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Smoothed Empirical Measures

Empirical Measures: Given distribution P, the empirical measure
of P is Pn = 1

n

∑n
i=1 δXi

, where Xi ∼ P;

Smoothed Empirical Measures: For given σ, the smoothed
empirical measure is the convolution of empirical measure and
N (0, σ2):

Pn ∗ N (0, σ2).

Why?



Smoothed Empirical Measures

Empirical Measures: Given distribution P, the empirical measure
of P is Pn = 1

n

∑n
i=1 δXi

, where Xi ∼ P;

Smoothed Empirical Measures: For given σ, the smoothed
empirical measure is the convolution of empirical measure and
N (0, σ2):

Pn ∗ N (0, σ2).

Why?



Feedforward DNN: Each layer T` = f`(T`−1)

How to talk about I (Y ;T`) & I (X ;T`)?

1 Formally: these are (almost) indep of DNN weights if X is discrete

2 Practically: Should not bother about info at 10−6 scale...

3 Our solution: add noise to neuron outputs

[Shwartz-Tishby’17]
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Textbook idea



Gaussian Smoothed Empirical W1

p-Wasserstein Distance: For two distributions P and Q on Rd and
p ≥ 1

Wp(P,Q) , inf
(
E‖X − Y ‖p

)1/p
infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

Distribution P on Rd

=⇒ i.i.d. Samples (Xi )
n
i=1

Empirical distribution Pn , 1
n

n∑
i=1

δXi

=⇒ Dependence on (n, d) of EW1

(
P,Pn

)

� n−
1
d (for cts. P, d ≥ 3)

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed’20)

For any d , we have EW1

(
P ∗ Nσ,Pn ∗ Nσ

)
≤ Oσ,d

(
n−

1
2

)
provided P is K -subgaussian.
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Convergence w.r.t. other distances?

Question: What about convergence of Pn ∗ Nσ → P ∗ Nσ in other

distances? Namely:

E
[
W 2

2 (Pn ∗ Nσ,P ∗ Nσ)
]
�?

E [DKL(Pn ∗ Nσ‖P ∗ Nσ)] �?

E
[
χ2(Pn ∗ Nσ‖P ∗ Nσ)

]
�?

Surprisingly, the answer is governed by the quantity Iχ2(X ;X + σZ ):

Iχ2(X ;Y ) , χ2(PX ,Y ‖PX ⊗ PY )
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Convergence of smoothed empirical distributions

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed’20)

For any dimension d : If Iχ2(X ;Y ) <∞

E[δ(Pn ∗ Nσ,P ∗ Nσ)] = eOσ(d) · 1

n
δ ∈ {W 2

2 ,DKL, χ
2}

(For W 2
2 also need to assume P is K -subgaussian with K < σ.)

Otherwise, if Iχ2(X ;Y ) =∞

E[χ2(· · · )] =∞, E[W 2
2 (· · · )],E[DKL(· · · )],= ω

(
1

n

)
.

(For W 2
2 also we use ∗Nτ with τ < σ).
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The result is interesting already in d = 1

Consider P = Ber(12). Then Pn = Ber(12 + Z√
n

)

Since Z√
n

mass must travel distance-1, we have

E[W 2
2 (Pn,P)] &

1√
n

At the same time for arbitrarily small σ > 0:

E[W 2
2 (Pn ∗ Nσ,P ∗ Nσ)] = Oσ(

1

n
)
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The result is interesting already in d = 1

Even for P = N (0, 1) we have [Bobkov-Ledoux’16]:

E[W 2
2 (Pn,P)] � log log n

n

while for any σ > 0:

E[W 2
2 (Pn ∗ Nσ,P ∗ Nσ)] = Oσ(

1

n
)

(indeed, I 2χ(X ;Y ) <∞ for X ∼ N )
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2020 and 2021: When is Iχ2(X ;Y ) <∞?

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed’20)

1 If PX has bounded support, then Iχ2(X ;Y ) <∞;

2 If PX is K -subgaussian with K < σ
2 , then Iχ2(X ;Y ) <∞;

3 If K >
√

2σ, then Iχ2(X ;Y ) =∞ for some K -subgaussian P.

Recall: X is K -subgaussian iff

E[eλ
T (X−E[X ])] ≤ e

K2

2
‖λ‖22 ∀λ ∈ Rd

Theorem (Jia-Block-Polyanskiy-Rakhlin’21)

1 If PX is K -subgaussian with K < σ, then Iχ2(X ;Y ) <∞;

2 If K > σ, then Iχ2(X ;Y ) =∞ for some K -subgaussian P.

Closes entire range (except K = σ).
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Iχ2 <∞: proof idea (K < σ)

When K < σ, we write

Iχ2(S ;Y ) = ES∼P

∫
Rd

ϕ2
σ2Id

(z − S)

ES̃∼Pϕσ2Id (z − S̃)
dz − 1,

where ϕσ2Id (·) is the PDF of N (0, σ2Id).

Divide the domain of ES∼P
∫
Rd into the following three parts:

1 A = {‖S‖2 ≤ 1};
2 B = {‖S‖2 > 1 and ‖z − S‖2 ≥ δ‖S‖2};
3 C = {‖z − S‖2 < δ‖S‖2};

and proved ES∼P
∫
Rd in each parts is less than infinity.
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Iχ2 =∞ counter-example (K > σ)

Choose the hard case

P = p0δ0 +
∞∑
k=1

pkδrk ,

with rk = ck−1, pk = c0 exp
(
− r2k

2K2

)
for some constant c0, c and

p0 = 1−
∑∞

k=1 pk .

P is K -subgaussian.

When σ < K , δrj ∗ Nσ for j 6= k hardly affect the density of P ∗ Nσ
in comparison to δrk ∗ Nσ if c is chosen large enough.
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Iχ2 =∞ counter-example

WLOG, we assume σ = 1;

Iχ2(S ;Y ) can be decomposed into

Iχ2(S ;Y ) =
∞∑
k=0

∫
R

ϕ 1√
2

(z − rk)

ϕ1(z − rk)
· 1

1 +
∑

j 6=k
pj
pk

ϕ1(z−rj )
ϕ1(z−rk )

dz − 1.

When z is in a small neighborhood of rk ,
ϕ1/
√

2(z−rk )
ϕ1(z−rk ) is uniformly

lower bounded for all k .

When z is in a small neighborhood of rk j 6= k we have

ϕ1(z − rj)

ϕ1(z − rk)
≤ exp(−j/2).



Iχ2 =∞ counter-example

WLOG, we assume σ = 1;

Iχ2(S ;Y ) can be decomposed into

Iχ2(S ;Y ) =
∞∑
k=0

∫
R

ϕ 1√
2

(z − rk)

ϕ1(z − rk)
· 1

1 +
∑

j 6=k
pj
pk

ϕ1(z−rj )
ϕ1(z−rk )

dz − 1.

When z is in a small neighborhood of rk ,
ϕ1/
√

2(z−rk )
ϕ1(z−rk ) is uniformly

lower bounded for all k .

When z is in a small neighborhood of rk j 6= k we have

ϕ1(z − rj)

ϕ1(z − rk)
≤ exp(−j/2).



Iχ2 =∞ counter-example

WLOG, we assume σ = 1;

Iχ2(S ;Y ) can be decomposed into

Iχ2(S ;Y ) =
∞∑
k=0

∫
R

ϕ 1√
2

(z − rk)

ϕ1(z − rk)
· 1

1 +
∑

j 6=k
pj
pk

ϕ1(z−rj )
ϕ1(z−rk )

dz − 1.

When z is in a small neighborhood of rk ,
ϕ1/
√
2(z−rk )

ϕ1(z−rk ) is uniformly
lower bounded for all k .

When z is in a small neighborhood of rk j 6= k we have

ϕ1(z − rj)

ϕ1(z − rk)
≤ exp(−j/2).



Iχ2 =∞ counter-example

WLOG, we assume σ = 1;

Iχ2(S ;Y ) can be decomposed into

Iχ2(S ;Y ) =
∞∑
k=0

∫
R

ϕ 1√
2

(z − rk)

ϕ1(z − rk)
· 1

1 +
∑

j 6=k
pj
pk

ϕ1(z−rj )
ϕ1(z−rk )

dz − 1.

When z is in a small neighborhood of rk ,
ϕ1/
√
2(z−rk )

ϕ1(z−rk ) is uniformly
lower bounded for all k .

When z is in a small neighborhood of rk j 6= k we have

ϕ1(z − rj)

ϕ1(z − rk)
≤ exp(−j/2).



Summary for K -Subgaussian P

sup
P∈SubG(K)

E
[
δ

(
Pn ∗ Nσ,P ∗ Nσ

)]
� ???

In All Dimensions:

W1 and ‖ · ‖TV are always O
(

1√
n

)
W2

2 is O
(
1
n

)
or ω

(
1
n

)
. But always O

(
1√
n

)
DKL is O

(
1
n

)
or ω

(
1
n

)
. But always O

(
1√
n

)
χ2 is O

(
1
n

)
or =∞

Threshold: In all cases the alternative is governed by K < σ vs K > σ
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Summary for K -Subgaussian P
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Convergence of Smoothed W2 Convergence in 1D

Question: When rate is ω( 1n ) does it switch to 1√
n

right away?

No!

Theorem (Jia-Block-Polyanskiy-Rakhlin’21)

In dimension d = 1 we have:

For any K -subgaussian distribution P, we have

E
[
W 2

2 (Pn ∗ Nσ,P ∗ Nσ)
]

= Õ

(
n
− K2

2K2−σ2

)
.

There exists a K -subgaussian distribution P such that

E
[
W 2

2 (Pn ∗ Nσ,P ∗ Nσ)
]

= Ω̃

(
n
− (σ2+K2)2

2(σ4+K4)

)
.

Proof ideas: 1. use optimal (quantile-quantile) coupling
2. use dyadic haircomb c/ex.
3. Õ(n−E ) is in fact O(n−E+ε)
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W2 Convergence in 1D: illustration

0.0 0.2 0.4 0.6 0.8 1.0
κ

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

Co
nv
er
ge
nc
e 
Ra
te

Upper Bound
Lo er Bound
Existed Upper Bound
Existed Lo er Bound

κ , σ2

K2



Convergence of Smoothed KL Divergence

[GGNWP20]: If σ > K then

E [DKL(Pn ∗ Nσ‖P ∗ Nσ)] = O
(
n−1
)

When σ < K , there exists a distribution P such that

E [DKL(Pn ∗ Nσ‖P ∗ Nσ)] = ω(n−1) .

(but O(n−1/2), as we know)

Question: What happens to KL rate when σ < K?
From W 2

2 we might guess the exponent in n drops.
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Convergence of Smoothed KL Divergence when σ < K

Theorem (Jia-Block-Polyanskiy-Rakhlin’21)

Suppose P is a d-dimensional K -subgaussian distribution, then:

E
[
DKL

(
Pn ∗ N (0, σ2Id)

∥∥P ∗ N (0, σ2Id
)
)
]

= O
(

(log n)d+1

n

)
.

Recall that for K < σ we know DKL ≤ O( 1n ).

Thus, only a polylog(n) slowdown!
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Implication: LSI non-existence

T2 Transportation Inequality: If P ∗ Nσ satisfies log-Sobolev
inequality with constant CP,σ, then for any distribution Q

W 2
2 (Q,P ∗ Nσ) ≤ CP,σDKL(Q‖P ∗ Nσ).

[WW16] When K < σ, P ∗ Nσ satisfies log-Sobolev inequality.
Extends the case of compact-support in [Zim13].

[WW16] also proposed open problem: when K ≥ σ, will P ∗ Nσ also
satisfies log-Sobolev inequality?

Comparing results for KL divergence and (lower bd) for W 2
2 :

∃ K -subgaussian P such that T2 transportation inequality does not
hold for P ∗ Nσ, σ < K .

... ⇒ when K > σ no LSI is possible.



Implication: LSI non-existence

T2 Transportation Inequality: If P ∗ Nσ satisfies log-Sobolev
inequality with constant CP,σ, then for any distribution Q

W 2
2 (Q,P ∗ Nσ) ≤ CP,σDKL(Q‖P ∗ Nσ).

[WW16] When K < σ, P ∗ Nσ satisfies log-Sobolev inequality.
Extends the case of compact-support in [Zim13].

[WW16] also proposed open problem: when K ≥ σ, will P ∗ Nσ also
satisfies log-Sobolev inequality?

Comparing results for KL divergence and (lower bd) for W 2
2 :

∃ K -subgaussian P such that T2 transportation inequality does not
hold for P ∗ Nσ, σ < K .

... ⇒ when K > σ no LSI is possible.



Summary of new results (2021)

I 2χ(S ;Y ) <∞ vs =∞ dichotomy: K < σ vs K > σ.

For 1D cases: prove sharper lower and upper bounds on the
convergence rate under W 2

2 distance.

Convergence in KL: O( 1n ) vs O(polylog(n)n ) for K < σ vs K > σ.

Corollary: no LSI for P ∗ Nσ when K > σ (and P is a
K -subgaussian).

Thanks!
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Proofs



W2 in 1D: Lower Bound Part

Theorem

For any K > σ > 0 and ε > 0, there exists some K -subgaussian
distribution P such that

lim inf
n→∞

E
[
W 2

2 (Pn ∗ Nσ,P ∗ Nσ)
]

n(σ2+K2)2/(2(σ4+K4))+ε
> 0.



W2 in 1D: Lower Bound Part

When P,Pn are both 1D distributions, we can write

W 2
2 (Pn ∗ Nσ,P ∗ Nσ) =

∫ ∞
−∞

ρσ(x)
∣∣∣F̃−1n,σ(Fσ(x))− x

∣∣∣2 dx ,
where ρσ is PDF of P ∗ Nσ, and Fσ, F̃n,σ are CDFs of
Pn ∗ Nσ,Pn ∗ Nσ.

If F̃n,σ(z) ≥ Fσ(z + 2), then ∀x ∈ [z + 1, z + 2] we have
Fσ(x) ≤ Fσ(z + 2) ≤ F̃n,σ(z) ≤ F̃n,σ(x − 1). Hence∣∣∣F̃−1n,σ(Fσ(x))− x

∣∣∣ ≥ 1.

W 2
2 (Pn ∗ Nσ,P ∗ Nσ) ≥ P (X ∈ [z + 1, z + 2]) , X ∼ P ∗ Nσ.
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W2 in 1D: Lower Bound Part

Choose

P =
∞∑
k=1

c0 exp

(
−

r2k
2K 2

)
δrk ,

with rk = ck−1 for k ≥ 1.

For κ = σ2

K2 and t = 1/2(c + 1)(κ+ 1) and X ∼ P ∗ Nσ,

P(X ∈ [trk , trk + 2]) � exp

(
−
(
t2 − κc − c

)
·
r2k

2σ2

)
,

i.e. δrk in P determines the probability of P ∗ Nσ within the interval
[trk , trk + 2].
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W2 in 1D: Lower Bound Part

Berry-Esseen Theorem indicates that with certain probability
uniformly for all k , we have

F̃n,σ(trk)− Fσ(trk) �
√

pk+1

n
.

Chosen n and k , we have F̃n,σ(trk)− Fσ(trk) ≥ P(X ∈ [trk , trk + 2])
and hence

F̃n,σ(trk) ≥ Fσ(trk + 2).
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W2 in 1D: Upper Bound Part

Theorem

Suppose P is a 1D K -subgaussian random variable, i.e. for some C > 0,

P(|X | ≥ x) ≤ C exp

(
− x2

2K 2

)
, x ∼ P,

then for any σ < K , ε > 0 we have

E
[
W 2

2 (P ∗ Nσ,Pn ∗ Nσ)
]

= Õ
(
n
− K2

2K2−σ2
+ε
)
.



W2 in 1D: Upper Bound Part

Recall the formula

W 2
2 (Pn ∗ Nσ,P ∗ Nσ) =

∫ ∞
−∞

ρσ(x)
∣∣∣F̃−1n,σ(Fσ(x))− x

∣∣∣2 dx .

For those x with large ρσ(x), one can show that
∣∣∣F̃−1n,σ(Fσ(x))− x

∣∣∣2
is small and will decay with 1/ρσ(x).

For those x with small ρσ(x), one can show that
∣∣∣F̃−1n,σ(Fσ(x))− x

∣∣∣2
is bounded with high probability.
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W2 in 1D: Upper Bound Part

We divide x ∈ R into the following two cases:

1 ρσ(x) = O
(
n
− K2

2K2−σ2
−ε
)

, indicating the density is small;

2 ρσ(x) = Ω

(
n
− K2

2K2−σ2
−ε
)

, indicating the density is large.



W2 in 1D: (When ρσ(x) is large)

ρσ(t) does not deviate too much from ρσ(x) for those t in a small
neighborhood of x .

Lemma

Suppose ρσ to be the density function of P ∗ N (0, σ2). If for some x and

a ≥ 0 we have ρσ(x) = 1√
2πσ

exp
(
− a2

2σ2

)
, then for any δ we have

ρσ(x + δ) ≥ 1√
2πσ

exp

(
−(a + |δ|+ 4σ)2

2σ2

)
ρσ(x + δ) ≤ 1√

2πσ
exp

(
−max{0, a− |δ| − 4σ}2

2σ2

)
.

Therefore, is ρσ(x) is large, then P(X ∈ [x − δ, x + δ]) can be
showed to be large as well.



W2 in 1D: (When ρσ(x) is large)

ρσ(t) does not deviate too much from ρσ(x) for those t in a small
neighborhood of x .

Lemma

Suppose ρσ to be the density function of P ∗ N (0, σ2). If for some x and

a ≥ 0 we have ρσ(x) = 1√
2πσ

exp
(
− a2

2σ2

)
, then for any δ we have

ρσ(x + δ) ≥ 1√
2πσ

exp

(
−(a + |δ|+ 4σ)2

2σ2

)
ρσ(x + δ) ≤ 1√

2πσ
exp

(
−max{0, a− |δ| − 4σ}2

2σ2

)
.

Therefore, is ρσ(x) is large, then P(X ∈ [x − δ, x + δ]) can be
showed to be large as well.



W2 in 1D: (When ρσ(x) is large)

ρσ(t) does not deviate too much from ρσ(x) for those t in a small
neighborhood of x .

Lemma

Suppose ρσ to be the density function of P ∗ N (0, σ2). If for some x and

a ≥ 0 we have ρσ(x) = 1√
2πσ

exp
(
− a2

2σ2

)
, then for any δ we have

ρσ(x + δ) ≥ 1√
2πσ

exp

(
−(a + |δ|+ 4σ)2

2σ2

)
ρσ(x + δ) ≤ 1√

2πσ
exp

(
−max{0, a− |δ| − 4σ}2

2σ2

)
.

Therefore, is ρσ(x) is large, then P(X ∈ [x − δ, x + δ]) can be
showed to be large as well.



W2 in 1D: (When ρσ(x) is large)

ρσ(t) does not deviate too much from ρσ(x) for those t in a small
neighborhood of x .

Lemma

Suppose ρσ to be the density function of P ∗ N (0, σ2). If for some x and

a ≥ 0 we have ρσ(x) = 1√
2πσ

exp
(
− a2

2σ2

)
, then for any δ we have

ρσ(x + δ) ≥ 1√
2πσ

exp

(
−(a + |δ|+ 4σ)2

2σ2

)
ρσ(x + δ) ≤ 1√

2πσ
exp

(
−max{0, a− |δ| − 4σ}2

2σ2

)
.

Therefore, is ρσ(x) is large, then P(X ∈ [x − δ, x + δ]) can be
showed to be large as well.



W2 in 1D: (When ρσ(x) is large)

The CDF between P ∗ N (0, σ2) and Pn ∗ N (0, σ2) can be upper
bounded uniformly.

Lemma

Suppose Fσ, F̃σ,n are CDF of P ∗ N (0, σ2) and Pn ∗ N (0, σ2). Define

G (t) =
1

n
∨
(

1

2
−
∣∣∣∣t − 1

2

∣∣∣∣) , t ∈ [0, 1].

Then with probability at least 1− δ,

sup
x∈R

|Fσ(x)− F̃σ,n(x)|√
G (F (x))

≤ 16√
n

log

(
2n

δ

)
.
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W2 in 1D: (When ρσ(x) is large)

One can show that when ρσ(x) is large,
∣∣∣F̃−1n,σ(Fσ(x))− x

∣∣∣ is small.

Lemma

Consider two 1D-distributions P,Q. We denote the PDF of P as ρp(·),
and the CDFs of P,Q as Fp,Fq respectively. If for some σ > 0 we have

α(t, σ) ,
supt∈[x−σ,x+σ] |Fp(t)− Fq(t)|

inft∈[x−σ,x+σ] ρp(t)
≤ σ,

then ∣∣F−1q (Fp(t))− t
∣∣ ≤ α(t, σ) .



W2 in 1D: (When ρσ(x) is small)

Given R > 0, then for ∀|x | ≤ R, with high probability we have∣∣∣F̃−1n,σ(Fσ(x))− x
∣∣∣ = Õ(R).

P(|X | ≥ R) ≤ C exp
(
− R2

2K2

)
;

For those |x | ≤ R and ρσ(x) ≤ ε, the measure of the set of such x is
at most 2Rε.

If choosing R, ε properly, one can also upper bounded the integral

over those x with small ρσ(x) with O
(
n
− K2

2K2−σ2
−ε
)

.
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−ε
)

.



KL-convergence: Proof Idea

The expected KL-divergence can be upper bounded using
Rényi-mutual information:

Lemma

We suppose (X ,Y ) ∼ PX ,Y , and its marginal distribution to be PX ,PY ,

respectively. We let P̂n to be an empirical version of PX generated with
n samples. Then for every 1 < λ ≤ 2, we have

E[DKL(PY |X ◦ P̂n‖PY )] ≤ 1

λ− 1
log(1 + exp{(λ− 1)(Iλ(X ;Y )− log n)}).

This lemma indicates a convergence rate of O
(
n−(λ−1)

)
provided

Iλ(X ;Y ) <∞, where X ∼ P,Z ∼ Nσ are independent and Y = X + Z .
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KL-convergence: Proof Idea

Iλ(X ;Y ) can be proved to be finite for any λ < 2.

Lemma

Suppose P is a d-dimensional K -subgaussian distribution and random
variables X ∼ P,Z ∼ N (0, σ2Id) are independent to each other. We let
Y = X + Z . Then for any σ > 0 and 1 < λ < 2, there exists a positive
constant C only depending on P and K , σ such that

Iλ(X ;Y ) ≤ 1

λ− 1
log

(
C

(2− λ)d+1

)
.
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