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Introduction
to the general topic



The variational setting

We study the minimization of variational integrals of the form

w 7→
∫

Ω

[
F (Dw)− f · w

]
dx

among all functions w ∈W1,1(Ω,RN ), with Ω ⊂ Rn open and n ≥ 2, N ≥ 1.

Aim: Identify sharp conditions on the datum f which guarantee local Lipschitz
continuity of minimizers for integrands F : RN×n → R satisfying suitable con-
vexity and growth assumptions, in particular in non-uniformly elliptic settings.

I The Euler–Lagrange equation reads formally as −div ∂F (Du) = f and
non-uniform ellipticity refers to the situation when the ellipticity ratio

R(z) :=
largest eigenvalue of ∂2F (z)

smallest eigenvalue of ∂2F (z)

is unbounded for |z| → ∞.
I Once Lipschitz continuity of minimizers is known, then the equation be-

comes uniformly elliptic at infinity and classical methods apply.
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We study the minimization of variational integrals of the form

w 7→
∫

Ω

[
F (Dw)− f · w

]
dx

among all functions w ∈W1,1(Ω,RN ), with Ω ⊂ Rn open and n ≥ 2, N ≥ 1.

Aim: Identify sharp conditions on the datum f which guarantee local Lipschitz
continuity of minimizers for integrands F : RN×n → R satisfying suitable con-
vexity and growth assumptions, in particular in non-uniformly elliptic settings.

I In the vectorial caseN > 1 there are many examples of elliptic systems of
variational and non-variational type, which admit irregular (discontinuous)
solutions.

[De Giorgi 1968, Giusti & Miranda 1968, Frehse 1973, Nečas 1975,
Šverák & Yan 2000, . . . ]

and here one usually supposes radial structure F (z) = F̃ (|z|) which is
known to rule out singularities, e.g. for the p-Laplacean system.

[Uhlenbeck 1977]



Model examples of non-uniform ellipticity

Polynomial, but unbalanced growth conditions:

This is the case for anisotropic variational functionals (used e.g. for the mode-
ling of electrorheological fluids), where

F (z) = |z|p +

n∑
i=1

|zi|qi with p, q1, . . . , qn > 1 ,

or for perturbations of standard p-growth variational functionals, where

F (z) = |z|p log(e + |z|) with p > 1 .

These are special examples of integrands satisfying a (p, q)-growth condition{
|z|p . F (z) . |z|q + 1

|z|p−2|ξ|2 . ∂2F (z)ξ · ξ and |∂2F (z)| . |z|q−2 + 1

meaning that the ellipticity ratio R(z) . |z|q−p + 1 becomes unbounded as
|z| → ∞ with a speed which is proportional to the gap q − p.

(investigated extensively starting from the papers [Marcellini 1989 & 1991] for f ≡ 0)



Model examples of non-uniform ellipticity

Very fast growth conditions:

This happens for instance for variational functionals of exponential growth, e.g.

F (z) = exp(|z|p) with p > 1

or the iterated versions

F (z) = exp(exp(. . . exp(|z|p) . . .)) with p > 1 .

These can be formulated as growth conditions of the form

g1(|z|)|ξ|2 . ∂2F (z)ξ · ξ and |∂2F (z)| . g2(|z|)

with functions g1, g2, and in the above examples, the ellipticity ratio R(z) =
g2(|z|)/g1(|z|) is bounded by a polynomial function or a lower order exponen-
tial function.

(research initiated starting from the papers [Duc & Eells 1991, Lieberman 1992,
Marcellini 1996] for f ≡ 0)



Lipschitz regularity criteria
for uniformly elliptic problems



Poisson equation – classical regularity criteria

A prototypic example of a uniformly elliptic equation is the Poisson equation

−∆u = f in Ω ⊂ Rn for n ≥ 3 ,

with a source term f : Ω → R, which is the Euler–Lagrange equation of the
variational integral

w 7→
∫

Ω

[
|Dw|2 − fw

]
dx .

Regularity criteria for weak solutions u ∈W1,2(Ω):

I Schauder theory:

Natural candidate for a solution is the Newton-potential

Nf (x0) :=

∫
Ω

Φ(x0 − y)f(y)dy

with Φ(x) ∼ |x|2−n the fundamental solution to the Laplace equation, and
we have

f ∈ L∞ ⇒ Nf ∈ C1,β for all β ∈ [0, 1)

f ∈ C0,α ⇒ Nf ∈ C2,α for α ∈ (0, 1) and solution property
(but Nf /∈ C2 is possible for f ∈ C0 only!)

[Hölder 1882]
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−∆u = f in Ω ⊂ Rn for n ≥ 3 ,
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divergence form, we have
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and an interpolation argument shows

‖Dv‖Lp . ‖g‖Lp .

Passage to the differentiated equation

∆Dku = Dkf

and a localization argument then show f ∈ Lp ⇒ u ∈W2,p
loc .
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in particular: f ∈ Ln+ε ⇒ u ∈ C1 for each ε > 0

I Riesz potential theory:
Again by representation via the fundamental solution

|Nf (x0)| .
∫
Rn
|x0 − y|2−n|f(y)| dy =: If2 (x0)

and after differentiation

|DNf (x0)| .
∫
Rn
|x0 − y|1−n|f(y)| dy =: If1 (x0)

[Riesz 1949]



Poisson equation – classical regularity criteria

A prototypic example of a uniformly elliptic equation is the Poisson equation

−∆u = f in Ω ⊂ Rn for n ≥ 3 ,

with a source term f : Ω → R, which is the Euler–Lagrange equation of the
variational integral

w 7→
∫

Ω

[
|Dw|2 − fw

]
dx .

Regularity criteria for weak solutions u ∈W1,2(Ω):

I Schauder theory: f ∈ C0,α ⇒ u ∈ C2,α for α ∈ (0, 1)

I Lp theory: f ∈ Lp ⇒ u ∈W2,p
loc

in particular: f ∈ Ln+ε ⇒ u ∈ C1 for each ε > 0

I Riesz potential theory: If1 ∈ L∞ ⇒ u ∈ C1



Poisson equation – classical regularity criteria

A prototypic example of a uniformly elliptic equation is the Poisson equation

−∆u = f in Ω ⊂ Rn for n ≥ 3 ,

with a source term f : Ω → R, which is the Euler–Lagrange equation of the
variational integral

w 7→
∫
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[
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loc

in particular: f ∈ Ln+ε ⇒ u ∈ C1 for each ε > 0

I Riesz potential theory: If1 ∈ L∞ ⇒ u ∈ C1

By considering truncated Riesz potentials, we also obtain local Lipschitz
estimates

|Du(x0)| .
∫
−

BR(x0)

|Du(x)| dx+

∫ R

0

ρ1−n
∫
Bρ(x0)

|f(y)| dy dρ

ρ︸ ︷︷ ︸
=:I

f
1 (x0,R)



Poisson equation – classical regularity criteria

A prototypic example of a uniformly elliptic equation is the Poisson equation

−∆u = f in Ω ⊂ Rn for n ≥ 3 ,

with a source term f : Ω → R, which is the Euler–Lagrange equation of the
variational integral

w 7→
∫

Ω

[
|Dw|2 − fw

]
dx .

Regularity criteria for weak solutions u ∈W1,2(Ω):

I Schauder theory: f ∈ C0,α ⇒ u ∈ C2,α for α ∈ (0, 1)

I Lp theory: f ∈ Lp ⇒ u ∈W2,p
loc

in particular: f ∈ Ln+ε ⇒ u ∈ C1 for each ε > 0

I Riesz potential theory: If1 ∈ L∞ ⇒ u ∈ C1

I Sharp Lipschitz regularity criterion: f ∈ Ln,1 ⇒ u ∈ C1

[Stein 1981, Cianchi 1992]



Intermezzo on Lorentz spaces

The Lorentz spaces Lp,γ are refinements of the classical Lebesgue spaces,
with quasi-norm

‖f‖Lp,γ =

(
p

∫ ∞
0

(
λp|{y ∈ Ω: |f(y)| > λ}|

) γ
p

dλ

λ

) 1
γ

,

with the properties
I Lp,p = Lp (Cavalieri principle)
I Lp,γ ⊂ Lp,γ

′
for γ ≤ γ′

I Lq ⊂ Lp,1 ⊂ Lp for all q > p

For the critical space Ln,1 in our setting we have Ln+ε ⊂ Ln,1 ⊂ Ln for each
ε > 0 and a connection to the truncated Riesz potential and a nonlinear Riesz
potential via the estimate

I
f
1 (x0, R) . Pf (x0, R) :=

∫ R

0

(
ρ2

∫
−

Bρ(x0)

|f(y)|2 dy
)1/2 dρ

ρ
. ‖f‖Ln,1

An example of a nontrivial function f ∈ Ln,1\Ln+ε is given by

f(x) =
1

|x| logβ(1/|x|)
for β > 1 .
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Extension of the Lipschitz regularity criterion

Uniformly elliptic problems of p-growth:

We now pass to quasi-linear equations

−div(a(Du)) = f

or the minimization of the variational integral

w 7→
∫

Ω

[
F (Dw)− fw

]
dx

among all functions w ∈ W1,p(Ω), under suitable uniform p-growth and ellip-
ticity / convexity assumptions with p ≥ 2. The prototypic example here is the
p-Laplace equation with a(z) = |z|p−2z and F (z) = |z|p.

Surprisingly, for solutions u ∈ W1,p(Ω) very similar estimates (in Lebesgue
points of Du) are available as in the linear case:

|Du(x0)|p−1 .

( ∫
−

BR(x0)

|Du(x)|dx
)p−1

+ If1 (x0, R) + 1

[Kuusi & Mingione 2013]



Extension of the Lipschitz regularity criterion

Uniformly elliptic problems of p-growth:

For solutions u ∈ W1,p(Ω) to −div(|Du|p−2Du) = f very similar estimates
are available as in the linear case:

|Du(x0)|p−1 .

( ∫
−

BR(x0)

|Du(x)| dx
)p−1

+ If1 (x0, R)

[Kuusi & Mingione 2013]

Notice:

I We still have f ∈ Ln,1 ⇒ I
f
1 (·, R) ∈ L∞loc ⇒ u ∈ W1,∞

loc , independently
from p ∈ (1,∞) (or more generally, of the equation or variational functio-
nal considered).

I For f ≡ 0, this is the classical L∞-Lp-estimate for p-harmonic functions.
[Manfredi 1988]

I From a pointwise version, local higher integrability or gradient estimates
are recovered.

[Iwaniec 1983, Di Benedetto & Manfredi 1993, . . . ]

I The result extends to the vectorial case.
[Kuusi & Mingione 2018]



Extension of the Lipschitz regularity criterion

Uniformly elliptic problems of p-growth:

For solutions u ∈ W1,p(Ω) to −div(|Du|p−2Du) = f very similar estimates
are available as in the linear case:

|Du(x0)|p−1 .

( ∫
−

BR(x0)

|Du(x)| dx
)p−1

+ If1 (x0, R)

[Kuusi & Mingione 2013]

Some heuristic explanation of the linearization phenomenon:

I Though the equation is non-linear in the solution u, it is linear in some
intrinsic quantity

div v = f for v = |Du|p−2Du .

I Thus, we might expect If1 (·, R) ∈ L∞loc ⇒ v ∈ L∞loc with pointwise estimate

|v(x0)| .
∫
−

BR(x0)

|v(x)|dx+ If1 (x0, R)

which leads to the above estimate when setting |v| = |Du|p−1 (and using
a reverse Hölder inequality).



Extension of the Lipschitz regularity criterion

Uniformly elliptic problems of p-growth:

For solutions u ∈ W1,p(Ω) to −div(|Du|p−2Du) = f very similar estimates
are available as in the linear case:

|Du(x0)|p−1 .

( ∫
−

BR(x0)

|Du(x)| dx
)p−1

+ If1 (x0, R)

[Kuusi & Mingione 2013]

More general uniformly elliptic problems of general growth:

Similarly, for solutions u ∈W1,1(Ω) to − div(g(|Du|)Du/|Du|) = f where g is
a positive function of class C1 satisfying the uniform ellipticity condition

1 ≤ ν ≤ g′(t)t

g(t)
≤ L

plus non-degeneracy-conditions limt↘0 g(t)/t = 0 and limt→∞ g(t)/t = ∞,
one has (in Lebesgue points of Du) the intrinsic estimate

g(|Du(x0)|) . g

( ∫
−

BR(x0)

|Du(x)|dx
)

+ If1 (x0, R) .

[Baroni 2015]



Lipschitz regularity criteria
for (p, q)-growth problems



Classical existence and regularity results

We first consider the minimization of the variational integral

w 7→
∫

Ω

F (Dw) dx

among all functions w ∈W1,1(Ω) (with given boundary values) without source
term f , for an integrand F satisfying a (p, q)-growth condition (for 1 < p ≤ q){

|z|p . F (z) . |z|q + 1

|z|p−2|ξ|2 . ∂2F (z)ξ · ξ and |∂2F (z)| . |z|q−2 + 1

I Existence of minimizers: follows by the direct method (minimizing se-
quences are bounded in W1,p(Ω)).
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w 7→
∫

Ω

F (Dw) dx

among all functions w ∈W1,1(Ω) (with given boundary values) without source
term f , for an integrand F satisfying a (p, q)-growth condition (for 1 < p ≤ q){

|z|p . F (z) . |z|q + 1

|z|p−2|ξ|2 . ∂2F (z)ξ · ξ and |∂2F (z)| . |z|q−2 + 1

I Existence of minimizers: follows by the direct method (minimizing se-
quences are bounded in W1,p(Ω)).

I Existence of irregular minimizers: a condition on the gap q/p ≤ 1 + o(n)
is necessary for boundedness/regularity.

[Marcellini 1987 & 1991, Giaquinta 1987, Hong 1992]

For the variational integral with integrand

F (z) =
1

2

n−1∑
i=1

|zi|2 +
1

q
|zn|q with q > 2

n− 1

n− 3
,

there exists an unbounded minimizer with a discontinuity along a line!
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|z|p . F (z) . |z|q + 1

|z|p−2|ξ|2 . ∂2F (z)ξ · ξ and |∂2F (z)| . |z|q−2 + 1

I Regularity of minimizers: the condition q/p ≤ 1 + o(n) is also sufficient for
W1,∞-regularity of solutions.

A lot of results, starting from
u ∈W1,q ⇒ u ∈W1,∞ if q/p < n/(n− 2)

[Marcellini 1991]
u ∈W1,p ⇒ u ∈W1,q if q/p < 1 + 2/n < n/(n− 2)

[Esposito, Leonetti & Mingione 1999]
with local Lipschitz estimate reflecting the unbalanced polynomial growth

‖Du‖L∞(BR(x0)) .
( ∫

−
B2R(x0)

F (Du) dx

) 2
(n+2)p−nq

+ 1



Classical existence and regularity results

We first consider the minimization of the variational integral

w 7→
∫

Ω

F (Dw) dx

among all functions w ∈W1,1(Ω) (with given boundary values) without source
term f , for an integrand F satisfying a (p, q)-growth condition (for 1 < p ≤ q){

|z|p . F (z) . |z|q + 1

|z|p−2|ξ|2 . ∂2F (z)ξ · ξ and |∂2F (z)| . |z|q−2 + 1

I Regularity of minimizers: the condition q/p ≤ 1 + o(n) is also sufficient for
W1,∞-regularity of solutions.

A lot of results, starting from
u ∈W1,q ⇒ u ∈W1,∞ if q/p < n/(n− 2)

[Marcellini 1991]
u ∈W1,p ⇒ u ∈W1,q if q/p < 1 + 2/n < n/(n− 2)

[Esposito, Leonetti & Mingione 1999]
This bound was recently improved in this general setting to q/p < 1 + 2/(n− 1).

[Bella & Schäffner 2019]



A Caccioppoli inequality for an intrinsic quantity

We next include a source term and consider minimizers of the variational inte-
gral w 7→

∫
Ω

[
F (Dw)−fw

]
dx under (p, q)-growth assumptions (for 2 ≤ p ≤ q){
|z|p . F (z) . |z|q + 1

|z|p−2|ξ|2 . ∂2F (z)ξ · ξ and |∂2F (z)| . |z|q−2 + 1

Theorem (Caccioppoli inequality)

Consider a ball Br in Rn, f ∈ L2(Br), and a minimizer u ∈W1,∞(Br). Then,
for each k ∈ R+, we have∫

Br/2

∣∣D(|Du|p − k)+

∣∣2 dx

. r−2

∫
Br

|Du|q−p(|Du|p − k)2
+ dx+

∫
Br

|Du|2|f |2 dx

(independently of r).

(W1,∞-regularity to be justified in the end by approximation)



A Caccioppoli inequality for an intrinsic quantity

Strategy of proof:

1 Pass to the Euler–Lagrange equation∫
Br

∂F (Du) ·Dϕdx =

∫
Br

fϕdx for all ϕ ∈ C1
0(Br) .

2 Due to the W1,∞ assumption, standard regularity theory applies and we
have

u ∈W2,2
loc(Br) .

3 Pass to the differentiated Euler–Lagrange equation (ϕ→ Dsϕ)∫
Br

∂2F (Du)DDsu ·Dϕ dx = −
∫
Br

fDsϕdx for all ϕ ∈ C1
0(Br) .

4 Use ϕ = Dsu(|Du|p−k)+η
2, with a localization function η ∈ C1

0(Br; [0, 1])
(which is then chosen with η ≡ 1 in Br/2 and |Dη| . r−1) and employ the
growth assumptions on ∂2F .



The Caccioppoli inequality implies local Lipschitz regularity

So far ... a minimizer u ∈W1,∞(Br) satisfies

for all k ≥ 1 and r ≤ R

∫
Br/2

|D(|Du|p − k)+|2 dx

. r−2

∫
Br

|Du|q−p(|Du|p − k)2
+ dx+

∫
Br

|Du|2|f |2 dx

. ‖Du‖q−pL∞(BR)r
−2

∫
Br

(|Du|p − k)2
+ dx+ ‖Du‖2L∞(BR)

∫
Br

|f |2 dx ,

a Caccioppoli inequality of balanced growth, but involving constants in terms
of ‖Du‖L∞ . This implies

|Du(x0)|p . ‖Du‖
q−p
2

n
2

L∞(BR)

( ∫
−
BR

|Du|2p dx
) 1

2
+ ‖Du‖

q−p
2

n−2
2

+1

L∞(BR) P
f (x0, R) + 1
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( ∫
−
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De Giorgi iteration à la [Kilpeläinen & Malý 1994]:
Consider a ball BR = BR(x0) in Rn, f ∈ L2(BR), and a function v ∈ W1,2(BR),
which satisfies∫

Br/2

|D(v − k)+|2 dx . M
2
1 r
−2
∫
Br

(v − k)2+ dx+M
2
2

∫
Br

|f |2 dx

for all k ≥ k0 and r ≤ R. Then we have

v(x0)+ − k0 . M
n
2
1

( ∫
−
BR

v
2
+ dx

) 1
2 +M

n−2
2

1 M2P
f
(x0, R)



The Caccioppoli inequality implies local Lipschitz regularity

So far ... a minimizer u ∈W1,∞(Br) satisfies

for all k ≥ 1 and r ≤ R

∫
Br/2

|D(|Du|p − k)+|2 dx

. r−2

∫
Br

|Du|q−p(|Du|p − k)2
+ dx+

∫
Br

|Du|2|f |2 dx

. ‖Du‖q−pL∞(BR)r
−2

∫
Br

(|Du|p − k)2
+ dx+ ‖Du‖2L∞(BR)

∫
Br

|f |2 dx ,

a Caccioppoli inequality of balanced growth, but involving constants in terms
of ‖Du‖L∞ . This implies
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( ∫
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BR

|Du|2p dx
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L∞(BR) P
f (x0, R) + 1

De Giorgi iteration à la [Kilpeläinen & Malý 1994]:
Consider a ball BR = BR(x0) in Rn, f ∈ L2(BR), and a function v ∈ W1,2(BR),
which satisfies∫
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The Caccioppoli inequality implies local Lipschitz regularity

So far ... a minimizer u ∈W1,∞(Br) satisfies

|Du(x0)|p . ‖Du‖
q−p
2

n
2

L∞(BR)

( ∫
−
BR

|Du|2p dx
) 1

2
+ ‖Du‖

q−p
2

n−2
2

+1

L∞(BR) P
f (x0, R) + 1

. ‖Du‖
q−p
2

n
2

+ p
2

L∞(BR)

( ∫
−
BR

|Du|p dx
) 1

2
+ ‖Du‖

q−p
2

n−2
2

+1

L∞(BR) P
f (x0, R) + 1

and this gives a reasonable a priori Lipschitz bound, provided that

q − p
2

n

2
+
p

2
< p ⇔ q

p
< 1 +

2

n

(then also q−p
2

n−2
2

+ 1 ≤ q−p
2

n
2

+ p
2
< p). By a (technical) iteration scheme,

we conclude in this case with

‖Du‖L∞(BR/2) .

( ∫
−
BR

|Du|p dx

) 2
(n+2)p−nq

+ ‖f‖
4

4(p−1)−(q−p)(n−2)
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+ 1



Local Lipschitz regularity result

Theorem (B.-Mingione 2020)
Consider an integrand F satisfying the (p, q)-growth condition, with 2 ≤ p ≤ q,
and f ∈ Ln,1(Ω). If q

p
< 1 + 2

n
holds, then every minimizer u of the functional

w 7→
∫

Ω

[
F (Dw)− fw

]
dx is locally Lipschitz continuous with

‖Du‖L∞(BR/2) .

( ∫
−
BR

F (Du) dx

) 2
(n+2)p−nq

+ ‖f‖
4

4(p−1)−(q−p)(n−2)

Ln,1(BR)
+ 1

for every ball BR ⊂ Ω.

Remarks:
I One needs to work with approximations u(k) ∈ W1,∞ (e.g. via bounded

slope condition, [Bousquet & Brasco 2016]) and then pass to the limit in
the uniform estimates.

I This estimate reduces to the classical estimates for p-growth and for
(p, q)-growth without source term.

I The results extends to the vectorial setting under radial structure F (z) =

F̃ (|z|).



A more general local Lipschitz regularity result

The strategy of proof can actually be performed for a very general class of
non-uniformly elliptic variational functionals w 7→

∫
Ω

[
F (Dw) − fw

]
dx with a

convex integrand F satisfying

g1(|z|)|ξ|2 . ∂2F (z)ξ · ξ and |∂2F (z)| . g2(|z|)

with functions g1, g2. Supposing that
I t 7→ tg1(t) is non-decreasing and grows at least as tσ for some σ > 0,

I
∫ |z|

0
tg1(t)dt provides a “lower bound” to F (z) (modulo suitable power),

I t 7→ g2(t)/g1(t) is non-decreasing and grows “not too fast”

and that the source term satisfies
I f ∈ Ln,1(Ω),

then every minimizer is locally Lipschitz continuous with quantified estimate
formulated in terms of intrinsic quantities of Du.



Specification to a simple exponential case

Theorem (B.-Mingione 2020)

Consider the integrand F (z) = exp(|z|p) for some p > 1 and f ∈ Ln,1(Ω).
Then every minimizer u of the functional w 7→

∫
Ω

[
F (Dw) − fw

]
dx is locally

Lipschitz continuous. Moreover, in the case f ≡ 0, there holds

‖Du‖pL∞(BR/2) . log

( ∫
−
BR

exp(|Du|p) dx

)
+ 1

for every ball BR ⊂ Ω.

Remarks:
I From the heuristic viewpoint, large values of |Du| are very expensive and

regularity theory should be easier (as opposed to linear growth problems
which are excluded in our results);

I The results extends to the vectorial setting;
I Previously, local Lipschitz regularity was only known in the case f ≡ 0,

with a bound with a loss of an exponential scale compared to the estimate
above.

[Marcellini 1996]



Thank you for the attention!


