From Geometry to Arithmetic to Geometry

Geometry via Arithmetic workshop, BIRS, 12-16 July 2021

Jason Michael Starr
Report on joint work with
Zhiyu Tian (BICMR)
arXiv:1704.02932, arXiv:1811.02466 and arXiv:1907.07041

12 July 2021

Statement and Results.

Conjecture. James Ax.

Hypersurfaces X_{1}, \ldots, X_{c} in \mathbb{P}_{K}^{n} with $\operatorname{deg}\left(X_{1}\right)+\cdots+\operatorname{deg}\left(X_{c}\right) \leq n$ contain a common geometrically irreducible K-variety.
János Kollár, char 0
True; even holds for all specializations of Fano manifolds
Amit Hogadi and Chenyang Xu, char 0
True for all specializations of rationally connected varieties
The proof uses MMP in char. 0
Michael Fried and Moishe Jarden, char $p>0$
True if $\operatorname{deg}\left(X_{1}\right)^{2}$
\square

Statement and Results.

Conjecture. James Ax.

Hypersurfaces X_{1}, \ldots, X_{c} in \mathbb{P}_{K}^{n} with $\operatorname{deg}\left(X_{1}\right)+\cdots+\operatorname{deg}\left(X_{c}\right) \leq n$ contain a common geometrically irreducible K-variety.

János Kollár, char 0

True; even holds for all specializations of Fano manifolds.
Amit Hogadi and Chenyang $\mathbf{X u}$, char 0
True for all specializations of rationally connected varieties

The proof uses MMP in char. 0

Michael Fried and Moishe Jarden, char $p>0$

\square

Statement and Results.

Conjecture. James Ax.

Hypersurfaces X_{1}, \ldots, X_{c} in \mathbb{P}_{K}^{n} with $\operatorname{deg}\left(X_{1}\right)+\cdots+\operatorname{deg}\left(X_{c}\right) \leq n$ contain a common geometrically irreducible K-variety.

János Kollár, char 0

True; even holds for all specializations of Fano manifolds.

Amit Hogadi and Chenyang Xu, char 0

True for all specializations of rationally connected varieties.
The proof uses MMP in char. 0 .
\square
Michael Fried and Moishe Jarden, char $p>0$

Statement and Results.

Conjecture. James Ax.

Hypersurfaces X_{1}, \ldots, X_{c} in \mathbb{P}_{K}^{n} with $\operatorname{deg}\left(X_{1}\right)+\cdots+\operatorname{deg}\left(X_{c}\right) \leq n$ contain a common geometrically irreducible K-variety.

János Kollár, char 0

True; even holds for all specializations of Fano manifolds.

Amit Hogadi and Chenyang Xu , char 0

True for all specializations of rationally connected varieties.
The proof uses MMP in char. 0 .

\square

Statement and Results.

Conjecture. James Ax.
Hypersurfaces X_{1}, \ldots, X_{c} in \mathbb{P}_{K}^{n} with $\operatorname{deg}\left(X_{1}\right)+\cdots+\operatorname{deg}\left(X_{c}\right) \leq n$ contain a common geometrically irreducible K-variety.

János Kollár, char 0

True; even holds for all specializations of Fano manifolds.

Amit Hogadi and Chenyang Xu, char 0

True for all specializations of rationally connected varieties.
The proof uses MMP in char. 0 .

Michael Fried and Moishe Jarden, char $p>0$

True if $\operatorname{deg}\left(X_{1}\right)^{2}+\cdots+\operatorname{deg}\left(X_{c}\right)^{2} \leq n$ or if $K \supseteq \overline{\mathbb{F}}_{p}$.
\square
The proof uses the Chebotarev Density Theorem

Statement and Results.

Conjecture. James Ax.
Hypersurfaces X_{1}, \ldots, X_{c} in \mathbb{P}_{K}^{n} with $\operatorname{deg}\left(X_{1}\right)+\cdots+\operatorname{deg}\left(X_{c}\right) \leq n$ contain a common geometrically irreducible K-variety.

János Kollár, char 0

True; even holds for all specializations of Fano manifolds.

Amit Hogadi and Chenyang Xu, char 0

True for all specializations of rationally connected varieties.
The proof uses MMP in char. 0 .

Michael Fried and Moishe Jarden, char $p>0$

True if $\operatorname{deg}\left(X_{1}\right)^{2}+\cdots+\operatorname{deg}\left(X_{c}\right)^{2} \leq n$ or if $K \supseteq \overline{\mathbb{F}}_{p}$.
The proof uses the Chebotarev Density Theorem.

Geometric Proofs in Positive Characteristic.

Prime Regular DVR: Regular extension of a DVR with finite residue field (unramified, separable fraction field).
Separably rationally connected: $\exists f: \mathbb{P}_{K}^{1} \rightarrow X, f^{*} T_{X / K}$ ample.

$\mathrm{S}, \mathrm{K} \supseteq \overline{\mathbb{F}}_{p}$

X_{R} proper, flat over a prime regular DVR R, if geom. generic fiber is sep. rat. connected then base change by $R / m \rightarrow K$ has a geom irred. K-subvariety.

Proof uses "RC Fibration Theorem" and Bertini's Connectedness Theorem

```
S, char p>0
If geometric generic fiber is "rationally simply connected" then
base change by }R/m->K\mathrm{ has a geom. irred. K-subvariety,
```

Proof uses "R1C Fibration Theorem", Esnault's work and joint
work with Chenyang Xu .

Geometric Proofs in Positive Characteristic.

Prime Regular DVR: Regular extension of a DVR with finite residue field (unramified, separable fraction field).
Separably rationally connected: $\exists f: \mathbb{P}_{K}^{1} \rightarrow X, f^{*} T_{X / K}$ ample.
\square
Proof uses "RC Fibration Theorem" and Bertini's Connectedness Theorem

If geometric generic fiber is "rationally simply connected" then base change by $R / \mathfrak{m} \rightarrow K$ has a geom. irred. K-subvariety.
\square Proof uses "R1C Fibration Theorem", Esnault's work and joint work with Chenyang Xu.

Geometric Proofs in Positive Characteristic.

Prime Regular DVR: Regular extension of a DVR with finite residue field (unramified, separable fraction field).
Separably rationally connected: $\exists f: \mathbb{P}_{K}^{1} \rightarrow X, f^{*} T_{X / K}$ ample.

$\mathbf{S}, K \supseteq \overline{\mathbb{F}}_{p}$

X_{R} proper, flat over a prime regular DVR R, if geom. generic fiber is sep. rat. connected then base change by $R / \mathfrak{m} \rightarrow K$ has a geom. irred. K-subvariety.

Proof uses "RC Fibration Theorem" and Bertini's Connectedness Theorem

If geometric generic fiber is "rationally simply connected" then base change by $R / \mathfrak{m} \rightarrow K$ has a geom. irred. K-subvariety.

Proof uses "R1C Fibration Theorem", Esnault's work and joint

Geometric Proofs in Positive Characteristic.

Prime Regular DVR: Regular extension of a DVR with finite residue field (unramified, separable fraction field).
Separably rationally connected: $\exists f: \mathbb{P}_{K}^{1} \rightarrow X, f^{*} T_{X / K}$ ample.

$\mathbf{S}, K \supseteq \overline{\mathbb{F}}_{p}$

X_{R} proper, flat over a prime regular DVR R, if geom. generic fiber is sep. rat. connected then base change by $R / \mathfrak{m} \rightarrow K$ has a geom. irred. K-subvariety.

Proof uses "RC Fibration Theorem" and Bertini's Connectedness Theorem.

> If geometric generic fiber is "rationally simply connected" then base change by $R / \mathfrak{m} \rightarrow K$ has a geom. irred. K-subvariety.

Proof uses "R1C Fibration Theorem", Esnault's work and joint

Geometric Proofs in Positive Characteristic.

Prime Regular DVR: Regular extension of a DVR with finite residue field (unramified, separable fraction field).
Separably rationally connected: $\exists f: \mathbb{P}_{K}^{1} \rightarrow X, f^{*} T_{X / K}$ ample.

$\mathbf{S}, K \supseteq \overline{\mathbb{F}}_{p}$

X_{R} proper, flat over a prime regular DVR R, if geom. generic fiber is sep. rat. connected then base change by $R / \mathfrak{m} \rightarrow K$ has a geom. irred. K-subvariety.

Proof uses "RC Fibration Theorem" and Bertini's Connectedness Theorem.

S, char $p>0$

If geometric generic fiber is "rationally simply connected" then base change by $R / \mathfrak{m} \rightarrow K$ has a geom. irred. K-subvariety.

Proof uses "R1C Fibration Theorem", Esnault's work and joint

Geometric Proofs in Positive Characteristic.

Prime Regular DVR: Regular extension of a DVR with finite residue field (unramified, separable fraction field).
Separably rationally connected: $\exists f: \mathbb{P}_{K}^{1} \rightarrow X, f^{*} T_{X / K}$ ample.

$\mathbf{S}, K \supseteq \overline{\mathbb{F}}_{p}$

X_{R} proper, flat over a prime regular DVR R, if geom. generic fiber is sep. rat. connected then base change by $R / \mathfrak{m} \rightarrow K$ has a geom. irred. K-subvariety.

Proof uses "RC Fibration Theorem" and Bertini's Connectedness Theorem.

S, char $p>0$

If geometric generic fiber is "rationally simply connected" then base change by $R / \mathfrak{m} \rightarrow K$ has a geom. irred. K-subvariety.

Proof uses "R1C Fibration Theorem", Esnault's work and joint work with Chenyang Xu .

Spaces of Rational Curves in Projective Space.

(Parameterized) Quasi-maps:
$\mathrm{QM}_{\mathbb{P}^{1}}\left(\mathbb{P}^{n}, e\right)=\mathbb{P} H o m\left(H^{0}\left(\mathbb{P}^{n}, \mathcal{O}(1)\right), H^{0}\left(\mathbb{P}^{1}, \mathcal{O}(e)\right)\right) \supset$ $\operatorname{Hom}\left(\left(\mathbb{P}^{1}, \mathcal{O}(e)\right),\left(\mathbb{P}^{n}, \mathcal{O}(1)\right)\right)$.
Unparameterized Quasi-maps: GIT quotient
$\mathrm{QM} 0\left(\mathbb{P}^{n}, e\right):=\mathrm{QM}_{\mathbb{P}_{1}}\left(\mathbb{P}^{n}, e\right) / / \operatorname{Aut}\left(\mathbb{P}^{1}\right)$
Stable maps: $\overline{\mathcal{M}}_{0,0}\left(\mathbb{P}^{n}, e\right)$, stack of degree e maps f from
genus-0, at-worst-nodal curves with f-ample canonical bundle
Quasi-map Contraction: Everywhere regular morphism
$\overline{\mathcal{M}}_{0,0}\left(\mathbb{P}^{n}, e\right) \rightarrow \mathrm{QM}_{0}\left(\mathbb{P}^{n}, e\right)$
Projective target $X=\operatorname{Zero}\left(h_{1}, \ldots, h_{c}\right) \subset \mathbb{P}^{n}: \mathrm{QM}_{\mathbb{P} 1}(X, e)$, resp.
$\mathrm{QM}_{0}(X, e), \mathcal{M}_{0,0}(X, e)$ is the locus where pullbacks of h_{1}, \ldots, h_{c}
vanish identically.

Spaces of Rational Curves in Projective Space.

(Parameterized) Quasi-maps:
$\mathrm{QM}_{\mathbb{P}^{1}}\left(\mathbb{P}^{n}, e\right)=\mathbb{P} H o m\left(H^{0}\left(\mathbb{P}^{n}, \mathcal{O}(1)\right), H^{0}\left(\mathbb{P}^{1}, \mathcal{O}(e)\right)\right)$ ว $\operatorname{Hom}\left(\left(\mathbb{P}^{1}, \mathcal{O}(e)\right),\left(\mathbb{P}^{n}, \mathcal{O}(1)\right)\right)$.
Unparameterized Quasi-maps: GIT quotient $\mathrm{QM}_{0}\left(\mathbb{P}^{n}, e\right):=\mathrm{QM}_{\mathbb{P}^{1}}\left(\mathbb{P}^{n}, e\right) / / \operatorname{Aut}\left(\mathbb{P}^{1}\right)$.
Stable maps: $\bar{M}_{0,0}\left(\mathbb{P}^{n}\right.$, e $)$, stack of degree e maps f from
genus-0, at-worst-nodal curves with f-ample canonical bundle
Quasi-map Contraction: Everywhere regular morphism $\bar{M}_{0,0}\left(\mathbb{P}^{n}, e\right) \rightarrow Q M_{0}\left(\mathbb{P}^{n}, e\right)$.
Projective target $X=\operatorname{Zero}\left(h_{1}, \ldots, h_{c}\right) \subset \mathbb{P}^{n}: \mathrm{QM}_{\mathbb{P}^{1}}(X, e)$, resp.
$\mathrm{QM}_{0}(X, e), \overline{\mathcal{M}}_{0,0}(X, e)$ is the locus where pullbacks of h_{1}
vanish identically.

Spaces of Rational Curves in Projective Space.

(Parameterized) Quasi-maps:
$\mathrm{QM}_{\mathbb{P}^{1}}\left(\mathbb{P}^{n}, e\right)=\mathbb{P} H o m\left(H^{0}\left(\mathbb{P}^{n}, \mathcal{O}(1)\right), H^{0}\left(\mathbb{P}^{1}, \mathcal{O}(e)\right)\right) \supset$ $\operatorname{Hom}\left(\left(\mathbb{P}^{1}, \mathcal{O}(e)\right),\left(\mathbb{P}^{n}, \mathcal{O}(1)\right)\right)$.
Unparameterized Quasi-maps: GIT quotient $\mathrm{QM}_{0}\left(\mathbb{P}^{n}, e\right):=\mathrm{QM}_{\mathbb{P}^{1}}\left(\mathbb{P}^{n}, e\right) / / \operatorname{Aut}\left(\mathbb{P}^{1}\right)$.
Stable maps: $\overline{\mathcal{M}}_{0,0}\left(\mathbb{P}^{n}, e\right)$, stack of degree e maps f from genus-0, at-worst-nodal curves with f-ample canonical bundle.
Quasi-map Contraction: Everywhere regular morphism

Spaces of Rational Curves in Projective Space.

(Parameterized) Quasi-maps:
$\mathrm{QM}_{\mathbb{P}^{1}}\left(\mathbb{P}^{n}, e\right)=\mathbb{P} H o m\left(H^{0}\left(\mathbb{P}^{n}, \mathcal{O}(1)\right), H^{0}\left(\mathbb{P}^{1}, \mathcal{O}(e)\right)\right) \supset$ $\operatorname{Hom}\left(\left(\mathbb{P}^{1}, \mathcal{O}(e)\right),\left(\mathbb{P}^{n}, \mathcal{O}(1)\right)\right)$.
Unparameterized Quasi-maps: GIT quotient $\mathrm{QM}_{0}\left(\mathbb{P}^{n}, e\right):=\mathrm{QM}_{\mathbb{P}^{1}}\left(\mathbb{P}^{n}, e\right) / / \operatorname{Aut}\left(\mathbb{P}^{1}\right)$.
Stable maps: $\overline{\mathcal{M}}_{0,0}\left(\mathbb{P}^{n}, e\right)$, stack of degree e maps f from genus-0, at-worst-nodal curves with f-ample canonical bundle. Quasi-map Contraction: Everywhere regular morphism $\overline{\mathcal{M}}_{0,0}\left(\mathbb{P}^{n}, e\right) \rightarrow \mathrm{QM}_{0}\left(\mathbb{P}^{n}, e\right)$.

Spaces of Rational Curves in Projective Space.

(Parameterized) Quasi-maps:
$\mathrm{QM}_{\mathbb{P}^{1}}\left(\mathbb{P}^{n}, e\right)=\mathbb{P} H o m\left(H^{0}\left(\mathbb{P}^{n}, \mathcal{O}(1)\right), H^{0}\left(\mathbb{P}^{1}, \mathcal{O}(e)\right)\right) \supset$ $\operatorname{Hom}\left(\left(\mathbb{P}^{1}, \mathcal{O}(e)\right),\left(\mathbb{P}^{n}, \mathcal{O}(1)\right)\right)$.
Unparameterized Quasi-maps: GIT quotient $\mathrm{QM}_{0}\left(\mathbb{P}^{n}, e\right):=\mathrm{QM}_{\mathbb{P}^{1}}\left(\mathbb{P}^{n}, e\right) / / \operatorname{Aut}\left(\mathbb{P}^{1}\right)$.
Stable maps: $\overline{\mathcal{M}}_{0,0}\left(\mathbb{P}^{n}, e\right)$, stack of degree e maps f from genus-0, at-worst-nodal curves with f-ample canonical bundle.
Quasi-map Contraction: Everywhere regular morphism $\overline{\mathcal{M}}_{0,0}\left(\mathbb{P}^{n}, e\right) \rightarrow \mathrm{QM}_{0}\left(\mathbb{P}^{n}, e\right)$.
Projective target $X=\operatorname{Zero}\left(h_{1}, \ldots, h_{c}\right) \subset \mathbb{P}^{n}: \mathrm{QM}_{\mathbb{P}^{1}}(X, e)$, resp. $\mathrm{QM}_{0}(X, e), \overline{\mathcal{M}}_{0,0}(X, e)$ is the locus where pullbacks of h_{1}, \ldots, h_{c} vanish identically.

First Irreducibility Theorems.

> A. Kuznetsov, B. Kim - R. Pandharipande

> Spaces of rational curves with fixed class are integral, smooth and have the "expected dimension" for $X=G / P$.

```
J. Harris - M. Roth - S, I. Coskun - S
General }\mp@subsup{X}{d}{}\subset\mp@subsup{\mathbb{P}}{}{n}\mathrm{ with }d\leq(n+4)/2\mathrm{ , spaces are integral, LCI and
have the "expected" dimension
```


R. Beheshti - M. Kumar

\square
\square
\square
\square

First Irreducibility Theorems.

A. Kuznetsov, B. Kim - R. Pandharipande

Spaces of rational curves with fixed class are integral, smooth and have the "expected dimension" for $X=G / P$.
> J. Harris - M. Roth - S, I. Coskun - S

> General $X_{d} \subset \mathbb{P}^{n}$ with $d \leq(n+4) / 2$, spaces are integral, LCI and have the "expected" dimension.

R. Beheshti - M. Kumar

\square
\square
Same for $d \leq n-2$, the optimal result.
\square

First Irreducibility Theorems.

A. Kuznetsov, B. Kim - R. Pandharipande

Spaces of rational curves with fixed class are integral, smooth and have the "expected dimension" for $X=G / P$.
> J. Harris - M. Roth - S, I. Coskun - S

> General $X_{d} \subset \mathbb{P}^{n}$ with $d \leq(n+4) / 2$, spaces are integral, LCI and have the "expected" dimension.
R. Beheshti - M. Kumar

Same for $d \leq(2 n+2) / 3$.

E. Ried - D. Yang

Same for $d \leq n-2$, the optimal result.

Corollary
Genus-0 GW invariants are enumerative

First Irreducibility Theorems.

A. Kuznetsov, B. Kim - R. Pandharipande

Spaces of rational curves with fixed class are integral, smooth and have the "expected dimension" for $X=G / P$.

J. Harris - M. Roth - S, I. Coskun - S

General $X_{d} \subset \mathbb{P}^{n}$ with $d \leq(n+4) / 2$, spaces are integral, LCl and have the "expected" dimension.
R. Beheshti - M. Kumar

Same for $d \leq(2 n+2) / 3$.
E. Riedl - D. Yang

Same for $d \leq n-2$, the optimal result.

First Irreducibility Theorems.

A. Kuznetsov, B. Kim - R. Pandharipande
 Spaces of rational curves with fixed class are integral, smooth and have the "expected dimension" for $X=G / P$.

J. Harris - M. Roth - S, I. Coskun - S

General $X_{d} \subset \mathbb{P}^{n}$ with $d \leq(n+4) / 2$, spaces are integral, LCl and have the "expected" dimension.
R. Beheshti - M. Kumar

Same for $d \leq(2 n+2) / 3$.
E. Riedl - D. Yang

Same for $d \leq n-2$, the optimal result.

Corollary

Genus-0 GW invariants are enumerative.

New Irreducibility Theorems.

Tim Browning - Pankaj Vishe, Tim Browning - Will Sawin, char 0 or char $>d$

Smooth $X_{d} \subset \mathbb{P}^{n}$ with $(2 d-1) 2^{d-1}<n$ have $\operatorname{Hom}\left(\mathbb{P}^{1}, X\right)$ integral, LCl with "expected" dimension.
D. Testa proved irreducibility for del Pezzo surfaces of degree >1 Using their formulation of the Geometric Manin Conjecture, there are results for Fano threefolds by Brian Lehmann - Sho Tanimoto Combined with the Movable Bend and Break, there are newer results by Beheshti - Lehmann - Riedl - Tanimoto, Shimizu Tanimoto, et al
Browning-Vishe and Browning-Sawin follow a strategy of Jordan Ellenberg - Akshay Venkatesh via point-counting estimates of associated Hom spaces over finite fields, which are then proved by the Circle Method.

New Irreducibility Theorems.

Tim Browning - Pankaj Vishe, Tim Browning - Will Sawin, char 0 or char $>d$
 Smooth $X_{d} \subset \mathbb{P}^{n}$ with $(2 d-1) 2^{d-1}<n$ have $\operatorname{Hom}\left(\mathbb{P}^{1}, X\right)$ integral, LCl with "expected" dimension.

D. Testa proved irreducibility for del Pezzo surfaces of degree >1. Using their formulation of the Geometric Manin Conjecture, there are results for Fano threefolds by Brian Lehmann - Sho Tanimoto.
Combined with the Movable Bend and Break, there are newer results by Beheshti - Lehmann - Riedl - Tanimoto, Shimizu Tanimoto, et al.
Browning-Vishe and Browning-Sawin follow a strategy of Jordan Ellenberg - Akshay Venkatesh via point-counting estimates of associated Hom spaces over finite fields, which are then proved by the Circle Method

New Irreducibility Theorems.

Tim Browning - Pankaj Vishe, Tim Browning - Will Sawin, char 0 or char $>d$

Smooth $X_{d} \subset \mathbb{P}^{n}$ with $(2 d-1) 2^{d-1}<n$ have $\operatorname{Hom}\left(\mathbb{P}^{1}, X\right)$ integral, LCl with "expected" dimension.
D. Testa proved irreducibility for del Pezzo surfaces of degree >1. Using their formulation of the Geometric Manin Conjecture, there are results for Fano threefolds by Brian Lehmann - Sho Tanimoto.
Combined with the Movable Bend and Break, there are newer results by Beheshti - Lehmann - Riedl - Tanimoto, Shimizu Tanimoto, et al.
Browning-Vishe and Browning-Sawin follow a strategy of Jordan Ellenberg - Akshay Venkatesh via point-counting estimates of associated Hom spaces over finite fields, which are then proved by the Circle Method.

Geometric Method.

S - Zhiyu Tian, char 0 or char $>d$
 Smooth $X_{d} \subset \mathbb{P}^{n}$ with $d+\binom{2 d+1}{d+1}<n$ have $\mathrm{QM}_{\mathbb{P}^{1}}(X, e)$ integral, ample complete intersection in $\mathrm{QM}_{\mathbb{P}^{1}}\left(\mathbb{P}^{n}, e\right)$ with "expected" dimension.

> Above inequality is roughly $4^{d} / \sqrt{\pi d}<n$ compared to $d 2^{d}$ Browning-Vishe-Sawin.
> Prithviraj Chowdhury extended this to complete intersections.
\square

Now set $m=d+2$ so that the general m-plane section satisfies Riedl-Yang. Since we have integrality and "expected" dimension for the linear section $Q M_{\mathbb{P}^{1}}\left(\mathbb{P}^{m}, e\right)$ of $Q M_{\mathbb{P}^{1}}(X, e)$ in the projective space $Q M_{\mathbb{P}^{1}}\left(\mathbb{P}^{n}, e\right)$, every irreducible component of $Q M_{\mathbb{P}^{1}}(X, e)$ has the expected dimension and is integral.

Geometric Method.

S - Zhiyu Tian, char 0 or char $>d$

Smooth $X_{d} \subset \mathbb{P}^{n}$ with $d+\binom{2 d+1}{d+1}<n$ have $\mathrm{QM}_{\mathbb{P}^{1}}(X, e)$ integral, ample complete intersection in $\mathrm{QM}_{\mathbb{P}^{1}}\left(\mathbb{P}^{n}, e\right)$ with "expected" dimension.

Above inequality is roughly $4^{d} / \sqrt{\pi d}<n$ compared to $d 2^{d}<n$ in Browning-Vishe-Sawin.
Prithviraj Chowdhury extended this to complete intersections.
\square
char 0 or char
Linear m-plane sections of X dominate moduli if $d+\binom{2 d+1}{d+1}<n$

Now set $m=d+2$ so that the general m-plane section satisfies
Riedl-Yang. Since we have integrality and "expected" dimension for the linear section $Q M_{\mathbb{P}^{1}}\left(\mathbb{P}^{m}, e\right)$ of $Q M_{\mathbb{P}^{1}}(X, e)$ in the projective space $Q M_{\mathbb{P}^{1}}\left(\mathbb{P}^{n}, e\right)$, every irreducible component of $Q M_{\mathbb{P}^{1}}(X, e)$ has the expected dimension and is integral

Geometric Method.

S - Zhiyu Tian, char 0 or char $>d$

Smooth $X_{d} \subset \mathbb{P}^{n}$ with $d+\binom{2 d+1}{d+1}<n$ have $\mathrm{QM}_{\mathbb{P}^{1}}(X, e)$ integral, ample complete intersection in $\mathrm{QM}_{\mathbb{P}^{1}}\left(\mathbb{P}^{n}, e\right)$ with "expected" dimension.

Above inequality is roughly $4^{d} / \sqrt{\pi d}<n$ compared to $d 2^{d}<n$ in Browning-Vishe-Sawin.
Prithviraj Chowdhury extended this to complete intersections.
\qquad
\qquad Now set $m=d+2$ so that the general m-plane section satisfies Riedl-Yang. Since we have integrality and "expected" dimension for the linear section $Q M_{\mathbb{P}^{1}}\left(\mathbb{P}^{m}, e\right)$ of $Q M_{\mathbb{P}^{1}}(X, e)$ in the projective space $Q M_{\mathbb{P}^{1}}\left(\mathbb{P}^{n}, e\right)$, every irreducible component of $Q M_{\mathbb{P}^{1}}(X, e)$ has the expected dimension and is integral.

Geometric Method.

S - Zhiyu Tian, char 0 or char $>d$

Smooth $X_{d} \subset \mathbb{P}^{n}$ with $d+\binom{2 d+1}{d+1}<n$ have $\mathrm{QM}_{\mathbb{P}^{1}}(X, e)$ integral, ample complete intersection in $\mathrm{QM}_{\mathbb{P}^{1}}\left(\mathbb{P}^{n}, e\right)$ with "expected" dimension.

Above inequality is roughly $4^{d} / \sqrt{\pi d}<n$ compared to $d 2^{d}<n$ in Browning-Vishe-Sawin.
Prithviraj Chowdhury extended this to complete intersections.

S, char 0 or char $>d$

Linear m-plane sections of X dominate moduli if $d+\binom{2 d+1}{d+1}<n$.
Now set $m=d+2$ so that the general m-plane section satisfies Riedl-Yang. Since we have integrality and "expected" dimension for the linear section $Q M_{\mathbb{P}^{1}}\left(\mathbb{P}^{m}, e\right)$ of $\mathrm{QM}_{\mathbb{P}^{1}}(X, e)$ in the projective space $Q M_{\mathbb{P}^{1}}\left(\mathbb{P}^{n}, e\right)$, every irreducible component of $Q M_{\mathbb{P}^{1}}(X, e)$ has the expected dimension and is integral.

Geometric Method.

S - Zhiyu Tian, char 0 or char $>d$

Smooth $X_{d} \subset \mathbb{P}^{n}$ with $d+\binom{2 d+1}{d+1}<n$ have $\mathrm{QM}_{\mathbb{P}^{1}}(X, e)$ integral, ample complete intersection in $\mathrm{QM}_{\mathbb{P}^{1}}\left(\mathbb{P}^{n}, e\right)$ with "expected" dimension.

Above inequality is roughly $4^{d} / \sqrt{\pi d}<n$ compared to $d 2^{d}<n$ in Browning-Vishe-Sawin.
Prithviraj Chowdhury extended this to complete intersections.

S, char 0 or char $>d$

Linear m-plane sections of X dominate moduli if $d+\binom{2 d+1}{d+1}<n$.
Now set $m=d+2$ so that the general m-plane section satisfies Riedl-Yang. Since we have integrality and "expected" dimension for the linear section $\mathrm{QM}_{\mathbb{P}^{1}}\left(\mathbb{P}^{m}, e\right)$ of $\mathrm{QM}_{\mathbb{P}^{1}}(X, e)$ in the projective space $\mathrm{QM}_{\mathbb{P}^{1}}\left(\mathbb{P}^{n}, e\right)$, every irreducible component of $\mathrm{QM}_{\mathbb{P}^{1}}(X, e)$ has the expected dimension and is integral.

Conjecture and Lefschetz Hyperplane Theorem.

The spaces $\operatorname{Hom}\left(\left(\mathbb{P}^{1}, 0\right),\left(X, x_{0}\right), e\right)$ admit "glueing operations" by "glueing on a line" and deforming. Cohen-Jones-Segal study a stable limit (in homotopy theory) and its variation under "evaluation" to $x_{0} \in X$.

Cohen - Jones - Segal Conjecture quasifibration, then the stable limit is homotopic to the double loop space of X

Original formulation due to Segal following his theorem for $X=\mathbb{P}^{n}$. Many cases proved for X "quasi-homogeneous" Cohen - Jones - Segal give a Floer theory heuristic, and use it to reprove the conjecture for $X=G / P$ The homotopy type of X satisfies the Lefschetz hyperplane theorem: for $X \subset P$ an ample complete intersection, have

Conjecture and Lefschetz Hyperplane Theorem.

The spaces $\operatorname{Hom}\left(\left(\mathbb{P}^{1}, 0\right),\left(X, x_{0}\right), e\right)$ admit "glueing operations" by "glueing on a line" and deforming. Cohen-Jones-Segal study a stable limit (in homotopy theory) and its variation under "evaluation" to $x_{0} \in X$.

Cohen - Jones - Segal Conjecture

For X Fano, if the stable limit with its evaluation to X is a quasifibration, then the stable limit is homotopic to the double loop space of X.

Conjecture and Lefschetz Hyperplane Theorem.

The spaces $\operatorname{Hom}\left(\left(\mathbb{P}^{1}, 0\right),\left(X, x_{0}\right), e\right)$ admit "glueing operations" by "glueing on a line" and deforming. Cohen-Jones-Segal study a stable limit (in homotopy theory) and its variation under "evaluation" to $x_{0} \in X$.

Cohen - Jones - Segal Conjecture

For X Fano, if the stable limit with its evaluation to X is a quasifibration, then the stable limit is homotopic to the double loop space of X.

Original formulation due to Segal following his theorem for $X=\mathbb{P}^{n}$. Many cases proved for X "quasi-homogeneous".

Conjecture and Lefschetz Hyperplane Theorem.

The spaces $\operatorname{Hom}\left(\left(\mathbb{P}^{1}, 0\right),\left(X, x_{0}\right), e\right)$ admit "glueing operations" by "glueing on a line" and deforming. Cohen-Jones-Segal study a stable limit (in homotopy theory) and its variation under "evaluation" to $x_{0} \in X$.

Cohen - Jones - Segal Conjecture

For X Fano, if the stable limit with its evaluation to X is a quasifibration, then the stable limit is homotopic to the double loop space of X.

Original formulation due to Segal following his theorem for $X=\mathbb{P}^{n}$. Many cases proved for X "quasi-homogeneous". Cohen - Jones - Segal give a Floer theory heuristic, and use it to reprove the conjecture for $X=G / P$.

Conjecture and Lefschetz Hyperplane Theorem.

The spaces $\operatorname{Hom}\left(\left(\mathbb{P}^{1}, 0\right),\left(X, x_{0}\right), e\right)$ admit "glueing operations" by "glueing on a line" and deforming. Cohen-Jones-Segal study a stable limit (in homotopy theory) and its variation under "evaluation" to $x_{0} \in X$.

Cohen - Jones - Segal Conjecture

For X Fano, if the stable limit with its evaluation to X is a quasifibration, then the stable limit is homotopic to the double loop space of X.

Original formulation due to Segal following his theorem for $X=\mathbb{P}^{n}$. Many cases proved for X "quasi-homogeneous". Cohen - Jones - Segal give a Floer theory heuristic, and use it to reprove the conjecture for $X=G / P$.
The homotopy type of X satisfies the Lefschetz hyperplane theorem: for $X \subset P$ an ample complete intersection, have isomorphism of homotopy groups until $\operatorname{dim}_{\mathbb{C}}(X)$.

Singularities.

The closed complement $\mathrm{QM}_{\mathbb{P} 1}(X, e) \backslash \operatorname{Hom}\left(\mathbb{P}^{1}, X, e\right)$ is contained in the singular locus of $\mathrm{QM}_{\mathbb{P}^{1}}(X, e)$. So smooth "Purity Theorems" do not apply.

Browning-Sawin

 codimension at least $\left(\frac{n}{2^{d-2}}-6 d+6\right)\left\lfloor\frac{e+d}{d-1}\right\rfloor$

S - Zhiyu Tian

For $c=2 b+3<n-d$, for general X, the singular locus of

Singularities.

The closed complement $\mathrm{QM}_{\mathbb{P}^{1}}(X, e) \backslash \operatorname{Hom}\left(\mathbb{P}^{1}, X, e\right)$ is contained in the singular locus of $\mathrm{QM}_{\mathbb{P}^{1}}(X, e)$. So smooth "Purity
Theorems" do not apply.
Grothendieck's "SGA2 Conjectures", proved by Hamm - Lê and sharpened by Goresky-MacPherson, do apply in homotopical degree $<c-1$ if the singular locus has codimension $\geq c$.

Singularities.

The closed complement $\mathrm{QM}_{\mathbb{P}^{1}}(X, e) \backslash \operatorname{Hom}\left(\mathbb{P}^{1}, X, e\right)$ is contained in the singular locus of $\mathrm{QM}_{\mathbb{P}^{1}}(X, e)$. So smooth "Purity Theorems" do not apply.
Grothendieck's "SGA2 Conjectures", proved by Hamm - Lê and sharpened by Goresky-MacPherson, do apply in homotopical degree $<c-1$ if the singular locus has codimension $\geq c$.

Browning-Sawin

For $n>3(d-1) 2^{d-1}$ the singular locus of $\operatorname{Hom}\left(\mathbb{P}^{1}, X, e\right)$ has codimension at least $\left(\frac{n}{2^{d-2}}-6 d+6\right)\left\lfloor\frac{e+d}{d-1}\right\rfloor$.

Singularities.

The closed complement $\mathrm{QM}_{\mathbb{P}^{1}}(X, e) \backslash \operatorname{Hom}\left(\mathbb{P}^{1}, X, e\right)$ is contained in the singular locus of $\mathrm{QM}_{\mathbb{P}^{1}}(X, e)$. So smooth "Purity
Theorems" do not apply.
Grothendieck's "SGA2 Conjectures", proved by Hamm - Lê and sharpened by Goresky-MacPherson, do apply in homotopical degree $<c-1$ if the singular locus has codimension $\geq c$.

Browning-Sawin

For $n>3(d-1) 2^{d-1}$ the singular locus of $\operatorname{Hom}\left(\mathbb{P}^{1}, X, e\right)$ has codimension at least $\left(\frac{n}{2^{d-2}}-6 d+6\right)\left\lfloor\frac{e+d}{d-1}\right\rfloor$.

S - Zhiyu Tian

For $c=2 b+3 \leq n-d$, for general X, the singular locus of $\mathrm{QM}_{\mathbb{P}^{1}}(X, e)$ and $\overline{\mathcal{M}}_{0,0}(X, e)$ have codimension $\geq c$ if $n \geq n_{0}=d+b+(1 / 2)+\sqrt{d+b^{2}+5 b+2}$. Same for every smooth X if $n>n_{0}+\binom{d+n_{0}-1}{n_{0}}$.

Chris Skinner's Theorem.

Chris Skinner

Weak approximation holds over global (number) fields for smooth X_{d} in \mathbb{P}^{n} if $n>2(d-1) 2^{d-1}$.

The proof uses the Circle Method. The method seems to work for function fields if char $>d$
For X_{d} defined over a global function field $k\left(C_{k}\right)$, with $k=\mathbb{F}_{q}$ and
C_{k} a smooth k-curve, after base change to $\bar{k}\left(C_{\bar{k}}\right)$, weak
approximation holds under a much weaker hypothesis, roughly
$n>d^{2}$. This follows from Hassett's theorem deducing weak
approximation from "rational simple connectedness" and joint
work with Zhiyu Tian extending rational simple connectedness of
2-Fano hypersurfaces to positive characteristic.
We also have a result over $\mathbb{F}_{q}(C)$ when n is greater than a
doubly-exponential function in d using a variant of the
Morin-Predonzan unirationality theorem.

Chris Skinner's Theorem.

Chris Skinner

Weak approximation holds over global (number) fields for smooth X_{d} in \mathbb{P}^{n} if $n>2(d-1) 2^{d-1}$.

The proof uses the Circle Method. The method seems to work for function fields if char $>d$.

For X_{d} defined over a global function field $k\left(C_{k}\right)$, with $k=\mathbb{F}_{q}$ and C_{k} a smooth k-curve, after base change to $\bar{k}\left(C_{\bar{k}}\right)$, weak approximation holds under a much weaker hypothesis, roughly $n>d^{2}$. This follows from Hassett's theorem deducing weak approximation from "rational simple connectedness" and joint work with Zhiyu Tian extending rational simple connectedness of 2-Fano hypersurfaces to positive characteristic. We also have a result over $\mathbb{F}_{q}(C)$ when n is greater than a doubly-exponential function in d using a variant of the Morin-Predonzan unirationality theorem.

Chris Skinner's Theorem.

Chris Skinner

Weak approximation holds over global (number) fields for smooth X_{d} in \mathbb{P}^{n} if $n>2(d-1) 2^{d-1}$.

The proof uses the Circle Method. The method seems to work for function fields if char $>d$.
For X_{d} defined over a global function field $k\left(C_{k}\right)$, with $k=\mathbb{F}_{q}$ and
C_{k} a smooth k-curve, after base change to $\bar{k}\left(C_{\bar{k}}\right)$, weak approximation holds under a much weaker hypothesis, roughly $n>d^{2}$. This follows from Hassett's theorem deducing weak approximation from "rational simple connectedness" and joint work with Zhiyu Tian extending rational simple connectedness of 2-Fano hypersurfaces to positive characteristic.

> We also have a result over $\mathbb{F}_{q}(C)$ when n is greater than a doubly-exponential function in d using a variant of the

Chris Skinner's Theorem.

Chris Skinner

Weak approximation holds over global (number) fields for smooth X_{d} in \mathbb{P}^{n} if $n>2(d-1) 2^{d-1}$.

The proof uses the Circle Method. The method seems to work for function fields if char $>d$.
For X_{d} defined over a global function field $k\left(C_{k}\right)$, with $k=\mathbb{F}_{q}$ and
C_{k} a smooth k-curve, after base change to $\bar{k}\left(C_{\bar{k}}\right)$, weak approximation holds under a much weaker hypothesis, roughly $n>d^{2}$. This follows from Hassett's theorem deducing weak approximation from "rational simple connectedness" and joint work with Zhiyu Tian extending rational simple connectedness of 2-Fano hypersurfaces to positive characteristic.
We also have a result over $\mathbb{F}_{q}(C)$ when n is greater than a doubly-exponential function in d using a variant of the Morin-Predonzan unirationality theorem.

Thank You.

Thank You.

