Convergence of Smoothed Empirical Measures under Wasserstein Distance

Yury Polyanskiy
Joint work Zeyu Jia, Adam Block, and Sasha Rakhlin
Massachusetts Institute of Technology

November 30, 2021

Smoothed Empirical Measures

- Empirical Measures: Given distribution \mathbb{P}, the empirical measure of \mathbb{P} is $\mathbb{P}_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}$, where $X_{i} \sim \mathbb{P}$;
- Smoothed Empirical Measures: For given σ, the smoothed empirical measure is the convolution of empirical measure and $\mathcal{N}\left(0, \sigma^{2}\right)$:

$$
\mathbb{P}_{n} * \mathcal{N}\left(0, \sigma^{2}\right)
$$

Smoothed Empirical Measures

- Empirical Measures: Given distribution \mathbb{P}, the empirical measure of \mathbb{P} is $\mathbb{P}_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}$, where $X_{i} \sim \mathbb{P}$;
- Smoothed Empirical Measures: For given σ, the smoothed empirical measure is the convolution of empirical measure and $\mathcal{N}\left(0, \sigma^{2}\right)$:

$$
\mathbb{P}_{n} * \mathcal{N}\left(0, \sigma^{2}\right)
$$

- Why?

Feedforward DNN: Each layer $T_{\ell}=f_{\ell}\left(T_{\ell-1}\right)$

Feedforward DNN: Each layer $T_{\ell}=f_{\ell}\left(T_{\ell-1}\right)$

How to talk about $I\left(Y ; T_{\ell}\right) \& I\left(X ; T_{\ell}\right)$?
(1) Formally: these are (almost) indep of DNN weights if X is discrete
(2) Practically: Should not bother about info at 10^{-6} scale...
(3) Our solution: add noise to neuron outputs

Textbook idea

5 Linear Nonparametric Estimators 389
5.1 Kernel and Projection-Type Estimators 389
5.1.1 Moment Bounds 391
5.1.2 Exponential Inequalities, Higher Moments and Almost-Sure Limit Theorems 405
5.1.3 A Distributional Limit Theorem for Uniform Deviations* 411
5.2 Weak and Multiscale Metrics 421
5.2.1 Smoothed Empirical Processes 421
5.2.2 Multiscale Spaces 434
5.3 Some Further Topics 439
5.3.1 Estimation of Functionals 439
5.3.2 Deconvolution 451
5.4 Notes 462

Gaussian Smoothed Empirical W_{1}

p-Wasserstein Distance: For two distributions P and Q on \mathbb{R}^{d} and $p \geq 1$

$$
W_{p}(P, Q) \triangleq \inf \left(\mathbb{E}\|X-Y\|^{p}\right)^{1 / p}
$$

infimum over all couplings of P and Q

Gaussian Smoothed Empirical W_{1}

p-Wasserstein Distance: For two distributions P and Q on \mathbb{R}^{d} and $p \geq 1$

$$
W_{p}(P, Q) \triangleq \inf \left(\mathbb{E}\|X-Y\|^{p}\right)^{1 / p}
$$

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

Gaussian Smoothed Empirical W_{1}

p-Wasserstein Distance: For two distributions P and Q on \mathbb{R}^{d} and $p \geq 1$

$$
W_{p}(P, Q) \triangleq \inf \left(\mathbb{E}\|X-Y\|^{p}\right)^{1 / p}
$$

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

- Distribution P on \mathbb{R}^{d}

Gaussian Smoothed Empirical W_{1}

p-Wasserstein Distance: For two distributions P and Q on \mathbb{R}^{d} and $p \geq 1$

$$
W_{p}(P, Q) \triangleq \inf \left(\mathbb{E}\|X-Y\|^{p}\right)^{1 / p}
$$

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

- Distribution P on $\mathbb{R}^{d} \Longrightarrow$ i.i.d. Samples $\left(X_{i}\right)_{i=1}^{n}$

Gaussian Smoothed Empirical W_{1}

p-Wasserstein Distance: For two distributions P and Q on \mathbb{R}^{d} and $p \geq 1$

$$
W_{p}(P, Q) \triangleq \inf \left(\mathbb{E}\|X-Y\|^{p}\right)^{1 / p}
$$ infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

- Distribution P on $\mathbb{R}^{d} \Longrightarrow$ i.i.d. Samples $\left(X_{i}\right)_{i=1}^{n}$
- Empirical distribution $\mathbb{P}_{n} \triangleq \frac{1}{n} \sum_{i=1}^{n} \delta X_{i}$

Gaussian Smoothed Empirical W_{1}

p-Wasserstein Distance: For two distributions P and Q on \mathbb{R}^{d} and $p \geq 1$

$$
W_{p}(P, Q) \triangleq \inf \left(\mathbb{E}\|X-Y\|^{p}\right)^{1 / p}
$$

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

- Distribution P on $\mathbb{R}^{d} \Longrightarrow$ i.i.d. Samples $\left(X_{i}\right)_{i=1}^{n}$
- Empirical distribution $\mathbb{P}_{n} \triangleq \frac{1}{n} \sum_{i=1}^{n} \delta X_{i}$

\Longrightarrow Dependence on (n, d) of $\mathbb{E} W_{1}\left(P, \mathbb{P}_{n}\right)$

Gaussian Smoothed Empirical W_{1}

p-Wasserstein Distance: For two distributions P and Q on \mathbb{R}^{d} and $p \geq 1$

$$
W_{p}(P, Q) \triangleq \inf \left(\mathbb{E}\|X-Y\|^{p}\right)^{1 / p}
$$

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

- Distribution P on $\mathbb{R}^{d} \Longrightarrow$ i.i.d. Samples $\left(X_{i}\right)_{i=1}^{n}$
- Empirical distribution $\mathbb{P}_{n} \triangleq \frac{1}{n} \sum_{i=1}^{n} \delta X_{i}$

\Longrightarrow Dependence on (n, d) of $\mathbb{E} W_{1}\left(P, \mathbb{P}_{n}\right) \asymp n^{-\frac{1}{d}}$

Gaussian Smoothed Empirical W_{1}

p-Wasserstein Distance: For two distributions P and Q on \mathbb{R}^{d} and $p \geq 1$

$$
W_{p}(P, Q) \triangleq \inf \left(\mathbb{E}\|X-Y\|^{p}\right)^{1 / p}
$$

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

- Distribution P on $\mathbb{R}^{d} \Longrightarrow$ i.i.d. Samples $\left(X_{i}\right)_{i=1}^{n}$
- Empirical distribution $\mathbb{P}_{n} \triangleq \frac{1}{n} \sum_{i=1}^{n} \delta X_{i}$

\Longrightarrow Dependence on (n, d) of $\mathbb{E} W_{1}\left(P, \mathbb{P}_{n}\right) \asymp n^{-\frac{1}{d}}($ for cts. $P, d \geq 3)$

Gaussian Smoothed Empirical W_{1}

p-Wasserstein Distance: For two distributions P and Q on \mathbb{R}^{d} and $p \geq 1$

$$
W_{p}(P, Q) \triangleq \inf \left(\mathbb{E}\|X-Y\|^{p}\right)^{1 / p}
$$ infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

- Distribution P on $\mathbb{R}^{d} \Longrightarrow$ i.i.d. Samples $\left(X_{i}\right)_{i=1}^{n}$
- Empirical distribution $\mathbb{P}_{n} \triangleq \frac{1}{n} \sum_{i=1}^{n} \delta X_{i}$

\Longrightarrow Dependence on (n, d) of $\mathbb{E} W_{1}\left(P, \mathbb{P}_{n}\right) \asymp n^{-\frac{1}{d}}$ (for cts. $P, d \geq 3$)

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'20)

For any d, we have $\mathbb{E} W_{1}\left(P * \mathcal{N}_{\sigma}, \mathbb{P}_{n} * \mathcal{N}_{\sigma}\right) \leq O_{\sigma, d}\left(n^{-\frac{1}{2}}\right)$ provided P is K-subgaussian.

Convergence w.r.t. other distances?

- Question: What about convergence of $\mathbb{P}_{n} * \mathcal{N}_{\sigma} \rightarrow P * \mathcal{N}_{\sigma}$ in other distances? Namely:
- $\mathbb{E}\left[W_{2}^{2}\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma}, P * \mathcal{N}_{\sigma}\right)\right] \asymp$?
- $\mathbb{E}\left[D_{K L}\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma} \| P * \mathcal{N}_{\sigma}\right)\right] \asymp$?
- $\mathbb{E}\left[\chi^{2}\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma} \| P * \mathcal{N}_{\sigma}\right)\right] \asymp$?

Convergence w.r.t. other distances?

- Question: What about convergence of $\mathbb{P}_{n} * \mathcal{N}_{\sigma} \rightarrow P * \mathcal{N}_{\sigma}$ in other distances? Namely:
- $\mathbb{E}\left[W_{2}^{2}\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma}, P * \mathcal{N}_{\sigma}\right)\right] \asymp$?
- $\mathbb{E}\left[D_{K L}\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma} \| P * \mathcal{N}_{\sigma}\right)\right] \asymp$?
- $\mathbb{E}\left[\chi^{2}\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma} \| P * \mathcal{N}_{\sigma}\right)\right] \asymp$?
- Surprisingly, the answer is governed by the quantity $I_{\chi^{2}}(X ; X+\sigma Z)$:

$$
I_{\chi^{2}}(X ; Y) \triangleq \chi^{2}\left(P_{X, Y} \| P_{X} \otimes P_{Y}\right)
$$

Convergence of smoothed empirical distributions

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'20)

For any dimension d: If $I_{\chi^{2}}(X ; Y)<\infty$

$$
\mathbb{E}\left[\delta\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma}, P * \mathcal{N}_{\sigma}\right)\right]=e^{O_{\sigma}(d)} \cdot \frac{1}{n} \quad \delta \in\left\{W_{2}^{2}, D_{K L}, \chi^{2}\right\}
$$

Otherwise, if $I_{\chi^{2}}(X ; Y)=\infty$

$$
\mathbb{E}\left[\chi^{2}(\cdots)\right]=\infty, \quad \mathbb{E}\left[W_{2}^{2}(\cdots)\right], \mathbb{E}\left[D_{K L}(\cdots)\right],=\omega\left(\frac{1}{n}\right) .
$$

Convergence of smoothed empirical distributions

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'20)

For any dimension d: If $I_{\chi^{2}}(X ; Y)<\infty$

$$
\mathbb{E}\left[\delta\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma}, P * \mathcal{N}_{\sigma}\right)\right]=e^{O_{\sigma}(d)} \cdot \frac{1}{n} \quad \delta \in\left\{W_{2}^{2}, D_{K L}, \chi^{2}\right\}
$$

(For W_{2}^{2} also need to assume P is K-subgaussian with $K<\sigma$.) Otherwise, if $I_{\chi^{2}}(X ; Y)=\infty$

$$
\mathbb{E}\left[\chi^{2}(\cdots)\right]=\infty, \quad \mathbb{E}\left[W_{2}^{2}(\cdots)\right], \mathbb{E}\left[D_{K L}(\cdots)\right],=\omega\left(\frac{1}{n}\right) .
$$

(For W_{2}^{2} also we use $* \mathcal{N}_{\tau}$ with $\tau<\sigma$).

The result is interesting already in $d=1$

- Consider $P=\operatorname{Ber}\left(\frac{1}{2}\right)$. Then $\mathbb{P}_{n}=\operatorname{Ber}\left(\frac{1}{2}+\frac{Z}{\sqrt{n}}\right)$

The result is interesting already in $d=1$

- Consider $P=\operatorname{Ber}\left(\frac{1}{2}\right)$. Then $\mathbb{P}_{n}=\operatorname{Ber}\left(\frac{1}{2}+\frac{Z}{\sqrt{n}}\right)$
- Since $\frac{Z}{\sqrt{n}}$ mass must travel distance- 1 , we have

$$
\mathbb{E}\left[W_{2}^{2}\left(\mathbb{P}_{n}, P\right)\right] \gtrsim \frac{1}{\sqrt{n}}
$$

The result is interesting already in $d=1$

- Consider $P=\operatorname{Ber}\left(\frac{1}{2}\right)$. Then $\mathbb{P}_{n}=\operatorname{Ber}\left(\frac{1}{2}+\frac{Z}{\sqrt{n}}\right)$
- Since $\frac{Z}{\sqrt{n}}$ mass must travel distance-1, we have

$$
\mathbb{E}\left[W_{2}^{2}\left(\mathbb{P}_{n}, P\right)\right] \gtrsim \frac{1}{\sqrt{n}}
$$

At the same time for arbitrarily small $\sigma>0$:

$$
\mathbb{E}\left[W_{2}^{2}\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma}, P * \mathcal{N}_{\sigma}\right)\right]=O_{\sigma}\left(\frac{1}{n}\right)
$$

The result is interesting already in $d=1$

- Even for $P=\mathcal{N}(0,1)$ we have [Bobkov-Ledoux'16]:

$$
\mathbb{E}\left[W_{2}^{2}\left(\mathbb{P}_{n}, P\right)\right] \asymp \frac{\log \log n}{n}
$$

The result is interesting already in $d=1$

- Even for $P=\mathcal{N}(0,1)$ we have [Bobkov-Ledoux'16]:

$$
\mathbb{E}\left[W_{2}^{2}\left(\mathbb{P}_{n}, P\right)\right] \asymp \frac{\log \log n}{n}
$$

- while for any $\sigma>0$:

$$
\mathbb{E}\left[W_{2}^{2}\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma}, P * \mathcal{N}_{\sigma}\right)\right]=O_{\sigma}\left(\frac{1}{n}\right)
$$

(indeed, $I_{\chi}^{2}(X ; Y)<\infty$ for $X \sim \mathcal{N}$)

2020 and 2021: When is $I_{\chi^{2}}(X ; Y)<\infty$?

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'20)

(1) If P_{X} has bounded support, then $I_{\chi^{2}}(X ; Y)<\infty$;
(2) If P_{X} is K-subgaussian with $K<\frac{\sigma}{2}$, then $I_{\chi^{2}}(X ; Y)<\infty$;
(3) If $K>\sqrt{2} \sigma$, then $I_{\chi^{2}}(X ; Y)=\infty$ for some K-subgaussian P.

Recall: X is K-subgaussian iff

$$
\mathbb{E}\left[e^{\lambda^{T}(X-\mathbb{E}[X])}\right] \leq e^{\frac{k^{2}}{2}\|\lambda\|_{2}^{2}} \quad \forall \lambda \in \mathbb{R}^{d}
$$

2020 and 2021: When is $I_{\chi^{2}}(X ; Y)<\infty$?

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'20)

(1) If P_{X} has bounded support, then $I_{\chi^{2}}(X ; Y)<\infty$;
(2) If P_{X} is K-subgaussian with $K<\frac{\sigma}{2}$, then $I_{\chi^{2}}(X ; Y)<\infty$;
(3) If $K>\sqrt{2} \sigma$, then $I_{\chi^{2}}(X ; Y)=\infty$ for some K-subgaussian P.

Recall: X is K-subgaussian iff

$$
\mathbb{E}\left[e^{\lambda^{T}(X-\mathbb{E}[X])}\right] \leq e^{\frac{k^{2}}{2}\|\lambda\|_{2}^{2}} \quad \forall \lambda \in \mathbb{R}^{d}
$$

Theorem (Jia-Block-Polyanskiy-Rakhlin'21)

(1) If P_{X} is K-subgaussian with $K<\sigma$, then $I_{\chi^{2}}(X ; Y)<\infty$;
(2) If $K>\sigma$, then $I_{\chi^{2}}(X ; Y)=\infty$ for some K-subgaussian P.

2020 and 2021: When is $I_{\chi^{2}}(X ; Y)<\infty$?

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'20)

(1) If P_{X} has bounded support, then $I_{\chi^{2}}(X ; Y)<\infty$;
(2) If P_{X} is K-subgaussian with $K<\frac{\sigma}{2}$, then $I_{\chi^{2}}(X ; Y)<\infty$;
(3) If $K>\sqrt{2} \sigma$, then $I_{\chi^{2}}(X ; Y)=\infty$ for some K-subgaussian P.

Recall: X is K-subgaussian iff

$$
\mathbb{E}\left[e^{\lambda^{T}(X-\mathbb{E}[X])}\right] \leq e^{\frac{k^{2}}{2}\|\lambda\|_{2}^{2}} \quad \forall \lambda \in \mathbb{R}^{d}
$$

Theorem (Jia-Block-Polyanskiy-Rakhlin'21)

(1) If P_{X} is K-subgaussian with $K<\sigma$, then $I_{\chi^{2}}(X ; Y)<\infty$;
(2) If $K>\sigma$, then $I_{\chi^{2}}(X ; Y)=\infty$ for some K-subgaussian P.

Closes entire range (except $K=\sigma$).

$I_{\chi^{2}}<\infty:$ proof idea $(K<\sigma)$

- When $K<\sigma$, we write

$$
I_{\chi^{2}}(S ; Y)=\mathbb{E}_{S \sim \mathbb{P}} \int_{\mathbb{R}^{d}} \frac{\varphi_{\sigma^{2} I_{d}}^{2}(z-S)}{\mathbb{E}_{\tilde{S} \sim P} \varphi_{\sigma^{2} I_{d}}(z-\tilde{S})} d z-1
$$

where $\varphi_{\sigma^{2} I_{d}}(\cdot)$ is the PDF of $\mathcal{N}\left(0, \sigma^{2} I_{d}\right)$.

$I_{\chi^{2}}<\infty:$ proof idea $(K<\sigma)$

- When $K<\sigma$, we write

$$
I_{\chi^{2}}(S ; Y)=\mathbb{E}_{S \sim \mathbb{P}} \int_{\mathbb{R}^{d}} \frac{\varphi_{\sigma^{2} I_{d}}^{2}(z-S)}{\mathbb{E}_{\tilde{S} \sim P} \varphi_{\sigma^{2} I_{d}}(z-\tilde{S})} d z-1
$$

where $\varphi_{\sigma^{2} I_{d}}(\cdot)$ is the PDF of $\mathcal{N}\left(0, \sigma^{2} I_{d}\right)$.

- Divide the domain of $\mathbb{E}_{S \sim P} \int_{\mathbb{R}^{d}}$ into the following three parts:
(1) $A=\left\{\|S\|_{2} \leq 1\right\}$;
(2) $B=\left\{\|S\|_{2}>1\right.$ and $\left.\|z-S\|_{2} \geq \delta\|S\|_{2}\right\}$;
(3) $C=\left\{\|z-S\|_{2}<\delta\|S\|_{2}\right\}$;
and proved $\mathbb{E}_{S \sim P} \int_{\mathbb{R}^{d}}$ in each parts is less than infinity.

$I_{\chi^{2}}=\infty$ counter-example $(K>\sigma)$

- Choose the hard case

$$
\mathbb{P}=p_{0} \delta_{0}+\sum_{k=1}^{\infty} p_{k} \delta_{r_{k}},
$$

with $r_{k}=c^{k-1}, p_{k}=c_{0} \exp \left(-\frac{r_{k}^{2}}{2 K^{2}}\right)$ for some constant c_{0}, c and $p_{0}=1-\sum_{k=1}^{\infty} p_{k}$.

$I_{\chi^{2}}=\infty$ counter-example $(K>\sigma)$

- Choose the hard case

$$
\mathbb{P}=p_{0} \delta_{0}+\sum_{k=1}^{\infty} p_{k} \delta_{r_{k}},
$$

with $r_{k}=c^{k-1}, p_{k}=c_{0} \exp \left(-\frac{r_{k}^{2}}{2 K^{2}}\right)$ for some constant c_{0}, c and $p_{0}=1-\sum_{k=1}^{\infty} p_{k}$.

- \mathbb{P} is K-subgaussian.

$I_{x^{2}}=\infty$ counter-example $(K>\sigma)$

- Choose the hard case

$$
\mathbb{P}=p_{0} \delta_{0}+\sum_{k=1}^{\infty} p_{k} \delta_{r_{k}}
$$

with $r_{k}=c^{k-1}, p_{k}=c_{0} \exp \left(-\frac{r_{k}^{2}}{2 K^{2}}\right)$ for some constant c_{0}, c and $p_{0}=1-\sum_{k=1}^{\infty} p_{k}$.

- \mathbb{P} is K-subgaussian.
- When $\sigma<K, \delta_{r_{j}} * \mathcal{N}_{\sigma}$ for $j \neq k$ hardly affect the density of $\mathbb{P} * \mathcal{N}_{\sigma}$ in comparison to $\delta_{r_{k}} * \mathcal{N}_{\sigma}$ if c is chosen large enough.

$I_{\chi^{2}}=\infty$ counter-example

- WLOG, we assume $\sigma=1$;

$I_{\chi^{2}}=\infty$ counter-example

- WLOG, we assume $\sigma=1$;
- $I_{\chi^{2}}(S ; Y)$ can be decomposed into

$$
I_{\chi^{2}}(S ; Y)=\sum_{k=0}^{\infty} \int_{\mathbb{R}} \frac{\varphi_{\frac{1}{\sqrt{2}}}\left(z-r_{k}\right)}{\varphi_{1}\left(z-r_{k}\right)} \cdot \frac{1}{1+\sum_{j \neq k} \frac{p_{j}}{p_{k}} \frac{\varphi_{1}\left(z-r_{j}\right)}{\varphi_{1}\left(z-r_{k}\right)}} d z-1 .
$$

$I_{\chi^{2}}=\infty$ counter-example

- WLOG, we assume $\sigma=1$;
- $I_{\chi^{2}}(S ; Y)$ can be decomposed into

$$
I_{\chi^{2}}(S ; Y)=\sum_{k=0}^{\infty} \int_{\mathbb{R}} \frac{\varphi_{\frac{1}{\sqrt{2}}}\left(z-r_{k}\right)}{\varphi_{1}\left(z-r_{k}\right)} \cdot \frac{1}{1+\sum_{j \neq k} \frac{p_{j}}{p_{k}} \frac{\varphi_{1}\left(z-r_{j}\right)}{\varphi_{1}\left(z-r_{k}\right)}} d z-1
$$

- When z is in a small neighborhood of $r_{k}, \frac{\varphi_{1 / \sqrt{2}}\left(z-r_{k}\right)}{\varphi_{1}\left(z-r_{k}\right)}$ is uniformly lower bounded for all k.

$I_{\chi^{2}}=\infty$ counter-example

- WLOG, we assume $\sigma=1$;
- $I_{\chi^{2}}(S ; Y)$ can be decomposed into

$$
I_{\chi^{2}}(S ; Y)=\sum_{k=0}^{\infty} \int_{\mathbb{R}} \frac{\varphi_{\frac{1}{\sqrt{2}}}\left(z-r_{k}\right)}{\varphi_{1}\left(z-r_{k}\right)} \cdot \frac{1}{1+\sum_{j \neq k} \frac{p_{j}}{p_{k}} \frac{\varphi_{1}\left(z-r_{j}\right)}{\varphi_{1}\left(z-r_{k}\right)}} d z-1 .
$$

- When z is in a small neighborhood of $r_{k}, \frac{\varphi_{1 / \sqrt{2}}\left(z-r_{k}\right)}{\varphi_{1}\left(z-r_{k}\right)}$ is uniformly lower bounded for all k.
- When z is in a small neighborhood of $r_{k} j \neq k$ we have

$$
\frac{\varphi_{1}\left(z-r_{j}\right)}{\varphi_{1}\left(z-r_{k}\right)} \leq \exp (-j / 2)
$$

Summary for K-Subgaussian P

$$
\sup _{P \in \operatorname{SubG}(K)} \mathbb{E}\left[\delta\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma}, P * \mathcal{N}_{\sigma}\right)\right] \asymp ? ? ?
$$

In All Dimensions:

Summary for K-Subgaussian P

$$
\sup _{P \in \operatorname{SubG}(K)} \mathbb{E}\left[\delta\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma}, P * \mathcal{N}_{\sigma}\right)\right] \asymp ? ? ?
$$

In All Dimensions:

- W_{1} and $\|\cdot\|_{\text {TV }}$ are always $O\left(\frac{1}{\sqrt{n}}\right)$

Summary for K-Subgaussian P

$$
\sup _{P \in \operatorname{SubG}(K)} \mathbb{E}\left[\delta\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma}, P * \mathcal{N}_{\sigma}\right)\right] \asymp ? ? ?
$$

In All Dimensions:

- W_{1} and $\|\cdot\|_{\mathrm{TV}}$ are always $O\left(\frac{1}{\sqrt{n}}\right)$
- W_{2}^{2} is $O\left(\frac{1}{n}\right)$ or $\omega\left(\frac{1}{n}\right)$. But always $O\left(\frac{1}{\sqrt{n}}\right)$

Summary for K-Subgaussian P

$$
\sup _{P \in \operatorname{SubG}(K)} \mathbb{E}\left[\delta\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma}, P * \mathcal{N}_{\sigma}\right)\right] \asymp ? ? ?
$$

In All Dimensions:

- W_{1} and $\|\cdot\|_{\mathrm{TV}}$ are always $O\left(\frac{1}{\sqrt{n}}\right)$
- W_{2}^{2} is $O\left(\frac{1}{n}\right)$ or $\omega\left(\frac{1}{n}\right)$. But always $O\left(\frac{1}{\sqrt{n}}\right)$
- $\mathrm{D}_{K L}$ is $O\left(\frac{1}{n}\right)$ or $\omega\left(\frac{1}{n}\right)$. But always $O\left(\frac{1}{\sqrt{n}}\right)$

Summary for K-Subgaussian P

$$
\sup _{P \in \operatorname{SubG}(K)} \mathbb{E}\left[\delta\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma}, P * \mathcal{N}_{\sigma}\right)\right] \asymp ? ? ?
$$

In All Dimensions:

- W_{1} and $\|\cdot\|_{\text {TV }}$ are always $O\left(\frac{1}{\sqrt{n}}\right)$
- W_{2}^{2} is $O\left(\frac{1}{n}\right)$ or $\omega\left(\frac{1}{n}\right)$. But always $O\left(\frac{1}{\sqrt{n}}\right)$
- D ${ }_{K L}$ is $O\left(\frac{1}{n}\right)$ or $\omega\left(\frac{1}{n}\right)$. But always $O\left(\frac{1}{\sqrt{n}}\right)$
- χ^{2} is $O\left(\frac{1}{n}\right)$ or $=\infty$

Summary for K-Subgaussian P

$$
\sup _{P \in \operatorname{SubG}(K)} \mathbb{E}\left[\delta\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma}, P * \mathcal{N}_{\sigma}\right)\right] \asymp ? ? ?
$$

In All Dimensions:

- W_{1} and $\|\cdot\|_{\mathrm{TV}}$ are always $O\left(\frac{1}{\sqrt{n}}\right)$
- W_{2}^{2} is $O\left(\frac{1}{n}\right)$ or $\omega\left(\frac{1}{n}\right)$. But always $O\left(\frac{1}{\sqrt{n}}\right)$
- $\mathrm{D}_{K L}$ is $O\left(\frac{1}{n}\right)$ or $\omega\left(\frac{1}{n}\right)$. But always $O\left(\frac{1}{\sqrt{n}}\right)$
- χ^{2} is $O\left(\frac{1}{n}\right)$ or $=\infty$

Threshold: In all cases the alternative is governed by $K<\sigma$ vs $K>\sigma$

Convergence of Smoothed W2 Convergence in 1D

Question: When rate is $\omega\left(\frac{1}{n}\right)$ does it switch to $\frac{1}{\sqrt{n}}$ right away?

Convergence of Smoothed W2 Convergence in 1D

Question: When rate is $\omega\left(\frac{1}{n}\right)$ does it switch to $\frac{1}{\sqrt{n}}$ right away? No!

Convergence of Smoothed W2 Convergence in 1D

Question: When rate is $\omega\left(\frac{1}{n}\right)$ does it switch to $\frac{1}{\sqrt{n}}$ right away? No!

Theorem (Jia-Block-Polyanskiy-Rakhlin'21)

In dimension $d=1$ we have:

- For any K-subgaussian distribution \mathbb{P}, we have

$$
\mathbb{E}\left[W_{2}^{2}\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma}, \mathbb{P} * \mathcal{N}_{\sigma}\right)\right]=\tilde{O}\left(n^{-\frac{\kappa^{2}}{2 K^{2}-\sigma^{2}}}\right)
$$

- There exists a K-subgaussian distribution \mathbb{P} such that

$$
\mathbb{E}\left[W_{2}^{2}\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma}, \mathbb{P} * \mathcal{N}_{\sigma}\right)\right]=\tilde{\Omega}\left(n^{-\frac{\left(\sigma^{2}+K^{2}\right)^{2}}{2\left(\sigma^{4}+K^{4}\right)}}\right)
$$

Convergence of Smoothed W2 Convergence in 1D

Question: When rate is $\omega\left(\frac{1}{n}\right)$ does it switch to $\frac{1}{\sqrt{n}}$ right away? No!

Theorem (Jia-Block-Polyanskiy-Rakhlin'21)

In dimension $d=1$ we have:

- For any K-subgaussian distribution \mathbb{P}, we have

$$
\mathbb{E}\left[W_{2}^{2}\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma}, \mathbb{P} * \mathcal{N}_{\sigma}\right)\right]=\tilde{O}\left(n^{-\frac{\kappa^{2}}{2 \kappa^{2}-\sigma^{2}}}\right) .
$$

- There exists a K-subgaussian distribution \mathbb{P} such that

$$
\mathbb{E}\left[W_{2}^{2}\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma}, \mathbb{P} * \mathcal{N}_{\sigma}\right)\right]=\tilde{\Omega}\left(n^{-\frac{\left(\sigma^{2}+\kappa^{2}\right)^{2}}{2\left(\sigma^{4}+\kappa^{4}\right)}}\right) .
$$

Proof ideas: 1. use optimal (quantile-quantile) coupling
2. use dyadic haircomb c/ex.
3. $\tilde{O}\left(n^{-E}\right)$ is in fact $O\left(n^{-E+\epsilon}\right)$

W2 Convergence in 1D: illustration

Convergence of Smoothed KL Divergence

- [GGNWP20]: If $\sigma>K$ then

$$
\mathbb{E}\left[D_{K L}\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma} \| \mathbb{P} * \mathcal{N}_{\sigma}\right)\right]=\mathcal{O}\left(n^{-1}\right)
$$

Convergence of Smoothed KL Divergence

- [GGNWP20]: If $\sigma>K$ then

$$
\mathbb{E}\left[D_{K L}\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma} \| \mathbb{P} * \mathcal{N}_{\sigma}\right)\right]=\mathcal{O}\left(n^{-1}\right)
$$

- When $\sigma<K$, there exists a distribution \mathbb{P} such that

$$
\mathbb{E}\left[D_{K L}\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma} \| \mathbb{P} * \mathcal{N}_{\sigma}\right)\right]=\omega\left(n^{-1}\right)
$$

(but $O\left(n^{-1 / 2}\right)$, as we know)

Convergence of Smoothed KL Divergence

- [GGNWP20]: If $\sigma>K$ then

$$
\mathbb{E}\left[D_{K L}\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma} \| \mathbb{P} * \mathcal{N}_{\sigma}\right)\right]=\mathcal{O}\left(n^{-1}\right)
$$

- When $\sigma<K$, there exists a distribution \mathbb{P} such that

$$
\mathbb{E}\left[D_{K L}\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma} \| \mathbb{P} * \mathcal{N}_{\sigma}\right)\right]=\omega\left(n^{-1}\right)
$$

(but $O\left(n^{-1 / 2}\right)$, as we know)

- Question: What happens to KL rate when $\sigma<K$? From W_{2}^{2} we might guess the exponent in n drops.

Convergence of Smoothed KL Divergence when $\sigma<K$

Theorem (Jia-Block-Polyanskiy-Rakhlin'21)

Suppose \mathbb{P} is a d-dimensional K-subgaussian distribution, then:

$$
\mathbb{E}\left[D_{K L}\left(\mathbb{P}_{n} * \mathcal{N}\left(0, \sigma^{2} I_{d}\right) \| \mathbb{P} * \mathcal{N}\left(0, \sigma^{2} I_{d}\right)\right)\right]=\mathcal{O}\left(\frac{(\log n)^{d+1}}{n}\right)
$$

Convergence of Smoothed KL Divergence when $\sigma<K$

Theorem (Jia-Block-Polyanskiy-Rakhlin'21)

Suppose \mathbb{P} is a d-dimensional K-subgaussian distribution, then:

$$
\mathbb{E}\left[D_{K L}\left(\mathbb{P}_{n} * \mathcal{N}\left(0, \sigma^{2} I_{d}\right) \| \mathbb{P} * \mathcal{N}\left(0, \sigma^{2} I_{d}\right)\right)\right]=\mathcal{O}\left(\frac{(\log n)^{d+1}}{n}\right)
$$

- Recall that for $K<\sigma$ we know $D_{K L} \leq O\left(\frac{1}{n}\right)$.
- Thus, only a polylog(n) slowdown!

Implication: LSI non-existence

- T2 Transportation Inequality: If $\mathbb{P} * \mathcal{N}_{\sigma}$ satisfies log-Sobolev inequality with constant $C_{P, \sigma}$, then for any distribution Q

$$
W_{2}^{2}\left(Q, \mathbb{P} * \mathcal{N}_{\sigma}\right) \leq C_{P, \sigma} D_{K L}\left(Q \| \mathbb{P} * \mathcal{N}_{\sigma}\right)
$$

- [WW16] When $K<\sigma, \mathbb{P} * \mathcal{N}_{\sigma}$ satisfies log-Sobolev inequality. Extends the case of compact-support in [Zim13].
- [WW16] also proposed open problem: when $K \geq \sigma$, will $\mathbb{P} * \mathcal{N}_{\sigma}$ also satisfies log-Sobolev inequality?

Implication: LSI non-existence

- T2 Transportation Inequality: If $\mathbb{P} * \mathcal{N}_{\sigma}$ satisfies log-Sobolev inequality with constant $C_{P, \sigma}$, then for any distribution Q

$$
W_{2}^{2}\left(Q, \mathbb{P} * \mathcal{N}_{\sigma}\right) \leq C_{P, \sigma} D_{K L}\left(Q \| \mathbb{P} * \mathcal{N}_{\sigma}\right)
$$

- [WW16] When $K<\sigma, \mathbb{P} * \mathcal{N}_{\sigma}$ satisfies log-Sobolev inequality. Extends the case of compact-support in [Zim13].
- [WW16] also proposed open problem: when $K \geq \sigma$, will $\mathbb{P} * \mathcal{N}_{\sigma}$ also satisfies log-Sobolev inequality?
- Comparing results for KL divergence and (lower bd) for W_{2}^{2} : $\exists K$-subgaussian P such that $T 2$ transportation inequality does not hold for $P * \mathcal{N}_{\sigma}, \sigma<K$.
- $\ldots \Rightarrow$ when $K>\sigma$ no LSI is possible.

Summary of new results (2021)

- $I_{\chi}^{2}(S ; Y)<\infty$ vs $=\infty$ dichotomy: $K<\sigma$ vs $K>\sigma$.
- For 1D cases: prove sharper lower and upper bounds on the convergence rate under W_{2}^{2} distance.
- Convergence in KL: $O\left(\frac{1}{n}\right)$ vs $O\left(\frac{\operatorname{polylog}(n)}{n}\right)$ for $K<\sigma$ vs $K>\sigma$.
- Corollary: no LSI for $\mathbb{P} * \mathcal{N}_{\sigma}$ when $K>\sigma$ (and \mathbb{P} is a K-subgaussian).

Summary of new results (2021)

- $I_{\chi}^{2}(S ; Y)<\infty$ vs $=\infty$ dichotomy: $K<\sigma$ vs $K>\sigma$.
- For 1D cases: prove sharper lower and upper bounds on the convergence rate under W_{2}^{2} distance.
- Convergence in KL: $O\left(\frac{1}{n}\right)$ vs $O\left(\frac{\operatorname{polylog}(n)}{n}\right)$ for $K<\sigma$ vs $K>\sigma$.
- Corollary: no LSI for $\mathbb{P} * \mathcal{N}_{\sigma}$ when $K>\sigma$ (and \mathbb{P} is a K-subgaussian).

Thanks!

References

Riv Goldfeld, Kristjan Greenewald, Jonathan Niles-Weed, and Yury Polyanskiy.
Convergence of smoothed empirical measures with applications to entropy estimation.
IEEE Transactions on Information Theory, 66(7):4368-4391, 2020.
Feng-Yu Wang and Jian Wang.
Functional inequalities for convolution probability measures.
In Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, volume 52, pages 898-914. Institut Henri Poincaré, 2016.
國 David Zimmermann.
Logarithmic sobolev inequalities for mollified compactly supported measures.
Journal of Functional Analysis, 265(6):1064-1083, 2013.

Proofs

W2 in 1D: Lower Bound Part

Theorem

For any $K>\sigma>0$ and $\epsilon>0$, there exists some K-subgaussian distribution \mathbb{P} such that

$$
\liminf _{n \rightarrow \infty} \frac{\mathbb{E}\left[W_{2}^{2}\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma}, \mathbb{P} * \mathcal{N}_{\sigma}\right)\right]}{n^{\left(\sigma^{2}+K^{2}\right)^{2} /\left(2\left(\sigma^{4}+K^{4}\right)\right)+\epsilon}>0 . . . ~ . ~}
$$

W2 in 1D: Lower Bound Part

- When $\mathbb{P}, \mathbb{P}_{n}$ are both 1 D distributions, we can write

$$
W_{2}^{2}\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma}, \mathbb{P} * \mathcal{N}_{\sigma}\right)=\int_{-\infty}^{\infty} \rho_{\sigma}(x)\left|\tilde{F}_{n, \sigma}^{-1}\left(F_{\sigma}(x)\right)-x\right|^{2} d x
$$

where ρ_{σ} is PDF of $\mathbb{P} * \mathcal{N}_{\sigma}$, and $F_{\sigma}, \tilde{F}_{n, \sigma}$ are CDFs of $\mathbb{P}_{n} * \mathcal{N}_{\sigma}, \mathbb{P}_{n} * \mathcal{N}_{\sigma}$.

W2 in 1D: Lower Bound Part

- When $\mathbb{P}, \mathbb{P}_{n}$ are both 1 D distributions, we can write

$$
W_{2}^{2}\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma}, \mathbb{P} * \mathcal{N}_{\sigma}\right)=\int_{-\infty}^{\infty} \rho_{\sigma}(x)\left|\tilde{F}_{n, \sigma}^{-1}\left(F_{\sigma}(x)\right)-x\right|^{2} d x
$$

where ρ_{σ} is PDF of $\mathbb{P} * \mathcal{N}_{\sigma}$, and $F_{\sigma}, \tilde{F}_{n, \sigma}$ are CDFs of $\mathbb{P}_{n} * \mathcal{N}_{\sigma}, \mathbb{P}_{n} * \mathcal{N}_{\sigma}$.

- If $\tilde{F}_{n, \sigma}(z) \geq F_{\sigma}(z+2)$, then $\forall x \in[z+1, z+2]$ we have $F_{\sigma}(x) \leq F_{\sigma}(z+2) \leq \tilde{F}_{n, \sigma}(z) \leq \tilde{F}_{n, \sigma}(x-1)$. Hence

$$
\left|\tilde{F}_{n, \sigma}^{-1}\left(F_{\sigma}(x)\right)-x\right| \geq 1
$$

W2 in 1D: Lower Bound Part

- When $\mathbb{P}, \mathbb{P}_{n}$ are both 1 D distributions, we can write

$$
W_{2}^{2}\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma}, \mathbb{P} * \mathcal{N}_{\sigma}\right)=\int_{-\infty}^{\infty} \rho_{\sigma}(x)\left|\tilde{F}_{n, \sigma}^{-1}\left(F_{\sigma}(x)\right)-x\right|^{2} d x
$$

where ρ_{σ} is PDF of $\mathbb{P} * \mathcal{N}_{\sigma}$, and $F_{\sigma}, \tilde{F}_{n, \sigma}$ are CDFs of $\mathbb{P}_{n} * \mathcal{N}_{\sigma}, \mathbb{P}_{n} * \mathcal{N}_{\sigma}$.

- If $\tilde{F}_{n, \sigma}(z) \geq F_{\sigma}(z+2)$, then $\forall x \in[z+1, z+2]$ we have $F_{\sigma}(x) \leq F_{\sigma}(z+2) \leq \tilde{F}_{n, \sigma}(z) \leq \tilde{F}_{n, \sigma}(x-1)$. Hence

$$
\left|\tilde{F}_{n, \sigma}^{-1}\left(F_{\sigma}(x)\right)-x\right| \geq 1
$$

- $W_{2}^{2}\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma}, \mathbb{P} * \mathcal{N}_{\sigma}\right) \geq \mathbf{P}(X \in[z+1, z+2]), \quad X \sim \mathbb{P} * \mathcal{N}_{\sigma}$.

W2 in 1D: Lower Bound Part

- Choose

$$
\mathbb{P}=\sum_{k=1}^{\infty} c_{0} \exp \left(-\frac{r_{k}^{2}}{2 K^{2}}\right) \delta_{r_{k}}
$$

with $r_{k}=c^{k-1}$ for $k \geq 1$.

W2 in 1D: Lower Bound Part

- Choose

$$
\mathbb{P}=\sum_{k=1}^{\infty} c_{0} \exp \left(-\frac{r_{k}^{2}}{2 K^{2}}\right) \delta_{r_{k}}
$$

with $r_{k}=c^{k-1}$ for $k \geq 1$.

- For $\kappa=\frac{\sigma^{2}}{K^{2}}$ and $t=1 / 2(c+1)(\kappa+1)$ and $X \sim \mathbb{P} * \mathcal{N}_{\sigma}$,

$$
\mathbf{P}\left(X \in\left[t r_{k}, t r_{k}+2\right]\right) \asymp \exp \left(-\left(t^{2}-\kappa c-c\right) \cdot \frac{r_{k}^{2}}{2 \sigma^{2}}\right)
$$

i.e. $\delta_{r_{k}}$ in \mathbb{P} determines the probability of $\mathbb{P} * \mathcal{N}_{\sigma}$ within the interval [trk, $\left.t r_{k}+2\right]$.

W2 in 1D: Lower Bound Part

- Berry-Esseen Theorem indicates that with certain probability uniformly for all k, we have

$$
\tilde{F}_{n, \sigma}\left(t r_{k}\right)-F_{\sigma}\left(t r_{k}\right) \succeq \sqrt{\frac{p_{k+1}}{n}}
$$

W2 in 1D: Lower Bound Part

- Berry-Esseen Theorem indicates that with certain probability uniformly for all k, we have

$$
\tilde{F}_{n, \sigma}\left(t r_{k}\right)-F_{\sigma}\left(t r_{k}\right) \succeq \sqrt{\frac{p_{k+1}}{n}}
$$

- Chosen n and k, we have $\tilde{F}_{n, \sigma}\left(t r_{k}\right)-F_{\sigma}\left(t r_{k}\right) \geq \mathbf{P}\left(X \in\left[t r_{k}, t r_{k}+2\right]\right)$ and hence

$$
\tilde{F}_{n, \sigma}\left(t r_{k}\right) \geq F_{\sigma}\left(t r_{k}+2\right)
$$

W2 in 1D: Upper Bound Part

Theorem

Suppose \mathbb{P} is a $1 D K$-subgaussian random variable, i.e. for some $C>0$,

$$
\mathbf{P}(|X| \geq x) \leq C \exp \left(-\frac{x^{2}}{2 K^{2}}\right), \quad x \sim \mathbb{P}
$$

then for any $\sigma<K, \epsilon>0$ we have

$$
\mathbb{E}\left[W_{2}^{2}\left(\mathbb{P} * \mathcal{N}_{\sigma}, \mathbb{P}_{n} * \mathcal{N}_{\sigma}\right)\right]=\tilde{\mathcal{O}}\left(n^{-\frac{\kappa^{2}}{2 \kappa^{2}-\sigma^{2}}+\epsilon}\right)
$$

W2 in 1D: Upper Bound Part

- Recall the formula

$$
W_{2}^{2}\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma}, \mathbb{P} * \mathcal{N}_{\sigma}\right)=\int_{-\infty}^{\infty} \rho_{\sigma}(x)\left|\tilde{F}_{n, \sigma}^{-1}\left(F_{\sigma}(x)\right)-x\right|^{2} d x
$$

W2 in 1D: Upper Bound Part

- Recall the formula

$$
W_{2}^{2}\left(\mathbb{P}_{n} * \mathcal{N}_{\sigma}, \mathbb{P} * \mathcal{N}_{\sigma}\right)=\int_{-\infty}^{\infty} \rho_{\sigma}(x)\left|\tilde{F}_{n, \sigma}^{-1}\left(F_{\sigma}(x)\right)-x\right|^{2} d x
$$

- For those x with large $\rho_{\sigma}(x)$, one can show that $\left|\tilde{F}_{n, \sigma}^{-1}\left(F_{\sigma}(x)\right)-x\right|^{2}$ is small and will decay with $1 / \rho_{\sigma}(x)$.
- For those x with small $\rho_{\sigma}(x)$, one can show that $\left|\tilde{F}_{n, \sigma}^{-1}\left(F_{\sigma}(x)\right)-x\right|^{2}$ is bounded with high probability.

W2 in 1D: Upper Bound Part

We divide $x \in \mathbb{R}$ into the following two cases:
(1) $\rho_{\sigma}(x)=\mathcal{O}\left(n^{-\frac{\kappa^{2}}{2 K^{2}-\sigma^{2}}-\epsilon}\right)$, indicating the density is small;
(2) $\rho_{\sigma}(x)=\Omega\left(n^{-\frac{\kappa^{2}}{2 K^{2}-\sigma^{2}}-\epsilon}\right)$, indicating the density is large.

W2 in 1D: (When $\rho_{\sigma}(x)$ is large)

W2 in 1D: (When $\rho_{\sigma}(x)$ is large)

- $\rho_{\sigma}(t)$ does not deviate too much from $\rho_{\sigma}(x)$ for those t in a small neighborhood of x.

W2 in 1D: (When $\rho_{\sigma}(x)$ is large)

- $\rho_{\sigma}(t)$ does not deviate too much from $\rho_{\sigma}(x)$ for those t in a small neighborhood of x.

Lemma

Suppose ρ_{σ} to be the density function of $P * \mathcal{N}\left(0, \sigma^{2}\right)$. If for some x and $a \geq 0$ we have $\rho_{\sigma}(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{a^{2}}{2 \sigma^{2}}\right)$, then for any δ we have

$$
\begin{aligned}
& \rho_{\sigma}(x+\delta) \geq \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(a+|\delta|+4 \sigma)^{2}}{2 \sigma^{2}}\right) \\
& \rho_{\sigma}(x+\delta) \leq \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\max \{0, a-|\delta|-4 \sigma\}^{2}}{2 \sigma^{2}}\right) .
\end{aligned}
$$

W2 in 1D: (When $\rho_{\sigma}(x)$ is large)

- $\rho_{\sigma}(t)$ does not deviate too much from $\rho_{\sigma}(x)$ for those t in a small neighborhood of x.

Lemma

Suppose ρ_{σ} to be the density function of $P * \mathcal{N}\left(0, \sigma^{2}\right)$. If for some x and $a \geq 0$ we have $\rho_{\sigma}(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{a^{2}}{2 \sigma^{2}}\right)$, then for any δ we have

$$
\begin{aligned}
& \rho_{\sigma}(x+\delta) \geq \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(a+|\delta|+4 \sigma)^{2}}{2 \sigma^{2}}\right) \\
& \rho_{\sigma}(x+\delta) \leq \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\max \{0, a-|\delta|-4 \sigma\}^{2}}{2 \sigma^{2}}\right) .
\end{aligned}
$$

- Therefore, is $\rho_{\sigma}(x)$ is large, then $\mathbf{P}(X \in[x-\delta, x+\delta])$ can be showed to be large as well.

W2 in 1D: (When $\rho_{\sigma}(x)$ is large)

- The CDF between $P * \mathcal{N}\left(0, \sigma^{2}\right)$ and $P_{n} * \mathcal{N}\left(0, \sigma^{2}\right)$ can be upper bounded uniformly.

W2 in 1D: (When $\rho_{\sigma}(x)$ is large)

- The CDF between $P * \mathcal{N}\left(0, \sigma^{2}\right)$ and $P_{n} * \mathcal{N}\left(0, \sigma^{2}\right)$ can be upper bounded uniformly.

Lemma

Suppose $F_{\sigma}, \tilde{F}_{\sigma, n}$ are CDF of $P * \mathcal{N}\left(0, \sigma^{2}\right)$ and $P_{n} * \mathcal{N}\left(0, \sigma^{2}\right)$. Define

$$
G(t)=\frac{1}{n} \vee\left(\frac{1}{2}-\left|t-\frac{1}{2}\right|\right), \quad t \in[0,1] .
$$

Then with probability at least $1-\delta$,

$$
\sup _{x \in \mathbb{R}} \frac{\left|F_{\sigma}(x)-\tilde{F}_{\sigma, n}(x)\right|}{\sqrt{G(F(x))}} \leq \frac{16}{\sqrt{n}} \log \left(\frac{2 n}{\delta}\right) .
$$

W2 in 1D: (When $\rho_{\sigma}(x)$ is large)

- One can show that when $\rho_{\sigma}(x)$ is large, $\left|\tilde{F}_{n, \sigma}^{-1}\left(F_{\sigma}(x)\right)-x\right|$ is small.

Lemma

Consider two $1 D$-distributions \mathbb{P}, \mathbb{Q}. We denote the PDF of \mathbb{P} as $\rho_{p}(\cdot)$, and the $C D F s$ of \mathbb{P}, \mathbb{Q} as F_{p}, F_{q} respectively. If for some $\sigma>0$ we have

$$
\alpha(t, \sigma) \triangleq \frac{\sup _{t \in[x-\sigma, x+\sigma]}\left|F_{p}(t)-F_{q}(t)\right|}{\inf _{t \in[x-\sigma, x+\sigma]} \rho_{p}(t)} \leq \sigma
$$

then

$$
\left|F_{q}^{-1}\left(F_{p}(t)\right)-t\right| \leq \alpha(t, \sigma) .
$$

W2 in 1D: (When $\rho_{\sigma}(x)$ is small)

W2 in 1D: (When $\rho_{\sigma}(x)$ is small)

- Given $R>0$, then for $\forall|x| \leq R$, with high probability we have $\left|\tilde{F}_{n, \sigma}^{-1}\left(F_{\sigma}(x)\right)-x\right|=\tilde{\mathcal{O}}(R)$.

W2 in 1D: (When $\rho_{\sigma}(x)$ is small)

- Given $R>0$, then for $\forall|x| \leq R$, with high probability we have $\left|\tilde{F}_{n, \sigma}^{-1}\left(F_{\sigma}(x)\right)-x\right|=\tilde{\mathcal{O}}(R)$.
- $\mathbf{P}(|X| \geq R) \leq C \exp \left(-\frac{R^{2}}{2 K^{2}}\right)$;

W2 in 1D: (When $\rho_{\sigma}(x)$ is small)

- Given $R>0$, then for $\forall|x| \leq R$, with high probability we have $\left|\tilde{F}_{n, \sigma}^{-1}\left(F_{\sigma}(x)\right)-x\right|=\tilde{\mathcal{O}}(R)$.
- $\mathbf{P}(|X| \geq R) \leq C \exp \left(-\frac{R^{2}}{2 K^{2}}\right)$;
- For those $|x| \leq R$ and $\rho_{\sigma}(x) \leq \epsilon$, the measure of the set of such x is at most $2 R \epsilon$.

W2 in 1D: (When $\rho_{\sigma}(x)$ is small)

- Given $R>0$, then for $\forall|x| \leq R$, with high probability we have $\left|\tilde{F}_{n, \sigma}^{-1}\left(F_{\sigma}(x)\right)-x\right|=\tilde{\mathcal{O}}(R)$.
- $\mathbf{P}(|X| \geq R) \leq C \exp \left(-\frac{R^{2}}{2 K^{2}}\right)$;
- For those $|x| \leq R$ and $\rho_{\sigma}(x) \leq \epsilon$, the measure of the set of such x is at most $2 R \epsilon$.
- If choosing R, ϵ properly, one can also upper bounded the integral over those x with small $\rho_{\sigma}(x)$ with $\mathcal{O}\left(n^{-\frac{K^{2}}{2 K^{2}-\sigma^{2}}-\epsilon}\right)$.

KL-convergence: Proof Idea

- The expected KL-divergence can be upper bounded using Rényi-mutual information:

KL-convergence: Proof Idea

- The expected KL-divergence can be upper bounded using Rényi-mutual information:

Lemma

We suppose $(X, Y) \sim P_{X, Y}$, and its marginal distribution to be P_{X}, P_{Y}, respectively. We let \hat{P}_{n} to be an empirical version of P_{X} generated with n samples. Then for every $1<\lambda \leq 2$, we have

$$
\mathbb{E}\left[D_{K L}\left(P_{Y \mid X} \circ \hat{P}_{n} \| P_{Y}\right)\right] \leq \frac{1}{\lambda-1} \log \left(1+\exp \left\{(\lambda-1)\left(I_{\lambda}(X ; Y)-\log n\right)\right\}\right)
$$

KL-convergence: Proof Idea

- The expected KL-divergence can be upper bounded using Rényi-mutual information:

Lemma

We suppose $(X, Y) \sim P_{X, Y}$, and its marginal distribution to be P_{X}, P_{Y}, respectively. We let \hat{P}_{n} to be an empirical version of P_{X} generated with n samples. Then for every $1<\lambda \leq 2$, we have

$$
\mathbb{E}\left[D_{K L}\left(P_{Y \mid X} \circ \hat{P}_{n} \| P_{Y}\right)\right] \leq \frac{1}{\lambda-1} \log \left(1+\exp \left\{(\lambda-1)\left(I_{\lambda}(X ; Y)-\log n\right)\right\}\right)
$$

This lemma indicates a convergence rate of $\mathcal{O}\left(n^{-(\lambda-1)}\right)$ provided $I_{\lambda}(X ; Y)<\infty$, where $X \sim \mathbb{P}, Z \sim \mathcal{N}_{\sigma}$ are independent and $Y=X+Z$.

KL-convergence: Proof Idea

- $I_{\lambda}(X ; Y)$ can be proved to be finite for any $\lambda<2$.

KL-convergence: Proof Idea

- $I_{\lambda}(X ; Y)$ can be proved to be finite for any $\lambda<2$.

Lemma

Suppose \mathbb{P} is a d-dimensional K-subgaussian distribution and random variables $X \sim \mathbb{P}, Z \sim \mathcal{N}\left(0, \sigma^{2} I_{d}\right)$ are independent to each other. We let $Y=X+Z$. Then for any $\sigma>0$ and $1<\lambda<2$, there exists a positive constant C only depending on \mathbb{P} and K, σ such that

$$
I_{\lambda}(X ; Y) \leq \frac{1}{\lambda-1} \log \left(\frac{C}{(2-\lambda)^{d+1}}\right)
$$

