Bandit value estimation as an excuse to get some new concentration inequalities

Csaba Szepesvári

November 30, 2021

DeepMind and University of Alberta
BIRS Workshop on Math.Stat \& Learning

Collaborators

- Ilja Kuzborskij
- Claire Vernade
- András György

References: [KS19, KVGS21, KS21]

Contextual bandits

- $(X, A, R) \in \mathcal{X} \times[K] \times[0,1] \quad X$: context, A : action
R : reward
- Given $x \in \mathcal{X}, a \in[K]$,

$$
R \sim P_{R \mid X, A}(\cdot \mid x, a)
$$

is the reward "generated"

- Value $u(\pi)$ of policy $\pi: \mathcal{X} \rightarrow \Delta([K])$ is

$$
u(\pi)=\int_{\mathcal{X}} \sum_{a \in[K]} \pi(a \mid x) r(x, a) \mathrm{d} P_{X}(x)
$$

where

$$
r(x, a)=\int y P_{R \mid X, A}(\mathrm{~d} y \mid x, a)
$$

Contextual batch bandit value estimation

- Observed: $S=\left(\left(X_{1}, A_{1}, R_{1}\right), \ldots,\left(X_{n}, A_{n}, R_{n}\right)\right)$ i.i.d.,

$$
\left(X_{i}, A_{i}, R_{i}\right) \in \mathcal{X} \times[K] \times \mathbb{R}, i \in[n]:=\{1, \ldots, n\}
$$

- Given: randomized behavior and target policies $\pi_{b}, \pi: \mathcal{X} \rightarrow \Delta([K])$, with

$$
A_{i} \sim \pi_{b}\left(\cdot \mid X_{i}\right), \quad i \in[n]
$$

- Goal: Find f s.t for all $x>0$, w.p. $1-e^{-x}$,

$$
u(\pi) \geq f\left(S, \pi, \pi_{b}, x\right)
$$

and $u(\pi)-f\left(S, \pi, \pi_{b}, x\right)$ is "small"

A 2-step approach

- Step $\# 1$: Find f_{0} such that $u(\pi)$ is close to

$$
U:=f_{0}\left(S, \pi, \pi_{b}\right)
$$

- Step \#2: Find a high probability lower bound

$$
U_{\mathrm{LB}}:=f\left(S, \pi, \pi_{b}, x\right)
$$

for U.

Many ways to do this...

Mean estimation strategies in bandits

- Importance sampling estimator
- Double-robust estimator
- Weighted importance sampling estimator

Importance sampling estimator

Define the importance weights

$$
W_{i}=\frac{\pi\left(A_{i} \mid X_{i}\right)}{\pi_{b}\left(A_{i} \mid X_{i}\right)} \quad i \in[n] .
$$

The (unbiased) importance sampling (sicc!) estimator is

$$
U^{\mathrm{IS}}=\frac{1}{n} \sum_{i=1}^{n} W_{i} R_{i}
$$

Importance sampling estimator

Define the importance weights

$$
W_{i}=\frac{\pi\left(A_{i} \mid X_{i}\right)}{\pi_{b}\left(A_{i} \mid X_{i}\right)} \quad i \in[n] .
$$

The (unbiased) importance sampling (sicc!) estimator is

$$
U^{\mathrm{IS}}=\frac{1}{n} \sum_{i=1}^{n} W_{i} R_{i}
$$

Value lower bounds?

Importance sampling estimator

Define the importance weights

$$
W_{i}=\frac{\pi\left(A_{i} \mid X_{i}\right)}{\pi_{b}\left(A_{i} \mid X_{i}\right)} \quad i \in[n]
$$

The (unbiased) importance sampling (sicc!) estimator is

$$
U^{\mathrm{IS}}=\frac{1}{n} \sum_{i=1}^{n} W_{i} R_{i} .
$$

Value lower bounds?

- Disagreeing policies: W_{i} could be heavy-tailed

Importance sampling estimator

Define the importance weights

$$
W_{i}=\frac{\pi\left(A_{i} \mid X_{i}\right)}{\pi_{b}\left(A_{i} \mid X_{i}\right)} \quad i \in[n] .
$$

The (unbiased) importance sampling (sicc!) estimator is

$$
U^{\mathrm{IS}}=\frac{1}{n} \sum_{i=1}^{n} W_{i} R_{i} .
$$

Value lower bounds?

- Disagreeing policies: W_{i} could be heavy-tailed
- Hack? $W_{i}^{\lambda}=\pi\left(A_{i} \mid X_{i}\right) /\left(\pi_{b}\left(A_{i} \mid X_{i}\right)+\lambda\right), \lambda>0, \lambda=$??

The doubly-robust (DR) estimator

Choose $\hat{\eta}: \mathcal{X} \times[K] \rightarrow[0,1]$ and let

$$
U^{\mathrm{DR}}=\frac{1}{n} \sum_{i, a} \pi\left(a \mid X_{i}\right) \hat{\eta}\left(X_{i}, a\right)+\frac{1}{n} \sum_{i} W_{i}\left(R_{i}-\hat{\eta}\left(X_{i}, A_{i}\right)\right) .
$$

The doubly-robust (DR) estimator

Choose $\hat{\eta}: \mathcal{X} \times[K] \rightarrow[0,1]$ and let

$$
U^{\mathrm{DR}}=\frac{1}{n} \sum_{i, a} \pi\left(a \mid X_{i}\right) \hat{\eta}\left(X_{i}, a\right)+\frac{1}{n} \sum_{i} W_{i}\left(R_{i}-\hat{\eta}\left(X_{i}, A_{i}\right)\right) .
$$

- Unbiased for any $W_{i} \in \sigma\left(X_{i}, A_{i}\right)$ s.t. one of the following hold:

The doubly-robust (DR) estimator

Choose $\hat{\eta}: \mathcal{X} \times[K] \rightarrow[0,1]$ and let

$$
U^{\mathrm{DR}}=\frac{1}{n} \sum_{i, a} \pi\left(a \mid X_{i}\right) \hat{\eta}\left(X_{i}, a\right)+\frac{1}{n} \sum_{i} W_{i}\left(R_{i}-\hat{\eta}\left(X_{i}, A_{i}\right)\right)
$$

- Unbiased for any $W_{i} \in \sigma\left(X_{i}, A_{i}\right)$ s.t. one of the following hold:

$$
\text { 1. } \forall f:[K] \rightarrow[0,1]: \mathbb{E}\left[W_{i} f\left(A_{i}\right) \mid X_{i}\right]=\sum_{a} \pi\left(a \mid X_{i}\right) f(\text { a }) \text { a.s. }
$$

The doubly-robust (DR) estimator

Choose $\hat{\eta}: \mathcal{X} \times[K] \rightarrow[0,1]$ and let

$$
U^{\mathrm{DR}}=\frac{1}{n} \sum_{i, a} \pi\left(a \mid X_{i}\right) \hat{\eta}\left(X_{i}, a\right)+\frac{1}{n} \sum_{i} W_{i}\left(R_{i}-\hat{\eta}\left(X_{i}, A_{i}\right)\right) .
$$

- Unbiased for any $W_{i} \in \sigma\left(X_{i}, A_{i}\right)$ s.t. one of the following hold:

$$
\begin{aligned}
& \text { 1. } \forall f:[K] \rightarrow[0,1]: \mathbb{E}\left[W_{i} f\left(A_{i}\right) \mid X_{i}\right]=\sum_{a} \pi\left(a \mid X_{i}\right) f(\text { a }) \text { a.s. } \\
& \text { 2. } \mathbb{E}\left[\hat{\eta}\left(X_{i}, A_{i}\right) \mid X_{i}, A_{i}\right]=r\left(X_{i}, A_{i}\right)
\end{aligned}
$$

The doubly-robust (DR) estimator

Choose $\hat{\eta}: \mathcal{X} \times[K] \rightarrow[0,1]$ and let

$$
U^{\mathrm{DR}}=\frac{1}{n} \sum_{i, a} \pi\left(a \mid X_{i}\right) \hat{\eta}\left(X_{i}, a\right)+\frac{1}{n} \sum_{i} W_{i}\left(R_{i}-\hat{\eta}\left(X_{i}, A_{i}\right)\right) .
$$

- Unbiased for any $W_{i} \in \sigma\left(X_{i}, A_{i}\right)$ s.t. one of the following hold:

$$
\begin{aligned}
& \text { 1. } \forall f:[K] \rightarrow[0,1]: \mathbb{E}\left[W_{i} f\left(A_{i}\right) \mid X_{i}\right]=\sum_{a} \pi\left(a \mid X_{i}\right) f(\text { a }) \text { a.s. } \\
& \text { 2. } \mathbb{E}\left[\hat{\eta}\left(X_{i}, A_{i}\right) \mid X_{i}, A_{i}\right]=r\left(X_{i}, A_{i}\right)
\end{aligned}
$$

- Reduces variance when $\hat{\eta} \approx r$

Weighted importance sampling (WIS)

WIS estimator:

$$
U^{\mathrm{WIS}}=\frac{\sum_{i=1}^{n} W_{i} R_{i}}{\sum_{i=1}^{n} W_{i}}
$$

Weighted importance sampling (WIS)

WIS estimator:

$$
U^{\mathrm{WIS}}=\frac{\sum_{i=1}^{n} W_{i} R_{i}}{\sum_{i=1}^{n} W_{i}}
$$

- Biased (though bias vanishes as $n \rightarrow \infty$)

Weighted importance sampling (WIS)

WIS estimator:

$$
U^{\mathrm{WIS}}=\frac{\sum_{i=1}^{n} W_{i} R_{i}}{\sum_{i=1}^{n} W_{i}}
$$

- Biased (though bias vanishes as $n \rightarrow \infty$)
- Empirically much better than IS; "low variance" Efron-Stein + calculation:

$$
\operatorname{Var}\left(U^{\mathrm{WIS}}\right) \leq 4 \underbrace{\mathbb{E}\left[\sum_{k}\left(\frac{W_{k}}{\sum_{i} W_{i}}\right)^{2}\right]}_{=: \frac{1}{n_{\text {eff }}}}
$$

Weighted importance sampling (WIS)

WIS estimator:

$$
U^{\mathrm{WIS}}=\frac{\sum_{i=1}^{n} W_{i} R_{i}}{\sum_{i=1}^{n} W_{i}}
$$

- Biased (though bias vanishes as $n \rightarrow \infty$)
- Empirically much better than IS; "low variance" Efron-Stein + calculation:

$$
\operatorname{Var}\left(U^{\mathrm{WIS}}\right) \leq 4 \underbrace{4 \mathbb{E}\left[\sum_{k}\left(\frac{W_{k}}{\sum_{i} W_{i}}\right)^{2}\right]}_{=: \frac{1}{n_{\text {eff }}}}
$$

- How do we get value lower bounds?

Semi-empirical Efron-Stein bound for WIS

WIS value estimate:

$$
U^{\mathrm{WIS}}=\frac{1}{Z} \sum_{i=1}^{n} W_{i} R_{i}, \quad Z=\sum_{i=1}^{n} W_{i}
$$

Let

$$
\begin{aligned}
& V=\sum_{k=1}^{n} \mathbb{E}\left[\left.\left(\frac{W_{k}}{Z}+\frac{W_{k}^{\prime}}{Z^{(k)}}\right)^{2} \right\rvert\, W_{1}^{k}, X_{1}^{n}\right] \\
& \beta=\min \left(\mathbb{E}\left[\left.\frac{n}{Z} \right\rvert\, X_{1}^{n}\right]^{-1}, 1\right) .
\end{aligned}
$$

Theorem ([KVGS21])
W.h.p.,

$$
u(\pi) \geq\left(\beta \cdot\left(U^{\mathrm{WIS}}-\sqrt{c \cdot\left(V+\frac{1}{n}\right)}\right)-\frac{c^{\prime}}{\sqrt{n}}\right)_{+}
$$

where $Z^{(k)}=Z+\left(W_{k}^{\prime}-W_{k}\right)$, and W_{k}^{\prime} indep. dist. as W_{k}.

Semi-empirical Efron-Stein bound for WIS

$$
\begin{aligned}
u(\pi) & \geq\left(\beta \cdot\left(U^{\mathrm{WIS}}-\sqrt{c \cdot\left(V+\frac{1}{n}\right)}\right)-\frac{c^{\prime}}{\sqrt{n}}\right)_{+} \\
V & =\sum_{k=1}^{n} \mathbb{E}\left[\left.\left(\frac{W_{k}}{Z}+\frac{W_{k}^{\prime}}{Z^{(k)}}\right)^{2} \right\rvert\, W_{1}^{k}, X_{1}^{n}\right] \\
\beta & =\min \left(\mathbb{E}\left[\left.\frac{n}{Z} \right\rvert\, X_{1}^{n}\right]^{-1}, 1\right) \\
Z^{(k)} & =Z+\left(W_{k}^{\prime}-W_{k}\right), \text { and } W_{k}^{\prime} \text { indep. dist. as } W_{k}
\end{aligned}
$$

- No truncation! No hyperparameters.
- Contexts are fixed.
- Needs knowledge of π_{b} - only partly empirical:
V and β can be computed exactly. Cost: $n^{K}:-($
Can approximate using Monte-Carlo simulation! :-)
... and is "pretty good"!

Proof sketch

Let $u\left(\pi \mid X_{1}^{n}\right):=\frac{1}{n} \sum_{i=1}^{n} \sum_{a} \pi\left(a \mid X_{i}\right) r\left(X_{i}, a\right)$.
Then $u(\pi)-U^{\mathrm{WIS}}=$
$\underbrace{u(\pi)-u\left(\pi \mid X_{1}^{n}\right)}_{\text {Context concentration }}+\underbrace{u\left(\pi \mid X_{1}^{n}\right)-\mathbb{E}\left[U^{\text {WIS }} \mid X_{1}^{n}\right]}_{\left.\text {Bias (fixed } X_{1}^{n}\right)}+\underbrace{\mathbb{E}\left[U^{\text {WIS }} \mid X_{1}^{n}\right]-U^{\text {WIS }}}_{\text {Concentration }}$

Proof sketch

Let $u\left(\pi \mid X_{1}^{n}\right):=\frac{1}{n} \sum_{i=1}^{n} \sum_{a} \pi\left(a \mid X_{i}\right) r\left(X_{i}, a\right)$.
Then $u(\pi)-U^{\mathrm{W} I S}=$
$\underbrace{u(\pi)-u\left(\pi \mid X_{1}^{n}\right)}_{\text {Context concentration }}+\underbrace{u\left(\pi \mid X_{1}^{n}\right)-\mathbb{E}\left[U^{\mathrm{WIS}} \mid X_{1}^{n}\right]}_{\left.\text {Bias (fixed } X_{1}^{n}\right)}+\underbrace{\mathbb{E}\left[U^{\mathrm{WIS}} \mid X_{1}^{n}\right]-U^{\mathrm{WIS}}}_{\text {Concentration }}$

1. Context concentration: Hoeffding

Proof sketch

Let $u\left(\pi \mid X_{1}^{n}\right):=\frac{1}{n} \sum_{i=1}^{n} \sum_{a} \pi\left(a \mid X_{i}\right) r\left(X_{i}, a\right)$.
Then $u(\pi)-U^{\mathrm{WIS}}=$
$\underbrace{u(\pi)-u\left(\pi \mid X_{1}^{n}\right)}_{\text {Context concentration }}+\underbrace{u\left(\pi \mid X_{1}^{n}\right)-\mathbb{E}\left[U^{\text {WIS }} \mid X_{1}^{n}\right]}_{\left.\text {Bias (fixed } X_{1}^{n}\right)}+\underbrace{\mathbb{E}\left[U^{\text {WIS }} \mid X_{1}^{n}\right]-U^{\text {WIS }}}_{\text {Concentration }}$

1. Context concentration: Hoeffding
2. Bias:

$$
\begin{aligned}
& \mathbb{E}\left[U^{\mathrm{WIS}} \mid X_{1}^{n}\right]=\mathbb{E}\left[\left.\frac{\sum_{k=1}^{n} W_{k} r\left(X_{k}, A_{k}\right)}{\sum_{k=1}^{n} W_{k}} \right\rvert\, X_{1}^{n}\right] \\
& \quad \leq \mathbb{E}\left[\left.\frac{1}{\sum_{k=1}^{n} W_{k}} \right\rvert\, X_{1}^{n}\right] \mathbb{E}\left[\sum_{k=1}^{n} W_{k} r\left(X_{k}, A_{k}\right) \mid X_{1}^{n}\right] \\
& \\
& \quad=\mathbb{E}\left[\left.\frac{n}{\sum_{k=1}^{n} W_{k}} \right\rvert\, X_{1}^{n}\right] u\left(\pi, X_{1}^{n}\right)
\end{aligned}
$$

Proof: ~ Harris' inequality.

Proof sketch

$\underbrace{u(\pi)-u\left(\pi \mid X_{1}^{n}\right)}_{\text {Concentration of contexts }}+\underbrace{u\left(\pi \mid X_{1}^{n}\right)-\mathbb{E}\left[U^{\mathrm{WIS}} \mid X_{1}^{n}\right]}_{\text {Bias }}+\underbrace{\mathbb{E}\left[U^{\mathrm{WIS}} \mid X_{1}^{n}\right]-U^{\text {WIS }}}_{\text {Concentration }}$

Concentration

(Remember) some challenges

- Even for basic importance sampling $\left(W_{1} R_{1}+\cdots+W_{n} R_{n}\right) / n$ it's non-trivial: unbiased, but W_{i} are unbounded
- Excludes Hoeffding/Bernstein/McDiarmid
- We can "truncate", e.g. $W_{i}^{\lambda}=\pi\left(A_{i} \mid X_{i}\right) /\left(\pi_{b}\left(A_{i} \mid X_{i}\right)+\lambda\right)$ for some h.p. $\lambda>0$.
- Ugly! Needs tuning, doesn't always work...

Proof sketch

$\underbrace{u(\pi)-u\left(\pi \mid X_{1}^{n}\right)}_{\text {Concentration of contexts }}+\underbrace{u\left(\pi \mid X_{1}^{n}\right)-\mathbb{E}\left[U^{\mathrm{WIS}} \mid X_{1}^{n}\right]}_{\text {Bias }}+\underbrace{\mathbb{E}\left[U^{\mathrm{WIS}} \mid X_{1}^{n}\right]-U^{\text {WIS }}}_{\text {Concentration }}$

Concentration

(Remember) some challenges

- Even for basic importance sampling $\left(W_{1} R_{1}+\cdots+W_{n} R_{n}\right) / n$ it's non-trivial: unbiased, but W_{i} are unbounded
- Excludes Hoeffding/Bernstein/McDiarmid
- We can "truncate", e.g. $W_{i}^{\lambda}=\pi\left(A_{i} \mid X_{i}\right) /\left(\pi_{b}\left(A_{i} \mid X_{i}\right)+\lambda\right)$ for some h.p. $\lambda>0$.
- Ugly! Needs tuning, doesn't always work...

Proof sketch

$\underbrace{u(\pi)-u\left(\pi \mid X_{1}^{n}\right)}_{\text {Concentration of contexts }}+\underbrace{u\left(\pi \mid X_{1}^{n}\right)-\mathbb{E}\left[U^{\mathrm{WIS}} \mid X_{1}^{n}\right]}_{\text {Bias }}+\underbrace{\mathbb{E}\left[U^{\mathrm{WIS}} \mid X_{1}^{n}\right]-U^{\text {WIS }}}_{\text {Concentration }}$

Concentration

(Remember) some challenges

- Even for basic importance sampling $\left(W_{1} R_{1}+\cdots+W_{n} R_{n}\right) / n$ it's non-trivial: unbiased, but W_{i} are unbounded
- Excludes Hoeffding/Bernstein/McDiarmid
- We can "truncate", e.g. $W_{i}^{\lambda}=\pi\left(A_{i} \mid X_{i}\right) /\left(\pi_{b}\left(A_{i} \mid X_{i}\right)+\lambda\right)$ for some h.p. $\lambda>0$.
- Ugly! Needs tuning, doesn't always work...
- Variance is important: need bounds with empirical variance.
- Sometimes, estimator is not a sum of indep. elements (self-normalization).

(New) Efron-Stein tail bound

Theorem ([KS19, KS21])
Assume elements of $S=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ are independent, and let
$\Delta=f(S)-\mathbb{E}[f(S)], \quad V=\sum_{k=1}^{n} \mathbb{E}\left[\left(f(S)-f\left(S^{(k)}\right)\right)^{2} \mid X_{1}, \ldots, X_{k}\right]$.
Then, for any $x \geq 0, y>0$, w.p. $1-e^{-x}$,

$$
|\Delta|<\sqrt{2(V+y)\left(x+\frac{1}{2} \ln (1+V / y)\right)}
$$

Application to WIS tail bounds

Take $f=U^{\text {WIS }}$, condition on X_{1}^{n}. Algebra gives that V obeys

$$
V \leq \sum_{k=1}^{n} \mathbb{E}\left[\left.\left(\frac{W_{k}}{Z}+\frac{W_{k}^{\prime}}{Z^{(k)}}\right)^{2} \right\rvert\, W_{1}^{k}, X_{1}^{n}\right]
$$

Choose $y=1 / n$.

Proof of Efron-Stein tail bound

Step \#1: (Δ, \sqrt{V}) is a canonical pair
Step \#2: Use self-normalized bounds available for canonical pairs

Canonical pairs - [dIPLS08]

We call (A, B) a canonical pair if $B \geq 0$ and

$$
\sup _{\lambda \in \mathbb{R}} \mathbb{E}\left[\exp \left(\lambda A-\frac{\lambda^{2}}{2} B^{2}\right)\right] \leq 1 .
$$

Step \#2: Tail bounds for canonical pairs

Let (A, B) be a canonical pair.
Theorem (Thm 2.7 of [dIPLS08])
For all $x>0$, w.p. $1-\sqrt{2} e^{-x}$,

$$
|A|<2 \sqrt{x\left(B^{2}+(\mathbb{E}[B])^{2}\right)}
$$

Step \#2: Tail bounds for canonical pairs

Let (A, B) be a canonical pair.
Theorem (Thm 2.7 of [dIPLS08])
For all $x>0$, w.p. $1-\sqrt{2} e^{-x}$,

$$
|A|<2 \sqrt{x\left(B^{2}+(\mathbb{E}[B])^{2}\right)}
$$

Theorem ([KS21])
For all $x \geq 0$ and $y>0$, w.p. $1-e^{-x}$,

$$
|A|<\sqrt{2\left(B^{2}+y\right)\left(x+\frac{1}{2} \ln \left(1+\frac{B^{2}}{y}\right)\right)}
$$

Proof of 2nd result: Method of mixtures

Proof.

Markov: For $x>0$, w.p. $1-e^{-x}, X<\ln \mathbb{E}\left[e^{X}\right]+x$.

Proof of 2nd result: Method of mixtures

Proof.
Markov: For $x>0$, w.p. $1-e^{-x}, X<\ln \mathbb{E}\left[e^{X}\right]+x$.
Let $\Lambda \sim \mathcal{N}\left(0, \sigma^{2}\right), \wedge \perp(A, B)$.
Choose

$$
X=\ln \mathbb{E}\left[\left.e^{\wedge A-\frac{\Lambda^{2}}{2} B^{2}} \right\rvert\, A, B\right]
$$

Apply previous inequality, calculate (on the RHS use Fubini). Set $y=1 / \sigma^{2}$.

Proof of 2nd result: Method of mixtures

Proof.
Markov: For $x>0$, w.p. $1-e^{-x}, X<\ln \mathbb{E}\left[e^{X}\right]+x$.
Let $\Lambda \sim \mathcal{N}\left(0, \sigma^{2}\right), \Lambda \perp(A, B)$.
Choose

$$
X=\ln \mathbb{E}\left[\left.e^{\wedge A-\frac{\Lambda^{2}}{2} B^{2}} \right\rvert\, A, B\right]
$$

Apply previous inequality, calculate (on the RHS use Fubini). Set $y=1 / \sigma^{2}$.

Note: Thm 12.4 of [dIPLS08] is almost the same, the proof here is shorter and the result is slightly improved.

Step $\# 1:(\Delta, \sqrt{V})$ is a canonical pair. Part I
Let $\mathbb{E}_{k}[\cdot]:=\mathbb{E}\left[\cdot \mid X_{1}, \ldots, X_{k}\right]$. Recall

$$
\Delta=f(S)-\mathbb{E}[f(S)], \quad V=\sum_{k=1}^{n} \underbrace{\mathbb{E}_{k}\left[\left(f(S)-f\left(S^{(k)}\right)\right)^{2}\right]}_{=: V_{k}} .
$$

Step \#1: (Δ, \sqrt{V}) is a canonical pair. Part I

Let $\mathbb{E}_{k}[\cdot]:=\mathbb{E}\left[\cdot \mid X_{1}, \ldots, X_{k}\right]$. Recall

$$
\Delta=f(S)-\mathbb{E}[f(S)], \quad V=\sum_{k=1}^{n} \underbrace{\mathbb{E}_{k}\left[\left(f(S)-f\left(S^{(k)}\right)\right)^{2}\right]}_{=: V_{k}} .
$$

Proof: We have

$$
\Delta=\sum_{k=1}^{n} D_{k} \quad \text { and } \quad V=\sum_{k=1}^{n} V_{k}
$$

where

$$
D_{k}=\mathbb{E}_{k}\left[f(S)-f\left(S^{(k)}\right)\right]
$$

Step $\# 1:(\Delta, \sqrt{V})$ is a canonical pair. Part I

Let $\mathbb{E}_{k}[\cdot]:=\mathbb{E}\left[\cdot \mid X_{1}, \ldots, X_{k}\right]$. Recall

$$
\Delta=f(S)-\mathbb{E}[f(S)], \quad V=\sum_{k=1}^{n} \underbrace{\mathbb{E}_{k}\left[\left(f(S)-f\left(S^{(k)}\right)\right)^{2}\right]}_{=: V_{k}} .
$$

Proof: We have

$$
\Delta=\sum_{k=1}^{n} D_{k} \quad \text { and } \quad V=\sum_{k=1}^{n} V_{k}
$$

where

$$
D_{k}=\mathbb{E}_{k}\left[f(S)-f\left(S^{(k)}\right)\right]
$$

Indeed, $\mathbb{E}_{k-1}[f(S)]=\mathbb{E}_{k}\left[f\left(S^{(k)}\right)\right]$, so
$D_{k}=\mathbb{E}_{k}[f(S)]-\mathbb{E}_{k-1}[f(S)]$, use telescoping.

Proof of Step \#1: Part II

Assume for now

$$
\begin{equation*}
\mathbb{E}_{k-1}\left[\exp \left(\lambda D_{k}-\frac{\lambda^{2}}{2} V_{k}\right)\right] \leq 1 \quad \text { a.s. } \forall k \in[n] \tag{1}
\end{equation*}
$$

Proof of Step \#1: Part II

Assume for now

$$
\begin{equation*}
\mathbb{E}_{k-1}\left[\exp \left(\lambda D_{k}-\frac{\lambda^{2}}{2} V_{k}\right)\right] \leq 1 \quad \text { a.s. } \forall k \in[n] \tag{1}
\end{equation*}
$$

Then

$$
\begin{aligned}
& \mathbb{E}\left[\exp \left(\lambda \Delta-\frac{\lambda^{2}}{2} V\right)\right] \\
& \quad=\mathbb{E}[\underbrace{\mathbb{E}_{n-1}\left[\exp \left(\lambda D_{n}-\frac{\lambda^{2}}{2} V_{n}\right)\right]}_{\leq 1 \text { a.s }} \prod_{k=1}^{n-1} \exp \left(\lambda D_{k}-\frac{\lambda^{2}}{2} V_{k}\right)] \\
& \quad \leq \mathbb{E}[\underbrace{\mathbb{E}_{n-2}\left[\exp \left(\lambda D_{n-1}-\frac{\lambda^{2}}{2} V_{n-1}\right)\right]}_{\leq 1 \text { a.s }} \prod_{k=1}^{n-2} \exp \left(\lambda D_{k}-\frac{\lambda^{2}}{2} V_{k}\right)] \\
& \quad \leq \cdots \leq 1 .
\end{aligned}
$$

Proof of Step \#1: Part III
Claim: $\mathbb{E}_{k-1}\left[\exp \left(\lambda D_{k}-\frac{\lambda^{2}}{2} V_{k}\right)\right] \leq 1$ a.s.

Proof of Step \#1: Part III

Claim: $\mathbb{E}_{k-1}\left[\exp \left(\lambda D_{k}-\frac{\lambda^{2}}{2} V_{k}\right)\right] \leq 1$ a.s.
Proof: $\Delta_{k}:=f(S)-f\left(S^{(k)}\right) \Rightarrow D_{k}=\mathbb{E}_{k}\left[\Delta_{k}\right], V_{k}=\mathbb{E}_{k}\left[\Delta_{k}\right]$.

Proof of Step \#1: Part III

Claim: $\mathbb{E}_{k-1}\left[\exp \left(\lambda D_{k}-\frac{\lambda^{2}}{2} V_{k}\right)\right] \leq 1$ a.s.
Proof: $\Delta_{k}:=f(S)-f\left(S^{(k)}\right) \Rightarrow D_{k}=\mathbb{E}_{k}\left[\Delta_{k}\right], V_{k}=\mathbb{E}_{k}\left[\Delta_{k}\right]$. Jensen:

$$
\mathbb{E}_{k-1}\left[\exp \left(\lambda D_{k}-\frac{\lambda^{2}}{2} V_{k}\right)\right] \leq \mathbb{E}_{k-1} \mathbb{E}_{k}\left[\exp \left(\lambda \Delta_{k}-\frac{\lambda^{2}}{2} \Delta_{k}^{2}\right)\right]
$$

Proof of Step \#1: Part III

Claim: $\mathbb{E}_{k-1}\left[\exp \left(\lambda D_{k}-\frac{\lambda^{2}}{2} V_{k}\right)\right] \leq 1$ a.s.
Proof: $\Delta_{k}:=f(S)-f\left(S^{(k)}\right) \Rightarrow D_{k}=\mathbb{E}_{k}\left[\Delta_{k}\right], V_{k}=\mathbb{E}_{k}\left[\Delta_{k}\right]$. Jensen:

$$
\begin{aligned}
& \mathbb{E}_{k-1}\left[\exp \left(\lambda D_{k}-\frac{\lambda^{2}}{2} V_{k}\right)\right] \leq \mathbb{E}_{k-1} \mathbb{E}_{k}\left[\exp \left(\lambda \Delta_{k}-\frac{\lambda^{2}}{2} \Delta_{k}^{2}\right)\right] \\
& \text { Let } S_{-k}=\left(X_{1}, \ldots, X_{k-1}, X_{k+1}, \ldots, X_{n}\right), \\
& F_{k}(s)=\exp \left(\lambda\left(s \Delta_{k}\right)-\frac{\lambda^{2}}{2}\left(s \Delta_{k}\right)^{2}\right), \quad s \in \mathbb{R}
\end{aligned}
$$

Proof of Step \#1: Part III

Claim: $\mathbb{E}_{k-1}\left[\exp \left(\lambda D_{k}-\frac{\lambda^{2}}{2} V_{k}\right)\right] \leq 1$ a.s.
Proof: $\Delta_{k}:=f(S)-f\left(S^{(k)}\right) \Rightarrow D_{k}=\mathbb{E}_{k}\left[\Delta_{k}\right], V_{k}=\mathbb{E}_{k}\left[\Delta_{k}\right]$. Jensen:

$$
\mathbb{E}_{k-1}\left[\exp \left(\lambda D_{k}-\frac{\lambda^{2}}{2} V_{k}\right)\right] \leq \mathbb{E}_{k-1} \mathbb{E}_{k}\left[\exp \left(\lambda \Delta_{k}-\frac{\lambda^{2}}{2} \Delta_{k}^{2}\right)\right]
$$

Let $S_{-k}=\left(X_{1}, \ldots, X_{k-1}, X_{k+1}, \ldots, X_{n}\right)$,

$$
F_{k}(s)=\exp \left(\lambda\left(s \Delta_{k}\right)-\frac{\lambda^{2}}{2}\left(s \Delta_{k}\right)^{2}\right), \quad s \in \mathbb{R}
$$

By def. of $S^{\prime}, P_{\Delta_{k} \mid S_{-k}}=P_{-\Delta_{k} \mid S_{-k}} \Rightarrow$ for $\varepsilon \sim \operatorname{Rad}, \varepsilon \perp S, S^{\prime}$, $P_{F_{k}(1) \mid S_{-k}}=P_{F_{k}(\varepsilon) \mid S_{-k}}$

Proof of Step \#1: Part III

Claim: $\mathbb{E}_{k-1}\left[\exp \left(\lambda D_{k}-\frac{\lambda^{2}}{2} V_{k}\right)\right] \leq 1$ a.s.
Proof: $\Delta_{k}:=f(S)-f\left(S^{(k)}\right) \Rightarrow D_{k}=\mathbb{E}_{k}\left[\Delta_{k}\right], V_{k}=\mathbb{E}_{k}\left[\Delta_{k}\right]$. Jensen:

$$
\mathbb{E}_{k-1}\left[\exp \left(\lambda D_{k}-\frac{\lambda^{2}}{2} V_{k}\right)\right] \leq \mathbb{E}_{k-1} \mathbb{E}_{k}\left[\exp \left(\lambda \Delta_{k}-\frac{\lambda^{2}}{2} \Delta_{k}^{2}\right)\right]
$$

Let $S_{-k}=\left(X_{1}, \ldots, X_{k-1}, X_{k+1}, \ldots, X_{n}\right)$,

$$
F_{k}(s)=\exp \left(\lambda\left(s \Delta_{k}\right)-\frac{\lambda^{2}}{2}\left(s \Delta_{k}\right)^{2}\right), \quad s \in \mathbb{R}
$$

By def. of $S^{\prime}, P_{\Delta_{k} \mid S_{-k}}=P_{-\Delta_{k} \mid S_{-k}} \Rightarrow$ for $\varepsilon \sim \operatorname{Rad}, \varepsilon \perp S, S^{\prime}$, $P_{F_{k}(1) \mid S_{-k}}=P_{F_{k}(\varepsilon) \mid S_{-k}} \quad$ Thus,

$$
\mathbb{E}\left[F_{k}(1) \mid S_{-k}\right]=\mathbb{E}\left[F_{k}(\varepsilon) \mid S_{-k}\right]
$$

(symmetrization)

Proof of Step \#1: Part III

Claim: $\mathbb{E}_{k-1}\left[\exp \left(\lambda D_{k}-\frac{\lambda^{2}}{2} V_{k}\right)\right] \leq 1$ a.s.
Proof: $\Delta_{k}:=f(S)-f\left(S^{(k)}\right) \Rightarrow D_{k}=\mathbb{E}_{k}\left[\Delta_{k}\right], V_{k}=\mathbb{E}_{k}\left[\Delta_{k}\right]$. Jensen:

$$
\mathbb{E}_{k-1}\left[\exp \left(\lambda D_{k}-\frac{\lambda^{2}}{2} V_{k}\right)\right] \leq \mathbb{E}_{k-1} \mathbb{E}_{k}\left[\exp \left(\lambda \Delta_{k}-\frac{\lambda^{2}}{2} \Delta_{k}^{2}\right)\right]
$$

Let $S_{-k}=\left(X_{1}, \ldots, X_{k-1}, X_{k+1}, \ldots, X_{n}\right)$,

$$
F_{k}(s)=\exp \left(\lambda\left(s \Delta_{k}\right)-\frac{\lambda^{2}}{2}\left(s \Delta_{k}\right)^{2}\right), \quad s \in \mathbb{R}
$$

By def. of $S^{\prime}, P_{\Delta_{k} \mid S_{-k}}=P_{-\Delta_{k} \mid S_{-k}} \Rightarrow$ for $\varepsilon \sim \operatorname{Rad}, \varepsilon \perp S, S^{\prime}$, $P_{F_{k}(1) \mid S_{-k}}=P_{F_{k}(\varepsilon) \mid S_{-k}} \quad$ Thus,

$$
\mathbb{E}\left[F_{k}(1) \mid S_{-k}\right]=\mathbb{E}\left[F_{k}(\varepsilon) \mid S_{-k}\right]
$$

(symmetrization)
and since $x \varepsilon$ is $x^{2} / 2$-subgaussian for $x \in \mathbb{R}$,

$$
\begin{aligned}
\mathbb{E}_{k-1} F_{k}(1) & =\mathbb{E}_{k-1} \mathbb{E}\left[F_{k}(1) \mid S_{-k}\right]=\mathbb{E}_{k-1} \mathbb{E}\left[F_{k}(\varepsilon) \mid S_{-k}\right] \\
& =\mathbb{E}_{k-1} \mathbb{E}\left[F_{k}(\varepsilon) \mid S, S^{\prime}\right] \leq 1 .
\end{aligned}
$$

Conclusions

- Nontrivial tail bounds for the weighted importance sampling (WIS) estimator
- Bias: Harris inequality
- Concentration: Novel concentration \leq using an Efron-Stein variance proxy
- PAC-Bayes variants
- Proof: self-normalized inequalities using canonical pairs
- Bandit value estimation: Exploit small $\operatorname{Var}[R]$?
- Other applications?

References

[dIPLS08] V. H. de la Peña, T. L. Lai, and Q.-M. Shao. Self-normalized processes: Limit theory and Statistical Applications. Springer Science \& Business Media, 2008.
[KS19] I. Kuzborskij and C. Szepesvári. Efron-Stein PAC-Bayesian Inequalities. arXiv:1909.01931, 2019.
[KS21] I. Kuzborskij and C. Szepesvári. Semi-empirical Efron-Stein concentration inequalities, PAC-Bayes, and applications. under submission, 2021.
[KVGS21] I. Kuzborskij, C. Vernade, A. György, and Cs. Szepesvári. Confident off-policy evaluation and selection through self-normalized importance weighting. In International Conference on Artificial Intelligence and Statistics (AISTATS), 2021.

Is it any good?

The Best Policy Identification problem

- We have a finite set of target policies Π.
- We do $\hat{\pi} \in \arg \max _{\pi \in \Pi} \hat{v}^{\text {est }}(\pi)$.
- We want to maximize $u(\hat{\pi})$
— we'll use confidence bounds as $\hat{v}^{\text {est }}$.

Synthetic experiments - setup

- Fix $K>0, \tau>0$
- $\pi_{b}(a) \propto e^{\frac{1}{\tau} \mathbb{I}\{a=1\}}$
- $\pi(a) \propto e^{\frac{1}{\tau} \mathbb{I}\{a=2\}}$
- $R_{i}=\mathbb{I}\left\{A_{i}=k\right\}, A_{i} \sim \pi_{b}(\cdot)$
- As $\tau \rightarrow 0, \pi_{b}$ and π become increasingly misaligned

Results

E-S - Our bound

B-M - Empirical Bernstein's bound with ε-truncated weights

Numerical tightness in error probability

Similar setup as before, sample size $=10^{4}$, left to right:

- E-S - our bound.
- Chebyshev's ineq.-based CI for WIS.
- Empirical Bernstein's ineq.-based CI for DR estimator with $W_{i}^{\lambda}=\frac{\pi\left(A_{i} \mid X_{i}\right)}{\pi_{b}\left(A_{i} \mid X_{i}\right)+\lambda}$ for some $\lambda=1 / \sqrt{n}$.
- Empirical Bernstein's ineq.-based CI for IS with W_{i}^{λ}.

Nonsynthetic experiments - setup

Target policies are $\left\{\pi^{\text {ideal }}, \pi^{\hat{\Theta}_{\text {IS }}}, \pi^{\hat{\Theta}_{\text {wis }}}\right\}$ where

$$
\pi^{\boldsymbol{\Theta}}(y=k \mid \boldsymbol{x}) \propto e^{\frac{1}{\tau} \boldsymbol{x}^{\top} \boldsymbol{\theta}_{k}}
$$

with two choices of parameters given by the optimization problems:
$\hat{\boldsymbol{\Theta}}_{\mathrm{IS}} \in \arg \min U^{\mathrm{IS}}\left(\pi^{\boldsymbol{\Theta}}\right)$, $\Theta \in \mathbb{R}^{d \times K}$
$\hat{\boldsymbol{\Theta}}_{\text {WIS }} \in \underset{\boldsymbol{\Theta} \in \mathbb{R}^{d \times K}}{\arg \min } U^{\text {WIS }}\left(\pi^{\boldsymbol{\Theta}}\right)$.

$$
\boldsymbol{\Theta} \in \mathbb{R}^{d \times K}
$$

- Trained by GD with $\eta=0.01, T=10^{5}$.
- $\tau=0.1$ - cold! Almost deterministic.

Table: Average test rewards of the target policy when chosen by each method of the benchmark.

name Size	Ecoli	Vehicle	Yeast
ESLB	$\mathbf{0 . 9 1 3} \pm \mathbf{0 . 2 6 3}$	$\mathbf{0 . 7 1 6} \pm \mathbf{0 . 3 8 9}$	$\mathbf{0 . 9 1 2} \pm \mathbf{0 . 2 6 7}$
DR	0.656 ± 0.410	0.610 ± 0.443	0.563 ± 0.392
IS (trunc+Bern)	$-\infty$	$-\infty$	$\mathbf{0 . 9 1 6} \pm \mathbf{0 . 2 6 2}$
Chebyshev-WIS	$-\infty$	$-\infty$	$-\infty$
Emp.Lik.	0.511 ± 0.298	0.455 ± 0.405	0.312 ± 0.325
PageBlok	OptDigits	SatImage	PenDigits
5473	5620	6435	10992
$\mathbf{0 . 9 1 0} \pm \mathbf{0 . 2 7 0}$	$\mathbf{0 . 8 4 3} \pm \mathbf{0 . 3 2 5}$	$\mathbf{0 . 9 1 0} \pm \mathbf{0 . 2 7 0}$	$\mathbf{0 . 9 1 0} \pm \mathbf{0 . 2 7 0}$
0.888 ± 0.291	0.616 ± 0.344	0.423 ± 0.361	0.565 ± 0.382
$\mathbf{0 . 9 1 0} \pm \mathbf{0 . 2 7 0}$	0.748 ± 0.404	0.658 ± 0.413	0.810 ± 0.345
$-\infty$	$-\infty$	$-\infty$	$-\infty$
0.669 ± 0.409	0.285 ± 0.359	0.634 ± 0.409	0.549 ± 0.426

