} \int_{B_r} |\mathbf{D}u|^{q-p} (|\mathbf{D}u|^p - k)_+^2 \, \mathrm{d}x + \int_{B_r} |\mathbf{D}u|^2 |f|^2 \, \mathrm{d}x \end{split}$$

So far ... a minimizer $u \in W^{1,\infty}(B_r)$ satisfies for all $k \ge 1$ and $r \le R$

$$\begin{split} &\int_{B_{r/2}} |\mathbf{D}(|\mathbf{D}u|^p - k)_+|^2 \,\mathrm{d}x \\ &\lesssim r^{-2} \int_{B_r} |\mathbf{D}u|^{q-p} (|\mathbf{D}u|^p - k)_+^2 \,\mathrm{d}x + \int_{B_r} |\mathbf{D}u|^2 |f|^2 \,\mathrm{d}x \\ &\lesssim \|\mathbf{D}u\|_{\mathbf{L}^{\infty}(B_R)}^{q-p} r^{-2} \int_{B_r} (|\mathbf{D}u|^p - k)_+^2 \,\mathrm{d}x + \|\mathbf{D}u\|_{\mathbf{L}^{\infty}(B_R)}^2 \int_{B_r} |f|^2 \,\mathrm{d}x \,, \end{split}$$

a Caccioppoli inequality of balanced growth, but involving constants in terms of $\|Du\|_{L^{\infty}}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

So far ... a minimizer
$$u \in W^{1,\infty}(B_r)$$
 satisfies

$$\int_{B_{r/2}} |D(|Du|^p - k)_+|^2 dx$$

$$\lesssim r^{-2} \int_{B_r} |Du|^{q-p} (|Du|^p - k)_+^2 dx + \int_{B_r} |Du|^2 |f|^2 dx$$

$$\lesssim ||Du||_{L^{\infty}(B_R)}^{q-p} r^{-2} \int_{B_r} (|Du|^p - k)_+^2 dx + ||Du||_{L^{\infty}(B_R)}^2 \int_{B_r} |f|^2 dx,$$

a Caccioppoli inequality of balanced growth, but involving constants in terms of $\|Du\|_{L^\infty}.$

De Giorgi iteration à la [Kilpeläinen & Malý 1994]:

Consider a ball $B_R = \dot{B}_R(x_0)$ in \mathbb{R}^n , $f \in L^2(\dot{B}_R)$, and a function $v \in W^{1,2}(B_R)$, which satisfies

$$\int_{B_{r/2}} |\mathbf{D}(v-k)_{+}|^{2} \, \mathrm{d}x \lesssim M_{1}^{2} r^{-2} \int_{B_{r}} (v-k)_{+}^{2} \, \mathrm{d}x + M_{2}^{2} \int_{B_{r}} |f|^{2} \, \mathrm{d}x$$

for all $k \ge k_0$ and $r \le R$. Then we have

$$v(x_0)_+ - k_0 \lesssim M_1^{\frac{n}{2}} \Big(\int_{B_R} v_+^2 \, \mathrm{d}x \Big)^{\frac{1}{2}} + M_1^{\frac{n-2}{2}} M_2 \mathbb{P}^f(x_0, R)$$

So far ... a minimizer
$$u \in W^{1,\infty}(B_r)$$
 satisfies

$$\int_{B_{r/2}} |D(|Du|^p - k)_+|^2 dx$$

$$\lesssim r^{-2} \int_{B_r} |Du|^{q-p} (|Du|^p - k)_+^2 dx + \int_{B_r} |Du|^2 |f|^2 dx$$

$$\lesssim ||Du||_{L^{\infty}(B_R)}^{q-p} r^{-2} \int_{B_r} (|Du|^p - k)_+^2 dx + ||Du||_{L^{\infty}(B_R)}^2 \int_{B_r} |f|^2 dx,$$

a Caccioppoli inequality of balanced growth, but involving constants in terms of $\|Du\|_{L^{\infty}}$. This implies

$$|\mathrm{D}u(x_0)|^p \lesssim \|\mathrm{D}u\|_{\mathrm{L}^{\infty}(B_R)}^{\frac{q-p}{2}} \Big(\int_{B_R} |\mathrm{D}u|^{2p} \,\mathrm{d}x \Big)^{\frac{1}{2}} + \|\mathrm{D}u\|_{\mathrm{L}^{\infty}(B_R)}^{\frac{q-p}{2},\frac{n-2}{2}+1} \mathbb{P}^f(x_0,R) + 1$$

De Giorgi iteration à la [Kilpeläinen & Malý 1994]:

Consider a ball $B_R = \dot{B}_R(x_0)$ in \mathbb{R}^n , $f \in L^2(\dot{B}_R)$, and a function $v \in W^{1,2}(B_R)$, which satisfies

$$\int_{B_{r/2}} |\mathbf{D}(v-k)_{+}|^{2} \, \mathrm{d}x \lesssim M_{1}^{2} r^{-2} \int_{B_{r}} (v-k)_{+}^{2} \, \mathrm{d}x + M_{2}^{2} \int_{B_{r}} |f|^{2} \, \mathrm{d}x$$

for all $k \ge k_0$ and $r \le R$. Then we have

$$v(x_0)_+ - k_0 \lesssim M_1^{\frac{n}{2}} \Big(\int_{B_R} v_+^2 \, \mathrm{d}x \Big)^{\frac{1}{2}} + M_1^{\frac{n-2}{2}} M_2 \mathbb{P}^f(x_0, R)$$

So far ... a minimizer $u \in W^{1,\infty}(B_r)$ satisfies

$$\begin{aligned} |\mathrm{D}u(x_{0})|^{p} &\lesssim \|\mathrm{D}u\|_{\mathrm{L}^{\infty}(B_{R})}^{\frac{q-p}{2}} \Big(\int_{B_{R}} |\mathrm{D}u|^{2p} \,\mathrm{d}x \Big)^{\frac{1}{2}} + \|\mathrm{D}u\|_{\mathrm{L}^{\infty}(B_{R})}^{\frac{q-p}{2}\frac{n-2}{2}+1} \mathbb{P}^{f}(x_{0},R) + 1 \\ &\lesssim \|\mathrm{D}u\|_{\mathrm{L}^{\infty}(B_{R})}^{\frac{q-p}{2}\frac{n}{2}+\frac{p}{2}} \Big(\int_{B_{R}} |\mathrm{D}u|^{p} \,\mathrm{d}x \Big)^{\frac{1}{2}} + \|\mathrm{D}u\|_{\mathrm{L}^{\infty}(B_{R})}^{\frac{q-p}{2}\frac{n-2}{2}+1} \mathbb{P}^{f}(x_{0},R) + 1 \end{aligned}$$

and this gives a reasonable a priori Lipschitz bound, provided that

$$\frac{q-p}{2}\frac{n}{2} + \frac{p}{2}$$

(then also $\frac{q-p}{2}\frac{n-2}{2} + 1 \le \frac{q-p}{2}\frac{n}{2} + \frac{p}{2} < p$). By a (technical) iteration scheme, we conclude in this case with

$$\|\mathbf{D}u\|_{\mathbf{L}^{\infty}(B_{R/2})} \lesssim \left(\int_{B_{R}} |\mathbf{D}u|^{p} \, \mathrm{d}x\right)^{\frac{2}{(n+2)p-nq}} + \|f\|_{\mathbf{L}^{n,1}(B_{R})}^{\frac{4}{4(p-1)-(q-p)(n-2)}} + 1$$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ = 三 のへぐ

Theorem (B.-Mingione 2020)

Consider an integrand *F* satisfying the (p,q)-growth condition, with $2 \le p \le q$, and $f \in L^{n,1}(\Omega)$. If $\frac{q}{p} < 1 + \frac{2}{n}$ holds, then every minimizer *u* of the functional $w \mapsto \int_{\Omega} \left[F(\mathrm{D}w) - fw \right] \mathrm{d}x$ is locally Lipschitz continuous with

$$\|\mathrm{D}u\|_{\mathrm{L}^{\infty}(B_{R/2})} \lesssim \left(\int_{B_{R}} F(\mathrm{D}u) \,\mathrm{d}x\right)^{\frac{2}{(n+2)p-nq}} + \|f\|_{\mathrm{L}^{n,1}(B_{R})}^{\frac{4}{4(p-1)-(q-p)(n-2)}} + 1$$

for every ball $B_{R} \subset \Omega$.

Remarks:

- ► One needs to work with approximations u^(k) ∈ W^{1,∞} (e.g. via bounded slope condition, [Bousquet & Brasco 2016]) and then pass to the limit in the uniform estimates.
- ► This estimate reduces to the classical estimates for *p*-growth and for (*p*,*q*)-growth without source term.
- ► The results extends to the vectorial setting under radial structure $F(z) = \widetilde{F}(|z|).$

The strategy of proof can actually be performed for a very general class of non-uniformly elliptic variational functionals $w \mapsto \int_{\Omega} [F(Dw) - fw] dx$ with a convex integrand F satisfying

 $g_1(|z|)|\xi|^2 \lesssim \partial^2 F(z)\xi \cdot \xi$ and $|\partial^2 F(z)| \lesssim g_2(|z|)$

with functions g_1, g_2 . Supposing that

- $t \mapsto tg_1(t)$ is non-decreasing and grows at least as t^{σ} for some $\sigma > 0$,
- $\int_{0}^{|z|} tg_1(t) dt$ provides a "lower bound" to F(z) (modulo suitable power),
- $t \mapsto g_2(t)/g_1(t)$ is non-decreasing and grows "not too fast"

and that the source term satisfies

► $f \in L^{n,1}(\Omega)$,

then every minimizer is locally Lipschitz continuous with quantified estimate formulated in terms of intrinsic quantities of Du.

Theorem (B.-Mingione 2020)

Consider the integrand $F(z) = \exp(|z|^p)$ for some p > 1 and $f \in L^{n,1}(\Omega)$. Then every minimizer u of the functional $w \mapsto \int_{\Omega} [F(Dw) - fw] dx$ is locally Lipschitz continuous. Moreover, in the case $f \equiv 0$, there holds

$$\|\mathbf{D}u\|_{\mathbf{L}^{\infty}(B_{R/2})}^{p} \lesssim \log\left(\int_{B_{R}} \exp(|\mathbf{D}u|^{p}) \,\mathrm{d}x\right) + 1$$

for every ball $B_R \subset \Omega$.

Remarks:

- From the heuristic viewpoint, large values of |Du| are very expensive and regularity theory should be easier (as opposed to linear growth problems which are excluded in our results);
- The results extends to the vectorial setting;
- ► Previously, local Lipschitz regularity was only known in the case f ≡ 0, with a bound with a loss of an exponential scale compared to the estimate above.
 [Maraellini 4000]

[Marcellini 1996]

Thank you for the attention!