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Introduction
to the general topic



The variational setting

We study the minimization of variational integrals of the form

w»—>/Q[F(Dw)—f-w]dx

among all functions w € Wh(Q,RY), with Q c R” openand n > 2, N > 1.

Aim: Identify sharp conditions on the datum f which guarantee local Lipschitz
continuity of minimizers for integrands F': RV*" — R satisfying suitable con-
vexity and growth assumptions, in particular in

» The Euler-Lagrange equation reads formally as — divdF (Du) = f and
refers to the situation when the ellipticity ratio

R(z) = largest eigenvalue of 0°F(z)
" smallest eigenvalue of 92 F (z)

is unbounded for |z| — oo.

» Once Lipschitz continuity of minimizers is known, then the equation be-
comes uniformly elliptic at infinity and classical methods apply.



The variational setting

We study the minimization of variational integrals of the form

w»—>/Q[F(Dw)—f-w]dx J

among all functions w € Wh(Q,RY), with Q c R” openand n > 2, N > 1.

Aim: Identify sharp conditions on the datum f which guarantee local Lipschitz
continuity of minimizers for integrands F': RV*" — R satisfying suitable con-
vexity and growth assumptions, in particular in non-uniformly elliptic settings.

» Inthe veciorial case N > 1 there are many examples of elliptic systems of
variational and non-variational type, which admit irregular (discontinuous)

solutions.
[De Giorgi 1968, Giusti & Miranda 1968, Frehse 1973, NeCas 1975,
Sverék & Yan 2000, ...]

and here one usually supposes radial structure F(z) = F(|z|) which is
known to rule out singularities, e.g. for the p-Laplacean system.
[Uhlenbeck 1977]



Model examples of non-uniform ellipticity

Polynomial, but unbalanced growth conditions:

This is the case for anisotropic variational functionals (used e.g. for the mode-
ling of electrorheological fluids), where

F(z) = |z|" + i lz:|" withp,qi,...,qn > 1,
=1
or for perturbations of standard p-growth variational functionals, where
F(z) = |z|"log(e + |2]) withp > 1.
These are special examples of integrands satisfying a
2" S F(2) < |2 + 1
{ |2/P21E? SOPPF(2)€- € and |9°F(2)] S [2|"72 + 1

meaning that the becomes unbounded as
|z| — oo with a speed which is proportional to the gap ¢ — p.

(investigated extensively starting from the papers [Marcellini 1989 & 1991] for f = 0)



Model examples of non-uniform ellipticity

Very fast growth conditions:
This happens for instance for variational functionals of exponential growth, e.g.
F(z) =exp(|z|’) withp>1
or the iterated versions
F(2) = exp(exp(...exp(|z|’)...)) withp>1.
These can be formulated as growth conditions of the form
ai(2))[€]? S *F(2)e-¢ and |9*F(2)| < g2(2])

with functions g1, g2, and in the above examples, the ellipticity ratio R(z) =
' ) is bounded by a polynomial function or a lower order exponen-

g2(12])/91(
tial function.

(research initiated starting from the papers [Duc & Eells 1991, Lieberman 1992,
Marcellini 1996] for f = 0)



Lipschitz regularity criteria
for uniformly elliptic problems



Poisson equation — classical regularity criteria

A prototypic example of a uniformly elliptic equation is the Poisson equation
—Au=f inQCcR"forn>3,
with a source term f: Q@ — R, which is the Euler—Lagrange equation of the
variational integral
w H/ [\Dw|2 — fw]dz.
Q
Regularity criteria for weak solutions v € W*2(Q):
» Schauder theory:

Natural candidate for a solution is the Newton-potential
Ny(ao) 1= [ ®lan ~y)f()dy
Q

with ®(z) ~ |z|*>~™ the fundamental solution to the Laplace equation, and
we have
o fEL® = NyeClPforall g€ [0,1)
o feCh = Ny e C2%efora € (0,1) and solution property
(but Ny ¢ C? is possible for f € CO only!)
[Holder 1882]



Poisson equation — classical regularity criteria

A prototypic example of a uniformly elliptic equation is the Poisson equation
—Au=f inQCcR"forn>3,

with a source term f: Q@ — R, which is the Euler—Lagrange equation of the
variational integral

w / [\Dw|2 — fw]dz.
Q
Regularity criteria for weak solutions v € W*2(Q):
» Schauder theory: f € C%* = u e C**fora € (0,1)



Poisson equation — classical regularity criteria

A prototypic example of a uniformly elliptic equation is the Poisson equation
—Au=f inQCcR"forn>3,

with a source term f: Q@ — R, which is the Euler—Lagrange equation of the
variational integral

w H/ [\Dw|2 — fw]dz.
Q
Regularity criteria for weak solutions v € W*2(Q):
» Schauder theory: f € C%* = u e C**fora € (0,1)
» L” theory:

e For solutions v € W%(2) to the Poisson equation Av = div g with data in
divergence form, we have

IDvllL2 Sllgllzz and |IDvllsmo < llglizee ,
and an interpolation argument shows
IDvllze < llglize -
e Passage to the differentiated equation
ADgu =Dy f

2,p

and a localization argument then show f € LP = u € W 7.



Poisson equation — classical regularity criteria

A prototypic example of a uniformly elliptic equation is the Poisson equation
—Au=f inQCcR"forn>3,

with a source term f: Q@ — R, which is the Euler—Lagrange equation of the
variational integral
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» Schauder theory: f € C%* = u € C** fora € (0,1)
» LPtheory: feLP=uec WP
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in particular: f € L™ = 4 € C! foreache > 0



Poisson equation — classical regularity criteria

A prototypic example of a uniformly elliptic equation is the Poisson equation
—Au=f inQCcR"forn>3,

with a source term f: Q@ — R, which is the Euler—Lagrange equation of the
variational integral

w / [\Dw|2 — fw]dz.
Q
Regularity criteria for weak solutions v € W*2(Q):
» Schauder theory: f € C%* = u e C**fora € (0,1)
» LPtheory: feLP=uec WP

loc

in particular: f € L™ = 4 € C! foreache > 0
» Riesz potential theory:
e Again by representation via the fundamental solution

INg(zo)l < /}R lzo — y[>~"|f(y)| dy =: T (z0)
e and after differentiation
DNy (o)l < [ Jao ol 11wl dy = T (w0)

[Riesz 1949]



Poisson equation — classical regularity criteria

A prototypic example of a uniformly elliptic equation is the Poisson equation
—Au=f inQCcR"forn>3,

with a source term f: Q@ — R, which is the Euler—Lagrange equation of the
variational integral

w / [\Dw|2 — fw]dz.
Q
Regularity criteria for weak solutions v € W*2(Q):

» Schauder theory: f € C%* = u € C** fora € (0,1)
» LPtheory: feLP=uec WP

in particular: f € L™ = 4 € C! foreache > 0
» Riesz potential theory: I/ € L™ = u e C*



Poisson equation — classical regularity criteria

A prototypic example of a uniformly elliptic equation is the Poisson equation
—Au=f inQCcR"forn>3,

with a source term f: Q@ — R, which is the Euler—Lagrange equation of the
variational integral

w / [\Dw|2 — fw]dz.
Q
Regularity criteria for weak solutions v € W*2(Q):

» Schauder theory: f € C%* = u € C** fora € (0,1)
» LPtheory: feLP=uec WP

in particular: f € L™ = 4 € C! foreache > 0
» Riesz potential theory: I/ € L™ = u e C*

By considering truncated Riesz potentials, we also obtain local Lipschitz
estimates

Dueo) S [Du(@)]ds+ / " / Wl

Br(zo)

dp
p

f
=:1 1 (zo,R)



Poisson equation — classical regularity criteria

A prototypic example of a uniformly elliptic equation is the Poisson equation
—Au=f inQCcR"forn>3,

with a source term f: Q — R, which is the Euler—Lagrange equation of the
variational integral

w / [\Dw|2 — fw]dz.
Q
Regularity criteria for weak solutions v € W*2(Q):

» Schauder theory: f € C%* = u € C** fora € (0,1)
» LPtheory: feLP=uec WP
in particular: f € L™ = 4 € C! foreache > 0
» Riesz potential theory: I/ € L™ = u e C*
» Sharp Lipschitz regularity criterion:  f € L™! = u € C*
[Stein 1981, Cianchi 1992]



with quasi-norm

The Loreniz spaces LP” are refinements of the classical Lebesgue spaces,
o ol
e = (v [ 071w € 25 1)1 > )3
0
with the properties

1
Q ~
)\ b
» LPP = L (Cavalieri principle)

» LPY C LPY fory < o/

» LicIP cLPforallg>p

«O>» «Fr «=» <«

>

DA



Intermezzo on Lorentz spaces

The Loreniz spaces LP” are refinements of the classical Lebesgue spaces,
with quasi-norm

s = (o [~ OVl e s 151> AP )

with the properties
» LPP = LP (Cavalieri principle)
» LPY CLPY fory <+
» LicIP cLPforallg>p
For the critical space L™! in our setting we have L"*¢ ¢ L™! c L" for each

€ > 0 and a connection to the truncated Riesz potential and a nonlinear Riesz
potential via the estimate

R 1/24 ‘
(oo ®) SP o) = [ (22 f Ul an) " L5 1]
0
Bp(zo)

An example of a nontrivial function f € L™ *\L"* is given by

@) !

= — —— — for 1.
elog? (/) 0P~



Extension of the Lipschitz regularity criterion

Uniformly elliptic problems of p-growth:
We now pass to quasi-linear equations
—div(a(Du)) = f

or the minimization of the variational integral
w / [F(Dw) — fw] dz
Q

among all functions w € W7 (Q), under suitable uniform p-growth and ellip-
ticity / convexity assumptions with p > 2. The prototypic example here is the
p-Laplace equation with a(z) = |2|P"2z and F(z) = |2|*.

Surprisingly, for solutions v € W'?(Q) very similar estimates (in Lebesgue
points of Du) are available as in the linear case:
p—1
[Du(zo) P~ < ( ][ |Du(z)| dx) + 1 (20, R) + 1

Br(zo)
[Kuusi & Mingione 2013]



Extension of the Lipschitz regularity criterion

Uniformly elliptic problems of p-growth:

For solutions v € W?(Q) to — div(|Du|P~2Du) = f very similar estimates
are available as in the linear case:

pueor s (- f |Du<x>|dx)pl 1 (20, R)

Br(xo)
[Kuusi & Mingione 2013]

Notice:

>

We still have f € L™ = T{(-, R) € LS, = u € W2°, independently

from p € (1, 00) (or more generally, of the equation or variational functio-

nal considered).

For f = 0, this is the classical L°°-L”-estimate for p-harmonic functions.
[Manfredi 1988]

From a pointwise version, local higher integrability or gradient estimates
are recovered.
[lwaniec 1983, Di Benedetto & Manfredi 1993, ...]

The result extends to the vectorial case.
[Kuusi & Mingione 2018]



Extension of the Lipschitz regularity criterion

Uniformly elliptic problems of p-growth:
For solutions v € W?(Q) to — div(|Du|P~2Du) = f very similar estimates
are available as in the linear case:
p—1
IDu(zo)[P~! < ( ][ |Du(z)| dm) + 1 (z0, R)

Br(xo)
[Kuusi & Mingione 2013]

Some heuristic explanation of the linearization phenomenon:
» Though the equation is non-linear in the solution w, it is linear in some
intrinsic quantity
divo=f for v=|Duf’ *Du.

» Thus, we might expect I/ (-, R) € LS, = v € LS, with pointwise estimate

Wal S lo@)lde+ 1 (@, B)
BRr(zo)
which leads to the above estimate when setting |v| = |Du|?~* (and using

a reverse Holder inequality).



Extension of the Lipschitz regularity criterion

Uniformly elliptic problems of p-growth:
For solutions v € W?(Q) to — div(|Du|P~2Du) = f very similar estimates
are available as in the linear case:
p—1
IDu(zo)[P~! < ( ][ |Du(z)| dm) + 1] (0, R)
Br(xo)
[Kuusi & Mingione 2013]

More general uniformly elliptic problems of general growth:

Similarly, for solutions v € W' (Q) to — div(g(|Du|)Du/|Du|) = f where g is
a positive function of class C' satisfying the uniform ellipticity condition

g' ()t
g(t)
plus non-degeneracy-conditions lim;\ g(t)/t = 0 and lim;, g(t)/t = oo,
one has (in Lebesgue points of Du) the intrinsic estimate

g<|Du<a:o>|>sg( f |Du<x)|dx)+ﬂ{<xo,m.

Br(zo)

1<v<

<L

[Baroni 2015]



Lipschitz regularity criteria
for (p, ¢)-growth problems



Classical existence and regularity results

We first consider the minimization of the variational integral
w / F(Dw)dx
Q

among all functions w € W**(Q) (with given boundary values) without source
term f, for an integrand F satisfying a (p, ¢)-growth condition (for 1 < p < q)
|27 S F(2) S |27 +1
|2[P2E)? S PF(2)6- € and |9%F(2)| S |27 2+ 1

» Existence of minimizers: follows by the direct method (minimizing se-
quences are bounded in W7(Q)).



Classical existence and regularity results

We first consider the minimization of the variational integral
w / F(Dw)dx
Q

among all functions w € W**(Q) (with given boundary values) without source
term f, for an integrand F satisfying a (p, ¢)-growth condition (for 1 < p < q)

2P S F(2) S 1217 + 1
2 20e? S OF()E-€ and [9°F(2)| S |+ + 1

» Existence of minimizers: follows by the direct method (minimizing se-
quences are bounded in W7(Q)).

» Existence of irregular minimizers: a condition on the gap ¢/p < 1+ o(n)
is necessary for boundedness/regularity.
[Marcellini 1987 & 1991, Giaquinta 1987, Hong 1992]

For the variational integral with integrand
n—1
1 X n—1
F(z) = 3 ; lz:]? + Elz"‘q with ¢ > zm,

there exists an unbounded minimizer with a discontinuity along a line!



Classical existence and regularity results

We first consider the minimization of the variational integral
w / F(Dw)dx
Q

among all functions w € W**(Q) (with given boundary values) without source
term f, for an integrand F satisfying a (p, ¢)-growth condition (for 1 < p < q)

2P S F(2) S 1217 + 1
2 20e? S OF()E-€ and [9°F(2)| S |+ + 1

» Regularity of minimizers: the condition ¢/p < 1 + o(n) is also sufficient for
We°.regularity of solutions.

A lot of results, starting from
0 ueWh?=yeWh>ifg/p <n/(n—2)
[Marcellini 1991]
@ ue WP = uc Whiifg/p < 1+2/n<n/(n—2)
[Esposito, Leonetti & Mingione 1999]

with local Lipschitz estimate reflecting the unbalanced polynomial growth

[IDullLee (B (0)) < ][ Frl)rl)dx) T 4

Bagr(z0)



Classical existence and regularity results

We first consider the minimization of the variational integral
w / F(Dw)dx
Q

among all functions w € W**(Q) (with given boundary values) without source
term f, for an integrand F satisfying a (p, ¢)-growth condition (for 1 < p < q)

2P S F(2) S 1217 + 1
2 20e? S OF()E-€ and [9°F(2)| S |+ + 1

» Regularity of minimizers: the condition ¢/p < 1 + o(n) is also sufficient for
We°.regularity of solutions.

A lot of results, starting from
@ uc W = uec W ifg/p < n/(n—2)
[Marcellini 1991]
@ ue WP = uc Whiifg/p < 1+2/n<n/(n—2)
[Esposito, Leonetti & Mingione 1999]
This bound was recently improved in this general settingto ¢/p < 1 +2/(n — 1).
[Bella & Schaffner 2019]



A Caccioppoli inequality for an intrinsic quantity

We next include a source term and consider minimizers of the variational inte-
gralw — [, [F(Dw)— fw] da under (p, q)-growth assumptions (for 2 < p < q)
|27 S F(2) S 2|7 +1
|z|”72|£|2 < O?F(z)€-€ and |82F(z)| < |z|"*2 +1

Theorem (Caccioppoli inequality)

Consider a ball B, inR", f € 1L2(B,), and a minimizer w ¢ W">°(B,.). Then,
for each k € Rt, we have

/B |D(IDul? — &)+ |* da

/2

S [ IDur(DuP - K do+ [ DuPlfdo

7 7

(independently of r).

v

(W1 °°-regularity to be justified in the end by approximation)



A Caccioppoli inequality for an intrinsic quantity

Strategy of proof:
@ Pass to the Euler-Lagrange equation

OF (Du) - Dpdx = fedz forall p € Cy(B,).

B, B,

@ Due to the W!> assumption, standard regularity theory applies and we
have
u€ WHA(B,).

loc

@ Pass to the differentiated Euler—Lagrange equation (o — Dsy)

O’F(Du)DD,u-Dode = — [ fD.pdz forall g € Co(B,).

B, B,

Q Use v = D.u(|Dul” k) 1", with a localization function € C§(B,; [0, 1])
(which is then chosen with = 1 in B,./» and |Dn| < 7~ ') and employ the
growth assumptions on 9°F.



So far ... a minimizer u € W+ (B,.) satisfies

/ ID([Duf” — k) 2 de
Br/2

57“2/ Dul* P (|Dul” — k)2 dw+/ Duf*|f|* do

™

«O» «Fr «=»r «

>

DA



The Caccioppoli inequality implies local Lipschitz regularity

So far ... a minimizer u € W"*°(B,.) satisfies forallk > 1and r < R

/ ID(|Dul” — k)+|* da
B, /2
S [ IDutr D < Ko+ [ DuPlfdo

™ ™

< IDull{ s, /B (IDul? = 1)} do+ Dl [ 1917 e,
r B

a Caccioppoli inequality of balanced growth, but involving constants in terms
of ||Dul|ree.



The Caccioppoli inequality implies local Lipschitz regularity

So far ... a minimizer v € W"*°(B,.) satisfies
[ Ip(Dup - k.o

B, /2

57“_2/ |Du|?"P(|Dul? — k)3 dx"‘/ |Du®|f]? dz
B

T r

S IDUlE ™ [ (DU = K} o+ Dl [ 11 d,
B, By

a Caccioppoli inequality of balanced growth, but involving constants in terms
of ||Dul|ree.

De Giorgi iteration a la [Kilpeldinen & Maly 1994]:
Consider a ball Bg = Br(xzo) in R™, f € L?(Bg), and a function v € W'2(Bg),

which satisfies
ID(v — k)4 |*de < Mir—2 / (v — k)% dz + M / |f? dz
Br/2 Br B
forall k > ko and » < R. Then we have
n 1 n—2
v(zo)y — ko < M2 (f vidz)? 4+ M, 2 MaP (20, R)

BRr



The Caccioppoli inequality implies local Lipschitz regularity

So far ... a minimizer v € W"*°(B,.) satisfies
[ Ip(Dup - k.o

B, /2

57“_2/ |Du|?"P(|Dul? — k)3 dx"‘/ |Du®|f]? dz
B

T r

S IDUlE ™ [ (DU = K} o+ Dl [ 11 d,
B, By

a Caccioppoli inequality of balanced growth, but involving constants in terms
of ||Dul|r.e= . This implies

_ 1 o
Dutao)l” S Dl Z A, (f D6 de)? + Dul ;T 7,
o)l < L (BR) L°°(BR)
Br

P/ (zo, R) + 1

De Giorgi iteration a la [Kilpeldinen & Maly 1994]:
Consider a ball Bg = Br(xzo) in R™, f € L?(Bg), and a function v € W'2(Bg),

which satisfies
ID(v — k)4 |*de < Mir—2 / (v — k)% dz + M / |f? dz
Br/2 Br B
forall k > ko and » < R. Then we have
n 1 n—2
v(zo)y — ko < M2 (f vidz)? 4+ M, 2 MaP (20, R)

BRr



The Caccioppoli inequality implies local Lipschitz regularity

So far ... a minimizer u € W"*°(B,.) satisfies

9—Pn

1 P
4—prn 2% 3 a-pn=2_4
Duao)P < HDUHL;(;R)(][ [Dul” dar)* + [DullyZ 2, TP (o, R) +1

Br

—Pn —P
S IIDul 2 2 Dul dz)* + [Dul T P (o, B) + 1
( R) (
R

and this gives a reasonable a priori Lipschitz bound, provided that

2
uEJr 5 <P © To142
2 p n
(then also 452252 +1 < 4522 + B < p). By a (technical) iteration scheme,
we conclude in this case with

2
(n+2)p—nq ﬁ
Dl (B ) S <][ |Du|pdx) FIAIE TRy 7 +1

Br




Local Lipschitz regularity result

Theorem (B.-Mingione 2020)

Consider an integrand F satisfying the (p, q)-growth condition, with2 < p < q,
and f € L™(Q). If £ < 1+ 2 holds, then every minimizer u of the functional

w i [, [F(Dw) — fw] dz is locally Lipschitz continuous with

2
m %,n,
IDullLee (B0 S <][ F(Du) da:) + AT P 1
Br
for every ball Br C ).

Remarks:

» One needs to work with u® e WL (e.g. via bounded
slope condition, [Bousquet & Brasco 2016]) and then pass to the limit in
the uniform estimates.

» This estimate reduces to the classical estimates for p-growth and for
(p, q)-growth without source term.

» The results extends to the vectorial setting under radial structure F'(z) =
F(|z]).




A more general local Lipschitz regularity result

The strategy of proof can actually be performed for a very general class of
non-uniformly elliptic variational functionals w — [, [F(Dw) — fw] dz with a
convex integrand F' satisfying

g1l S O°F(2)¢-¢ and |9°F ()] < g2(|2])

with functions g1, g2. Supposing that
» t — tg1(t) is non-decreasing and grows at least as ¢” for some ¢ > 0,
> [*1g1(t)dt provides a “lower bound” to F(z) (modulo suitable power),
> ¢t — g2(t)/g1(¢) is non-decreasing and grows “not too fast”

and that the source term satisfies
> fel™(Q),

then every minimizer is locally Lipschitz continuous with quantified estimate
formulated in terms of intrinsic quantities of D.



Specification to a simple exponential case

Theorem (B.-Mingione 2020)

Consider the integrand F(z) = exp(|z|P) for some p > 1 and f € L™*(Q).
Then every minimizer u of the functional w — [, [F(Dw) — fw] dx is locally
Lipschitz continuous. Moreover, in the case f = 0, there holds

DU 5, 5 T8 ( f exp(iDup) ) +1
Br
for every ball B C .

Remarks:

» From the heuristic viewpoint, large values of |Du| are very expensive and
regularity theory should be easier (as opposed to linear growth problems
which are excluded in our results);

» The results extends to the vectorial setting;

» Previously, local Lipschitz regularity was only known in the case f = 0,
with a bound with a loss of an exponential scale compared to the estimate

ve.
above [Marcellini 1996]




Thank you for the attention!



