Convergence of Smoothed Empirical Measures under Wasserstein Distance

Yury Polyanskiy

Joint work Zeyu Jia, Adam Block, and Sasha Rakhlin

Massachusetts Institute of Technology

November 30, 2021

- Empirical Measures: Given distribution \mathbb{P} , the empirical measure of \mathbb{P} is $\mathbb{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$, where $X_i \sim \mathbb{P}$;
- Smoothed Empirical Measures: For given σ , the smoothed empirical measure is the convolution of empirical measure and $\mathcal{N}(0, \sigma^2)$:

 $\mathbb{P}_n * \mathcal{N}(0, \sigma^2).$

- Empirical Measures: Given distribution \mathbb{P} , the empirical measure of \mathbb{P} is $\mathbb{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$, where $X_i \sim \mathbb{P}$;
- Smoothed Empirical Measures: For given σ , the smoothed empirical measure is the convolution of empirical measure and $\mathcal{N}(0, \sigma^2)$:

 $\mathbb{P}_n * \mathcal{N}(0, \sigma^2).$

• Why?

<u>Feedforward DNN</u>: Each layer $T_{\ell} = f_{\ell}(T_{\ell-1})$

<u>Feedforward DNN</u>: Each layer $T_{\ell} = f_{\ell}(T_{\ell-1})$

How to talk about $I(Y; T_{\ell}) \& I(X; T_{\ell})$?

- Formally: these are (almost) indep of DNN weights if X is discrete
- **2** Practically: Should not bother about info at 10^{-6} scale...
- Our solution: add noise to neuron outputs

Textbook idea

Mathematical **Foundations of** Infinite-Dimensional **Statistical Models**

Evarist Giné **Richard Nickl**

5	Linear Nonparametric Estimators	389
5.1	Kernel and Projection-Type Estimators	389
	5.1.1 Moment Bounds	391
	5.1.2 Exponential Inequalities, Higher Moments and Almost-Sure Limit	
	Theorems	405
	5.1.3 A Distributional Limit Theorem for Uniform Deviations*	411
5.2	Weak and Multiscale Metrics	421
	5.2.1 Smoothed Empirical Processes	421
	5.2.2 Multiscale Spaces	434
5.3	Some Further Topics	439
	5.3.1 Estimation of Functionals	439
	5.3.2 Deconvolution	451
5.4	Notes	462

 $\begin{array}{l} \underline{p\text{-Wasserstein Distance:}} \text{ For two distributions } P \text{ and } Q \text{ on } \mathbb{R}^d \text{ and} \\ \hline p \geq 1 \\ W_p(P,Q) \triangleq \inf \left(\mathbb{E} \|X - Y\|^p \right)^{1/p} \\ \text{infimum over all couplings of } P \text{ and } Q \end{array}$

 $\begin{array}{l} \underline{p\text{-Wasserstein Distance:}} \text{ For two distributions } P \text{ and } Q \text{ on } \mathbb{R}^d \text{ and } \\ p \geq 1 \\ W_p(P,Q) \triangleq \inf \left(\mathbb{E} \|X - Y\|^p \right)^{1/p} \\ \text{infimum over all couplings of } P \text{ and } Q \end{array}$

Empirical 1-Wasserstein Distance:

<u>p-Wasserstein Distance</u>: For two distributions P and Q on \mathbb{R}^d and $p \ge 1$ $W_p(P, Q) \triangleq \inf (\mathbb{E} ||X - Y||^p)^{1/p}$ infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

• Distribution P on \mathbb{R}^d

 $\begin{array}{c} \underline{p\text{-Wasserstein Distance:}} \text{ For two distributions } P \text{ and } Q \text{ on } \mathbb{R}^d \text{ and} \\ p \geq 1 \\ W_p(P,Q) \triangleq \inf \left(\mathbb{E} \|X - Y\|^p \right)^{1/p} \\ \text{infimum over all couplings of } P \text{ and } Q \end{array}$

Empirical 1-Wasserstein Distance:

• Distribution P on $\mathbb{R}^d \implies \text{i.i.d. Samples } (X_i)_{i=1}^n$

<u>p-Wasserstein Distance</u>: For two distributions P and Q on \mathbb{R}^d and $p \ge 1$ $W_p(P, Q) \triangleq \inf (\mathbb{E} ||X - Y||^p)^{1/p}$ infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

• Distribution P on $\mathbb{R}^d \implies \text{i.i.d. Samples } (X_i)_{i=1}^n$

• Empirical distribution $\mathbb{P}_n \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$

<u>p-Wasserstein Distance</u>: For two distributions P and Q on \mathbb{R}^d and $p \ge 1$ $W_p(P, Q) \triangleq \inf (\mathbb{E} ||X - Y||^p)^{1/p}$ infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

- Distribution P on $\mathbb{R}^d \implies \text{i.i.d. Samples } (X_i)_{i=1}^n$
- Empirical distribution $\mathbb{P}_n \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$

 \implies Dependence on (n, d) of $\mathbb{E}W_1(P, \mathbb{P}_n)$

<u>p-Wasserstein Distance</u>: For two distributions P and Q on \mathbb{R}^d and $p \ge 1$ $W_p(P, Q) \triangleq \inf (\mathbb{E} ||X - Y||^p)^{1/p}$ infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

- Distribution P on $\mathbb{R}^d \implies \text{i.i.d. Samples } (X_i)_{i=1}^n$
- Empirical distribution $\mathbb{P}_n \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$
- \implies Dependence on (n, d) of $\mathbb{E}W_1(P, \mathbb{P}_n) \asymp n^{-\frac{1}{d}}$

<u>p-Wasserstein Distance</u>: For two distributions P and Q on \mathbb{R}^d and $p \ge 1$ $W_p(P, Q) \triangleq \inf (\mathbb{E} ||X - Y||^p)^{1/p}$ infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

- Distribution P on $\mathbb{R}^d \implies \text{i.i.d. Samples } (X_i)_{i=1}^n$
- Empirical distribution $\mathbb{P}_n \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$

 $\begin{array}{c} \hline p \text{-Wasserstein Distance:} \\ \hline p \geq 1 \\ \hline W_p(P,Q) \triangleq \inf \left(\mathbb{E} \| X - Y \|^p \right)^{1/p} \\ \hline \text{infimum over all couplings of } P \text{ and } Q \end{array}$

Empirical 1-Wasserstein Distance:

- Distribution P on $\mathbb{R}^d \implies \text{i.i.d. Samples } (X_i)_{i=1}^n$
- Empirical distribution $\mathbb{P}_n \triangleq \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i}$

 $\implies \text{Dependence on } (n,d) \text{ of } \mathbb{E} W_1(P,\mathbb{P}_n) \asymp n^{-\frac{1}{d}} \text{ (for cts. } P, d \ge 3)$

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'20)

For any d, we have $\mathbb{E}W_1(P*\mathcal{N}_{\sigma},\mathbb{P}_n*\mathcal{N}_{\sigma}) \leq O_{\sigma,d}(n^{-\frac{1}{2}})$

provided P is K-subgaussian.

Convergence w.r.t. other distances?

- Question: What about convergence of P_n * N_σ → P * N_σ in other distances? Namely:
 - $\mathbb{E}\left[W_2^2(\mathbb{P}_n * \mathcal{N}_\sigma, P * \mathcal{N}_\sigma)\right] \asymp ?$
 - $\mathbb{E}\left[D_{KL}(\mathbb{P}_n * \mathcal{N}_\sigma || P * \mathcal{N}_\sigma)\right] \asymp ?$
 - $\mathbb{E}\left[\chi^2(\mathbb{P}_n * \mathcal{N}_\sigma || P * \mathcal{N}_\sigma)\right] \asymp ?$

Convergence w.r.t. other distances?

- Question: What about convergence of P_n * N_σ → P * N_σ in other distances? Namely:
 - $\mathbb{E}\left[W_2^2(\mathbb{P}_n * \mathcal{N}_\sigma, P * \mathcal{N}_\sigma)\right] \asymp ?$

•
$$\mathbb{E}\left[D_{\mathcal{KL}}(\mathbb{P}_n * \mathcal{N}_\sigma || P * \mathcal{N}_\sigma)\right] \asymp ?$$

- $\mathbb{E}\left[\chi^2(\mathbb{P}_n * \mathcal{N}_\sigma || P * \mathcal{N}_\sigma)\right] \asymp ?$
- Surprisingly, the answer is governed by the quantity $I_{\chi^2}(X; X + \sigma Z)$:

$$I_{\chi^2}(X;Y) \triangleq \chi^2(P_{X,Y} || P_X \otimes P_Y)$$

Convergence of smoothed empirical distributions

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'20)

For any dimension d: If $I_{\chi^2}(X; Y) < \infty$

$$\mathbb{E}[\delta(\mathbb{P}_n * \mathcal{N}_\sigma, P * \mathcal{N}_\sigma)] = e^{O_\sigma(d)} \cdot \frac{1}{n} \qquad \delta \in \{W_2^2, D_{\mathcal{KL}}, \chi^2\}$$

Otherwise, if $I_{\chi^2}(X; Y) = \infty$

$$\mathbb{E}[\chi^2(\cdots)] = \infty, \quad \mathbb{E}[W_2^2(\cdots)], \mathbb{E}[D_{\mathcal{K}L}(\cdots)], = \omega\left(\frac{1}{n}\right).$$

Convergence of smoothed empirical distributions

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'20)

For any dimension d: If $I_{\chi^2}(X; Y) < \infty$

$$\mathbb{E}[\delta(\mathbb{P}_n * \mathcal{N}_\sigma, P * \mathcal{N}_\sigma)] = e^{O_\sigma(d)} \cdot \frac{1}{n} \qquad \delta \in \{W_2^2, D_{\mathcal{KL}}, \chi^2\}$$

(For W_2^2 also need to assume P is K-subgaussian with $K < \sigma$.) Otherwise, if $I_{\chi^2}(X; Y) = \infty$

$$\mathbb{E}[\chi^2(\cdots)] = \infty, \quad \mathbb{E}[W_2^2(\cdots)], \mathbb{E}[D_{KL}(\cdots)], = \omega\left(\frac{1}{n}\right).$$

(For W_2^2 also we use $*N_{\tau}$ with $\tau < \sigma$).

• Consider $P = Ber(\frac{1}{2})$. Then $\mathbb{P}_n = Ber(\frac{1}{2} + \frac{Z}{\sqrt{n}})$

Consider P = Ber(¹/₂). Then P_n = Ber(¹/₂ + ^Z/_{√n})
Since ^Z/_{√n} mass must travel distance-1, we have E[W₂²(P_n, P)] ≳ ¹/_{√n}

Consider P = Ber(¹/₂). Then P_n = Ber(¹/₂ + ^Z/_{√n})
Since ^Z/_{√n} mass must travel distance-1, we have E[W₂²(P_n, P)] ≳ ¹/_{√n}

At the same time for arbitrarily small $\sigma > 0$:

$$\mathbb{E}[W_2^2(\mathbb{P}_n * \mathcal{N}_\sigma, P * \mathcal{N}_\sigma)] = O_\sigma(\frac{1}{n})$$

• Even for $P = \mathcal{N}(0, 1)$ we have [Bobkov-Ledoux'16]: $\mathbb{E}[W_2^2(\mathbb{P}_n, P)] \asymp \frac{\log \log n}{n}$

• Even for $P = \mathcal{N}(0, 1)$ we have [Bobkov-Ledoux'16]: $\mathbb{E}[W_2^2(\mathbb{P}_n, P)] \asymp \frac{\log \log n}{n}$

• while for any $\sigma > 0$:

$$\mathbb{E}[W_2^2(\mathbb{P}_n * \mathcal{N}_{\sigma}, P * \mathcal{N}_{\sigma})] = O_{\sigma}(\frac{1}{n})$$

(indeed, $I_{\chi}^2(X; Y) < \infty$ for $X \sim \mathcal{N}$)

2020 and 2021: When is $I_{\chi^2}(X; Y) < \infty$?

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'20)

• If P_X has bounded support, then $I_{\chi^2}(X;Y) < \infty$;

- 3 If P_X is K-subgaussian with $K < \frac{\sigma}{2}$, then $I_{\chi^2}(X; Y) < \infty$;
- **3** If $K > \sqrt{2}\sigma$, then $I_{\chi^2}(X; Y) = \infty$ for <u>some</u> K-subgaussian P.

Recall: X is K-subgaussian iff

$$\mathbb{E}[e^{\lambda^{\mathcal{T}}(X-\mathbb{E}[X])}] \leq e^{\frac{K^2}{2} \|\lambda\|_2^2} \qquad \forall \lambda \in \mathbb{R}^d$$

2020 and 2021: When is $I_{\chi^2}(X; Y) < \infty$?

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'20)

• If P_X has bounded support, then $I_{\chi^2}(X;Y) < \infty$;

- 3 If P_X is K-subgaussian with $K < \frac{\sigma}{2}$, then $I_{\chi^2}(X; Y) < \infty$;
- **3** If $K > \sqrt{2}\sigma$, then $I_{\chi^2}(X; Y) = \infty$ for <u>some</u> K-subgaussian P.

Recall: X is K-subgaussian iff

$$\mathbb{E}[e^{\lambda^{T}(X-\mathbb{E}[X])}] \leq e^{\frac{K^{2}}{2} \|\lambda\|_{2}^{2}} \qquad \forall \lambda \in \mathbb{R}^{d}$$

Theorem (Jia-Block-Polyanskiy-Rakhlin'21)

If P_X is K-subgaussian with K < σ, then I_{χ²}(X; Y) < ∞;
 If K > σ, then I_{χ²}(X; Y) = ∞ for some K-subgaussian P.

2020 and 2021: When is $I_{\chi^2}(X; Y) < \infty$?

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'20)

• If P_X has bounded support, then $I_{\chi^2}(X;Y) < \infty$;

- 3 If P_X is K-subgaussian with $K < \frac{\sigma}{2}$, then $I_{\chi^2}(X; Y) < \infty$;
- **3** If $K > \sqrt{2}\sigma$, then $I_{\chi^2}(X; Y) = \infty$ for <u>some</u> K-subgaussian P.

Recall: X is K-subgaussian iff

$$\mathbb{E}[e^{\lambda^{\mathcal{T}}(X-\mathbb{E}[X])}] \leq e^{\frac{K^2}{2} \|\lambda\|_2^2} \qquad \forall \lambda \in \mathbb{R}^d$$

Theorem (Jia-Block-Polyanskiy-Rakhlin'21)

1 If P_X is K-subgaussian with $K < \sigma$, then $I_{\chi^2}(X; Y) < \infty$;

2 If $K > \sigma$, then $I_{\chi^2}(X; Y) = \infty$ for <u>some</u> K-subgaussian P.

Closes entire range (except $K = \sigma$).

 $I_{\chi^2} < \infty$: proof idea ($K < \sigma$)

• When $K < \sigma$, we write

$$I_{\chi^2}(S;Y) = \mathbb{E}_{S \sim \mathbb{P}} \int_{\mathbb{R}^d} \frac{\varphi_{\sigma^2 I_d}^2(z-S)}{\mathbb{E}_{\tilde{S} \sim P} \varphi_{\sigma^2 I_d}(z-\tilde{S})} dz - 1,$$

where $\varphi_{\sigma^2 I_d}(\cdot)$ is the PDF of $\mathcal{N}(0, \sigma^2 I_d)$.

 $I_{\chi^2} < \infty$: proof idea ($K < \sigma$)

• When $K < \sigma$, we write

$$I_{\chi^2}(S;Y) = \mathbb{E}_{S \sim \mathbb{P}} \int_{\mathbb{R}^d} \frac{\varphi_{\sigma^2 I_d}^2(z-S)}{\mathbb{E}_{\tilde{S} \sim P} \varphi_{\sigma^2 I_d}(z-\tilde{S})} dz - 1,$$

where $\varphi_{\sigma^2 I_d}(\cdot)$ is the PDF of $\mathcal{N}(0, \sigma^2 I_d)$.

• Divide the domain of $\mathbb{E}_{S \sim P} \int_{\mathbb{R}^d}$ into the following three parts:

1
$$A = \{ \|S\|_2 \le 1 \};$$

2 $B = \{ \|S\|_2 > 1 \text{ and } \|z - S\|_2 \ge \delta \|S\|_2 \};$
3 $C = \{ \|z - S\|_2 < \delta \|S\|_2 \};$

and proved $\mathbb{E}_{S \sim P} \int_{\mathbb{R}^d}$ in each parts is less than infinity.

 $I_{\chi^2} = \infty$ counter-example $(K > \sigma)$

Choose the hard case

$$\mathbb{P}=p_0\delta_0+\sum_{k=1}^{\infty}p_k\delta_{r_k},$$

with $r_k = c^{k-1}$, $p_k = c_0 \exp\left(-\frac{r_k^2}{2K^2}\right)$ for some constant c_0 , c and $p_0 = 1 - \sum_{k=1}^{\infty} p_k$.

 $I_{\chi^2} = \infty$ counter-example $(K > \sigma)$

• Choose the hard case

$$\mathbb{P}=p_0\delta_0+\sum_{k=1}^{\infty}p_k\delta_{r_k},$$

with
$$r_k = c^{k-1}$$
, $p_k = c_0 \exp\left(-\frac{r_k^2}{2K^2}\right)$ for some constant c_0 , c and $p_0 = 1 - \sum_{k=1}^{\infty} p_k$.

• \mathbb{P} is *K*-subgaussian.

 $I_{\chi^2} = \infty$ counter-example ($K > \sigma$)

Choose the hard case

$$\mathbb{P}=p_0\delta_0+\sum_{k=1}^{\infty}p_k\delta_{r_k},$$

with
$$r_k = c^{k-1}$$
, $p_k = c_0 \exp\left(-\frac{r_k^2}{2K^2}\right)$ for some constant c_0 , c and $p_0 = 1 - \sum_{k=1}^{\infty} p_k$.

- \mathbb{P} is *K*-subgaussian.
- When σ < K, δ_{r_j} * N_σ for j ≠ k hardly affect the density of ℙ * N_σ in comparison to δ_{r_k} * N_σ if c is chosen large enough.

• WLOG, we assume $\sigma = 1$;

- WLOG, we assume $\sigma = 1$;
- $I_{\chi^2}(S; Y)$ can be decomposed into

$$I_{\chi^2}(S;Y) = \sum_{k=0}^{\infty} \int_{\mathbb{R}} \frac{\varphi_{\frac{1}{\sqrt{2}}}(z-r_k)}{\varphi_1(z-r_k)} \cdot \frac{1}{1+\sum_{j\neq k} \frac{p_j}{p_k} \frac{\varphi_1(z-r_j)}{\varphi_1(z-r_k)}} dz - 1.$$

- WLOG, we assume $\sigma = 1$;
- $I_{\chi^2}(S; Y)$ can be decomposed into

$$I_{\chi^2}(S;Y) = \sum_{k=0}^{\infty} \int_{\mathbb{R}} \frac{\varphi_{\frac{1}{\sqrt{2}}}(z-r_k)}{\varphi_1(z-r_k)} \cdot \frac{1}{1+\sum_{j\neq k} \frac{p_j}{p_k} \frac{\varphi_1(z-r_j)}{\varphi_1(z-r_k)}} dz - 1.$$

• When z is in a small neighborhood of r_k , $\frac{\varphi_{1/\sqrt{2}}(z-r_k)}{\varphi_1(z-r_k)}$ is uniformly lower bounded for all k.

- WLOG, we assume $\sigma = 1$;
- $I_{\chi^2}(S; Y)$ can be decomposed into

$$I_{\chi^2}(S;Y) = \sum_{k=0}^{\infty} \int_{\mathbb{R}} \frac{\varphi_{\frac{1}{\sqrt{2}}}(z-r_k)}{\varphi_1(z-r_k)} \cdot \frac{1}{1+\sum_{j\neq k} \frac{p_j}{p_k} \frac{\varphi_1(z-r_j)}{\varphi_1(z-r_k)}} dz - 1.$$

- When z is in a small neighborhood of r_k , $\frac{\varphi_{1/\sqrt{2}}(z-r_k)}{\varphi_1(z-r_k)}$ is uniformly lower bounded for all k.
- When z is in a small neighborhood of $r_k j \neq k$ we have

$$\frac{\varphi_1(z-r_j)}{\varphi_1(z-r_k)} \leq \exp(-j/2).$$
$$\sup_{P\in \text{SubG}(K)} \mathbb{E}\left[\delta\left(\mathbb{P}_n * \mathcal{N}_\sigma, P * \mathcal{N}_\sigma\right)\right] \asymp ???$$

$$\sup_{P\in \mathrm{SubG}(K)} \mathbb{E}\bigg[\delta\bigg(\mathbb{P}_n * \mathcal{N}_\sigma, P * \mathcal{N}_\sigma\bigg)\bigg] \asymp ???$$

• W₁ and
$$\|\cdot\|_{\mathsf{TV}}$$
 are always $O\left(\frac{1}{\sqrt{n}}\right)$

$$\sup_{P\in \operatorname{SubG}(K)} \mathbb{E}\bigg[\delta\bigg(\mathbb{P}_n * \mathcal{N}_\sigma, P * \mathcal{N}_\sigma\bigg)\bigg] \asymp ???$$

• W₁ and
$$\|\cdot\|_{\mathsf{TV}}$$
 are always $O\left(\frac{1}{\sqrt{n}}\right)$

•
$$W_2^2$$
 is $O\left(\frac{1}{n}\right)$ or $\omega\left(\frac{1}{n}\right)$. But always $O\left(\frac{1}{\sqrt{n}}\right)$

$$\sup_{P\in \operatorname{SubG}(\mathcal{K})} \mathbb{E}\left[\delta\left(\mathbb{P}_n * \mathcal{N}_\sigma, P * \mathcal{N}_\sigma\right)\right] \asymp ???$$

In All Dimensions:

•
$$\mathsf{W}_1$$
 and $\|\cdot\|_{\mathsf{TV}}$ are always $O\left(rac{1}{\sqrt{n}}
ight)$

• W₂² is
$$O\left(\frac{1}{n}\right)$$
 or $\omega\left(\frac{1}{n}\right)$. But always $O\left(\frac{1}{\sqrt{n}}\right)$

• D_{KL} is $O\left(\frac{1}{n}\right)$ or $\omega\left(\frac{1}{n}\right)$. But always $O\left(\frac{1}{\sqrt{n}}\right)$

$$\sup_{P\in \text{SubG}(K)} \mathbb{E}\bigg[\delta\bigg(\mathbb{P}_n * \mathcal{N}_\sigma, P * \mathcal{N}_\sigma\bigg)\bigg] \asymp ???$$

•
$$\mathsf{W}_1$$
 and $\|\cdot\|_{\mathsf{TV}}$ are always $O\left(rac{1}{\sqrt{n}}
ight)$

•
$$W_2^2$$
 is $O\left(\frac{1}{n}\right)$ or $\omega\left(\frac{1}{n}\right)$. But always $O\left(\frac{1}{\sqrt{n}}\right)$

•
$$\mathsf{D}_{KL}$$
 is $O\left(\frac{1}{n}\right)$ or $\omega\left(\frac{1}{n}\right)$. But always $O\left(\frac{1}{\sqrt{n}}\right)$

•
$$\chi^2$$
 is $O\left(\frac{1}{n}\right)$ or $=\infty$

$$\sup_{P\in \text{SubG}(\mathcal{K})} \mathbb{E}\bigg[\delta\bigg(\mathbb{P}_n * \mathcal{N}_\sigma, P * \mathcal{N}_\sigma\bigg)\bigg] \asymp ???$$

In All Dimensions:

•
$$\mathsf{W}_1$$
 and $\|\cdot\|_{\mathsf{TV}}$ are always $O\left(rac{1}{\sqrt{n}}
ight)$

•
$$W_2^2$$
 is $O\left(\frac{1}{n}\right)$ or $\omega\left(\frac{1}{n}\right)$. But always $O\left(\frac{1}{\sqrt{n}}\right)$

•
$$\mathsf{D}_{KL}$$
 is $O\left(\frac{1}{n}\right)$ or $\omega\left(\frac{1}{n}\right)$. But always $O\left(\frac{1}{\sqrt{n}}\right)$

•
$$\chi^2$$
 is $O\left(\frac{1}{n}\right)$ or $=\infty$

Threshold: In all cases the alternative is governed by $K < \sigma$ vs $K > \sigma$

Question: When rate is $\omega(\frac{1}{n})$ does it switch to $\frac{1}{\sqrt{n}}$ right away?

Question: When rate is $\omega(\frac{1}{n})$ does it switch to $\frac{1}{\sqrt{n}}$ right away? No!

Question: When rate is $\omega(\frac{1}{n})$ does it switch to $\frac{1}{\sqrt{n}}$ right away? No!

Theorem (Jia-Block-Polyanskiy-Rakhlin'21)

In dimension d = 1 we have:

• For any K-subgaussian distribution \mathbb{P} , we have

$$\mathbb{E}\left[W_2^2(\mathbb{P}_n * \mathcal{N}_{\sigma}, \mathbb{P} * \mathcal{N}_{\sigma})\right] = \tilde{O}\left(n^{-\frac{\kappa^2}{2\kappa^2 - \sigma^2}}\right)$$

• There exists a K-subgaussian distribution $\mathbb P$ such that

$$\mathbb{E}\left[W_2^2(\mathbb{P}_n * \mathcal{N}_\sigma, \mathbb{P} * \mathcal{N}_\sigma)\right] = \tilde{\Omega}\left(n^{-\frac{(\sigma^2 + \kappa^2)^2}{2(\sigma^4 + \kappa^4)}}\right).$$

Question: When rate is $\omega(\frac{1}{n})$ does it switch to $\frac{1}{\sqrt{n}}$ right away? No!

Theorem (Jia-Block-Polyanskiy-Rakhlin'21)

In dimension d = 1 we have:

• For any K-subgaussian distribution \mathbb{P} , we have

$$\mathbb{E}\left[W_2^2(\mathbb{P}_n * \mathcal{N}_{\sigma}, \mathbb{P} * \mathcal{N}_{\sigma})\right] = \tilde{O}\left(n^{-\frac{\kappa^2}{2\kappa^2 - \sigma^2}}\right).$$

• There exists a K-subgaussian distribution $\mathbb P$ such that

$$\mathbb{E}\left[W_2^2(\mathbb{P}_n * \mathcal{N}_{\sigma}, \mathbb{P} * \mathcal{N}_{\sigma})\right] = \tilde{\Omega}\left(n^{-\frac{(\sigma^2 + \kappa^2)^2}{2(\sigma^4 + \kappa^4)}}\right)$$

Proof ideas: 1. use optimal (quantile-quantile) coupling 2. use dyadic haircomb c/ex. 3. $\tilde{O}(n^{-E})$ is in fact $O(n^{-E+\epsilon})$

W2 Convergence in 1D: illustration

Convergence of Smoothed KL Divergence

• [GGNWP20]: If $\sigma > K$ then

$$\mathbb{E}\left[D_{\mathsf{KL}}(\mathbb{P}_n * \mathcal{N}_\sigma || \mathbb{P} * \mathcal{N}_\sigma)\right] = \mathcal{O}\left(n^{-1}\right)$$

Convergence of Smoothed KL Divergence

• [GGNWP20]: If $\sigma > K$ then

$$\mathbb{E}\left[D_{\mathcal{KL}}(\mathbb{P}_n * \mathcal{N}_{\sigma} || \mathbb{P} * \mathcal{N}_{\sigma})\right] = \mathcal{O}\left(n^{-1}\right)$$

• When $\sigma < K$, there exists a distribution $\mathbb P$ such that

$$\mathbb{E}\left[D_{\mathcal{KL}}(\mathbb{P}_n * \mathcal{N}_\sigma || \mathbb{P} * \mathcal{N}_\sigma)\right] = \omega(n^{-1})$$

(but $O(n^{-1/2})$, as we know)

Convergence of Smoothed KL Divergence

• [GGNWP20]: If $\sigma > K$ then

$$\mathbb{E}\left[D_{\mathsf{KL}}(\mathbb{P}_n * \mathcal{N}_\sigma || \mathbb{P} * \mathcal{N}_\sigma)\right] = \mathcal{O}\left(n^{-1}\right)$$

• When $\sigma < K$, there exists a distribution \mathbb{P} such that

$$\mathbb{E}\left[D_{\mathcal{KL}}(\mathbb{P}_n * \mathcal{N}_\sigma || \mathbb{P} * \mathcal{N}_\sigma)\right] = \omega(n^{-1}).$$

(but $O(n^{-1/2})$, as we know)

Question: What happens to KL rate when σ < K?
 From W₂² we might guess the exponent in n drops.

Theorem (Jia-Block-Polyanskiy-Rakhlin'21)

Suppose \mathbb{P} is a d-dimensional K-subgaussian distribution, then:

$$\mathbb{E}\left[D_{KL}\left(\mathbb{P}_n * \mathcal{N}(0, \sigma^2 I_d) \big\| \mathbb{P} * \mathcal{N}(0, \sigma^2 I_d)\right)\right] = \mathcal{O}\left(\frac{(\log n)^{d+1}}{n}\right).$$

Theorem (Jia-Block-Polyanskiy-Rakhlin'21)

Suppose \mathbb{P} is a d-dimensional K-subgaussian distribution, then:

$$\mathbb{E}\left[D_{KL}\left(\mathbb{P}_n * \mathcal{N}(0, \sigma^2 I_d) \big\| \mathbb{P} * \mathcal{N}(0, \sigma^2 I_d)\right)\right] = \mathcal{O}\left(\frac{(\log n)^{d+1}}{n}\right).$$

- Recall that for $K < \sigma$ we know $D_{KL} \leq O(\frac{1}{n})$.
- Thus, only a polylog(n) slowdown!

Implication: LSI non-existence

• **T2 Transportation Inequality:** If $\mathbb{P} * \mathcal{N}_{\sigma}$ satisfies log-Sobolev inequality with constant $C_{P,\sigma}$, then for any distribution Q

$$W_2^2(Q, \mathbb{P} * \mathcal{N}_{\sigma}) \leq C_{P,\sigma} D_{KL}(Q \| \mathbb{P} * \mathcal{N}_{\sigma}).$$

- [WW16] When $K < \sigma$, $\mathbb{P} * \mathcal{N}_{\sigma}$ satisfies log-Sobolev inequality. Extends the case of compact-support in [Zim13].
- [WW16] also proposed open problem: when $K \ge \sigma$, will $\mathbb{P} * \mathcal{N}_{\sigma}$ also satisfies log-Sobolev inequality?

Implication: LSI non-existence

• **T2 Transportation Inequality:** If $\mathbb{P} * \mathcal{N}_{\sigma}$ satisfies log-Sobolev inequality with constant $C_{P,\sigma}$, then for any distribution Q

$$W_2^2(Q, \mathbb{P} * \mathcal{N}_{\sigma}) \leq C_{P,\sigma} D_{KL}(Q \| \mathbb{P} * \mathcal{N}_{\sigma}).$$

- [WW16] When $K < \sigma$, $\mathbb{P} * \mathcal{N}_{\sigma}$ satisfies log-Sobolev inequality. Extends the case of compact-support in [Zim13].
- [WW16] also proposed open problem: when $K \ge \sigma$, will $\mathbb{P} * \mathcal{N}_{\sigma}$ also satisfies log-Sobolev inequality?
- Comparing results for KL divergence and (lower bd) for W₂²:
 ∃ K-subgaussian P such that T2 transportation inequality does not hold for P * N_σ, σ < K.</p>
- ... \Rightarrow when $K > \sigma$ no LSI is possible.

- $I_{\chi}^{2}(S; Y) < \infty$ vs $= \infty$ dichotomy: $K < \sigma$ vs $K > \sigma$.
- For 1D cases: prove sharper lower and upper bounds on the convergence rate under W_2^2 distance.
- Convergence in KL: $O(\frac{1}{n})$ vs $O(\frac{\operatorname{polylog}(n)}{n})$ for $K < \sigma$ vs $K > \sigma$.
- Corollary: no LSI for ℙ * N_σ when K > σ (and ℙ is a K-subgaussian).

- $I_{\chi}^{2}(S; Y) < \infty$ vs $= \infty$ dichotomy: $K < \sigma$ vs $K > \sigma$.
- For 1D cases: prove sharper lower and upper bounds on the convergence rate under W_2^2 distance.
- Convergence in KL: $O(\frac{1}{n})$ vs $O(\frac{\operatorname{polylog}(n)}{n})$ for $K < \sigma$ vs $K > \sigma$.
- Corollary: no LSI for ℙ * N_σ when K > σ (and ℙ is a K-subgaussian).

Thanks!

References

Ziv Goldfeld, Kristjan Greenewald, Jonathan Niles-Weed, and Yury Polyanskiy.

Convergence of smoothed empirical measures with applications to entropy estimation.

IEEE Transactions on Information Theory, 66(7):4368–4391, 2020.

- Feng-Yu Wang and Jian Wang.
 Functional inequalities for convolution probability measures.
 In Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, volume 52, pages 898–914. Institut Henri Poincaré, 2016.
 - David Zimmermann.

Logarithmic sobolev inequalities for mollified compactly supported measures.

Journal of Functional Analysis, 265(6):1064–1083, 2013.

Proofs

Theorem

For any $K > \sigma > 0$ and $\epsilon > 0$, there exists some K-subgaussian distribution \mathbb{P} such that

$$\liminf_{n\to\infty}\frac{\mathbb{E}\left[W_2^2(\mathbb{P}_n*\mathcal{N}_\sigma,\mathbb{P}*\mathcal{N}_\sigma)\right]}{n^{(\sigma^2+K^2)^2/(2(\sigma^4+K^4))+\epsilon}}>0.$$

• When \mathbb{P}, \mathbb{P}_n are both 1D distributions, we can write

$$W_2^2(\mathbb{P}_n * \mathcal{N}_\sigma, \mathbb{P} * \mathcal{N}_\sigma) = \int_{-\infty}^{\infty} \rho_\sigma(x) \left| \tilde{F}_{n,\sigma}^{-1}(F_\sigma(x)) - x \right|^2 dx,$$

where ρ_{σ} is PDF of $\mathbb{P} * \mathcal{N}_{\sigma}$, and $F_{\sigma}, \tilde{F}_{n,\sigma}$ are CDFs of $\mathbb{P}_n * \mathcal{N}_{\sigma}, \mathbb{P}_n * \mathcal{N}_{\sigma}$.

• When \mathbb{P}, \mathbb{P}_n are both 1D distributions, we can write

$$W_2^2(\mathbb{P}_n * \mathcal{N}_\sigma, \mathbb{P} * \mathcal{N}_\sigma) = \int_{-\infty}^{\infty} \rho_\sigma(x) \left| \tilde{\mathcal{F}}_{n,\sigma}^{-1}(\mathcal{F}_\sigma(x)) - x \right|^2 dx,$$

where ρ_{σ} is PDF of $\mathbb{P} * \mathcal{N}_{\sigma}$, and $F_{\sigma}, \tilde{F}_{n,\sigma}$ are CDFs of $\mathbb{P}_n * \mathcal{N}_{\sigma}, \mathbb{P}_n * \mathcal{N}_{\sigma}$.

• If $\tilde{F}_{n,\sigma}(z) \ge F_{\sigma}(z+2)$, then $\forall x \in [z+1, z+2]$ we have $F_{\sigma}(x) \le F_{\sigma}(z+2) \le \tilde{F}_{n,\sigma}(z) \le \tilde{F}_{n,\sigma}(x-1)$. Hence

$$\left| ilde{\mathcal{F}}_{n,\sigma}^{-1}(\mathcal{F}_{\sigma}(x)) - x
ight| \geq 1.$$

• When \mathbb{P}, \mathbb{P}_n are both 1D distributions, we can write

$$W_2^2(\mathbb{P}_n * \mathcal{N}_\sigma, \mathbb{P} * \mathcal{N}_\sigma) = \int_{-\infty}^{\infty} \rho_\sigma(x) \left| \tilde{\mathcal{F}}_{n,\sigma}^{-1}(\mathcal{F}_\sigma(x)) - x \right|^2 dx,$$

where ρ_{σ} is PDF of $\mathbb{P} * \mathcal{N}_{\sigma}$, and $F_{\sigma}, \tilde{F}_{n,\sigma}$ are CDFs of $\mathbb{P}_n * \mathcal{N}_{\sigma}, \mathbb{P}_n * \mathcal{N}_{\sigma}$.

• If $\tilde{F}_{n,\sigma}(z) \ge F_{\sigma}(z+2)$, then $\forall x \in [z+1, z+2]$ we have $F_{\sigma}(x) \le F_{\sigma}(z+2) \le \tilde{F}_{n,\sigma}(z) \le \tilde{F}_{n,\sigma}(x-1)$. Hence

$$\left| \tilde{F}_{n,\sigma}^{-1}(F_{\sigma}(x)) - x \right| \geq 1.$$

• $W_2^2(\mathbb{P}_n * \mathcal{N}_\sigma, \mathbb{P} * \mathcal{N}_\sigma) \ge \mathbf{P} \left(X \in [z+1, z+2] \right), \quad X \sim \mathbb{P} * \mathcal{N}_\sigma.$

Choose

$$\mathbb{P} = \sum_{k=1}^{\infty} c_0 \exp\left(-\frac{r_k^2}{2K^2}\right) \delta_{r_k},$$

with $r_k = c^{k-1}$ for $k \ge 1$.

Choose

$$\mathbb{P} = \sum_{k=1}^{\infty} c_0 \exp\left(-\frac{r_k^2}{2K^2}\right) \delta_{r_k},$$

with
$$r_k = c^{k-1}$$
 for $k \ge 1$.
• For $\kappa = \frac{\sigma^2}{K^2}$ and $t = 1/2(c+1)(\kappa+1)$ and $X \sim \mathbb{P} * \mathcal{N}_{\sigma}$,

$$\mathbf{P}(X \in [tr_k, tr_k + 2]) \asymp \exp\left(-\left(t^2 - \kappa c - c\right) \cdot \frac{r_k^2}{2\sigma^2}\right),$$

i.e. δ_{r_k} in \mathbb{P} determines the probability of $\mathbb{P} * \mathcal{N}_{\sigma}$ within the interval $[tr_k, tr_k + 2]$.

• Berry-Esseen Theorem indicates that with certain probability uniformly for all *k*, we have

$$\tilde{F}_{n,\sigma}(tr_k) - F_{\sigma}(tr_k) \succeq \sqrt{\frac{p_{k+1}}{n}}.$$

• Berry-Esseen Theorem indicates that with certain probability uniformly for all *k*, we have

$$ilde{F}_{n,\sigma}(tr_k) - F_{\sigma}(tr_k) \succeq \sqrt{rac{p_{k+1}}{n}}.$$

• Chosen *n* and *k*, we have $\tilde{F}_{n,\sigma}(tr_k) - F_{\sigma}(tr_k) \ge \mathbf{P}(X \in [tr_k, tr_k + 2])$ and hence

$$\widetilde{F}_{n,\sigma}(tr_k) \geq F_{\sigma}(tr_k+2).$$

W2 in 1D: Upper Bound Part

Theorem

Suppose \mathbb{P} is a 1D K-subgaussian random variable, i.e. for some C > 0,

$$\mathbf{P}(|X| \ge x) \le C \exp\left(-rac{x^2}{2K^2}
ight), \quad x \sim \mathbb{P},$$

then for any $\sigma < K, \epsilon > 0$ we have

$$\mathbb{E}\left[W_2^2(\mathbb{P}*\mathcal{N}_{\sigma},\mathbb{P}_n*\mathcal{N}_{\sigma})\right]=\tilde{\mathcal{O}}\left(n^{-\frac{\kappa^2}{2\kappa^2-\sigma^2}+\epsilon}\right).$$

W2 in 1D: Upper Bound Part

Recall the formula

$$W_2^2(\mathbb{P}_n * \mathcal{N}_{\sigma}, \mathbb{P} * \mathcal{N}_{\sigma}) = \int_{-\infty}^{\infty} \rho_{\sigma}(x) \left| \tilde{F}_{n,\sigma}^{-1}(F_{\sigma}(x)) - x \right|^2 dx.$$

W2 in 1D: Upper Bound Part

Recall the formula

$$W_2^2(\mathbb{P}_n * \mathcal{N}_\sigma, \mathbb{P} * \mathcal{N}_\sigma) = \int_{-\infty}^{\infty} \rho_\sigma(x) \left| \tilde{F}_{n,\sigma}^{-1}(F_\sigma(x)) - x \right|^2 dx.$$

- For those x with large $\rho_{\sigma}(x)$, one can show that $\left|\tilde{F}_{n,\sigma}^{-1}(F_{\sigma}(x)) x\right|^2$ is small and will decay with $1/\rho_{\sigma}(x)$.
- For those x with small $\rho_{\sigma}(x)$, one can show that $\left|\tilde{F}_{n,\sigma}^{-1}(F_{\sigma}(x)) x\right|^2$ is bounded with high probability.

We divide $x \in \mathbb{R}$ into the following two cases:

•
$$\rho_{\sigma}(x) = \mathcal{O}\left(n^{-\frac{\kappa^2}{2\kappa^2 - \sigma^2} - \epsilon}\right)$$
, indicating the density is small;
• $\rho_{\sigma}(x) = \Omega\left(n^{-\frac{\kappa^2}{2\kappa^2 - \sigma^2} - \epsilon}\right)$, indicating the density is large.

W2 in 1D: (When $\rho_{\sigma}(x)$ is large)

W2 in 1D: (When $\rho_{\sigma}(x)$ is large)

 ρ_σ(t) does not deviate too much from ρ_σ(x) for those t in a small neighborhood of x.
ρ_σ(t) does not deviate too much from ρ_σ(x) for those t in a small neighborhood of x.

Lemma

Suppose ρ_{σ} to be the density function of $P * \mathcal{N}(0, \sigma^2)$. If for some x and $a \ge 0$ we have $\rho_{\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{a^2}{2\sigma^2}\right)$, then for any δ we have

$$\rho_{\sigma}(x+\delta) \ge \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(a+|\delta|+4\sigma)^2}{2\sigma^2}\right)$$
$$\rho_{\sigma}(x+\delta) \le \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\max\{0,a-|\delta|-4\sigma\}^2}{2\sigma^2}\right).$$

 ρ_σ(t) does not deviate too much from ρ_σ(x) for those t in a small neighborhood of x.

Lemma

Suppose ρ_{σ} to be the density function of $P * \mathcal{N}(0, \sigma^2)$. If for some x and $a \ge 0$ we have $\rho_{\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{a^2}{2\sigma^2}\right)$, then for any δ we have

$$\rho_{\sigma}(x+\delta) \geq \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(a+|\delta|+4\sigma)^2}{2\sigma^2}\right)$$
$$\rho_{\sigma}(x+\delta) \leq \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\max\{0,a-|\delta|-4\sigma\}^2}{2\sigma^2}\right).$$

Therefore, is ρ_σ(x) is large, then P(X ∈ [x − δ, x + δ]) can be showed to be large as well.

 The CDF between P * N(0, σ²) and P_n * N(0, σ²) can be upper bounded uniformly.

 The CDF between P * N(0, σ²) and P_n * N(0, σ²) can be upper bounded uniformly.

Lemma

Suppose F_{σ} , $\tilde{F}_{\sigma,n}$ are CDF of $P * \mathcal{N}(0, \sigma^2)$ and $P_n * \mathcal{N}(0, \sigma^2)$. Define

$$G(t)=rac{1}{n}ee\left(rac{1}{2}-\left|t-rac{1}{2}
ight|
ight),\quad t\in[0,1].$$

Then with probability at least $1 - \delta$,

$$\sup_{x\in\mathbb{R}}\frac{|F_{\sigma}(x)-\tilde{F}_{\sigma,n}(x)|}{\sqrt{G(F(x))}}\leq\frac{16}{\sqrt{n}}\log\left(\frac{2n}{\delta}\right).$$

• One can show that when
$$\rho_{\sigma}(x)$$
 is large, $\left|\tilde{F}_{n,\sigma}^{-1}(F_{\sigma}(x)) - x\right|$ is small.

Lemma

Consider two 1D-distributions \mathbb{P}, \mathbb{Q} . We denote the PDF of \mathbb{P} as $\rho_p(\cdot)$, and the CDFs of \mathbb{P}, \mathbb{Q} as F_p, F_q respectively. If for some $\sigma > 0$ we have

$$\alpha(t,\sigma) \triangleq \frac{\sup_{t \in [x-\sigma,x+\sigma]} |F_{\rho}(t) - F_{q}(t)|}{\inf_{t \in [x-\sigma,x+\sigma]} \rho_{\rho}(t)} \leq \sigma,$$

then

$$\left|F_{q}^{-1}(F_{p}(t))-t\right|\leq \alpha(t,\sigma).$$

• Given R > 0, then for $\forall |x| \leq R$, with high probability we have $\left| \tilde{F}_{n,\sigma}^{-1}(F_{\sigma}(x)) - x \right| = \tilde{\mathcal{O}}(R).$

Given R > 0, then for ∀|x| ≤ R, with high probability we have | F̃⁻¹_{n,σ}(F_σ(x)) − x | = Õ(R).
P(|X| ≥ R) ≤ C exp (−^{R²}/_{2K²});

- Given R > 0, then for $\forall |x| \le R$, with high probability we have $\left| \tilde{F}_{n,\sigma}^{-1}(F_{\sigma}(x)) x \right| = \tilde{\mathcal{O}}(R).$
- $\mathbf{P}(|X| \ge R) \le C \exp\left(-\frac{R^2}{2K^2}\right);$
- For those $|x| \leq R$ and $\rho_{\sigma}(x) \leq \epsilon$, the measure of the set of such x is at most $2R\epsilon$.

• Given R > 0, then for $\forall |x| \leq R$, with high probability we have $\left| \tilde{F}_{n,\sigma}^{-1}(F_{\sigma}(x)) - x \right| = \tilde{\mathcal{O}}(R).$

•
$$\mathbf{P}(|X| \ge R) \le C \exp\left(-\frac{R^2}{2K^2}\right);$$

- For those $|x| \leq R$ and $\rho_{\sigma}(x) \leq \epsilon$, the measure of the set of such x is at most $2R\epsilon$.
- If choosing R, ϵ properly, one can also upper bounded the integral over those x with small $\rho_{\sigma}(x)$ with $\mathcal{O}\left(n^{-\frac{\kappa^2}{2\kappa^2-\sigma^2}-\epsilon}\right)$.

KL-convergence: Proof Idea

• The expected KL-divergence can be upper bounded using **Rényi-mutual information**:

KL-convergence: Proof Idea

• The expected KL-divergence can be upper bounded using **Rényi-mutual information**:

Lemma

We suppose $(X, Y) \sim P_{X,Y}$, and its marginal distribution to be P_X, P_Y , respectively. We let \hat{P}_n to be an empirical version of P_X generated with n samples. Then for every $1 < \lambda \leq 2$, we have

$$\mathbb{E}[D_{\mathsf{KL}}(\mathsf{P}_{Y|X} \circ \hat{\mathsf{P}}_n || \mathsf{P}_Y)] \leq \frac{1}{\lambda - 1} \log(1 + \exp\{(\lambda - 1)(\mathsf{I}_\lambda(X; Y) - \log n)\}).$$

KL-convergence: Proof Idea

• The expected KL-divergence can be upper bounded using **Rényi-mutual information**:

Lemma

We suppose $(X, Y) \sim P_{X,Y}$, and its marginal distribution to be P_X, P_Y , respectively. We let \hat{P}_n to be an empirical version of P_X generated with n samples. Then for every $1 < \lambda \leq 2$, we have

$$\mathbb{E}[D_{\mathsf{KL}}(\mathsf{P}_{\mathsf{Y}|\mathsf{X}}\circ\hat{\mathsf{P}}_n\|\mathsf{P}_{\mathsf{Y}})] \leq \frac{1}{\lambda-1}\log(1+\exp\{(\lambda-1)(\mathsf{I}_\lambda(\mathsf{X};\mathsf{Y})-\log n)\}).$$

This lemma indicates a convergence rate of $\mathcal{O}(n^{-(\lambda-1)})$ provided $l_{\lambda}(X;Y) < \infty$, where $X \sim \mathbb{P}, Z \sim \mathcal{N}_{\sigma}$ are independent and Y = X + Z.

• $I_{\lambda}(X; Y)$ can be proved to be finite for any $\lambda < 2$.

• $I_{\lambda}(X; Y)$ can be proved to be finite for any $\lambda < 2$.

Lemma

Suppose \mathbb{P} is a d-dimensional K-subgaussian distribution and random variables $X \sim \mathbb{P}, Z \sim \mathcal{N}(0, \sigma^2 I_d)$ are independent to each other. We let Y = X + Z. Then for any $\sigma > 0$ and $1 < \lambda < 2$, there exists a positive constant C only depending on \mathbb{P} and K, σ such that

$$I_\lambda(X;Y) \leq rac{1}{\lambda-1} \log\left(rac{C}{(2-\lambda)^{d+1}}
ight).$$