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Ax’s “PAC implies QAC” Conjecture. Irreducibility of Spaces of Rational Curves. The Cohen-Jones-Segal Conjecture. Weak Approximation Theorems.

Statement and Results.

Conjecture. James Ax.

Hypersurfaces X1, . . . ,Xc in Pn
K with deg(X1) + · · ·+ deg(Xc) ≤ n

contain a common geometrically irreducible K -variety.

János Kollár, char 0

True; even holds for all specializations of Fano manifolds.

Amit Hogadi and Chenyang Xu, char 0

True for all specializations of rationally connected varieties.

The proof uses MMP in char. 0.

Michael Fried and Moishe Jarden, char p > 0

True if deg(X1)2 + · · ·+ deg(Xc)2 ≤ n or if K ⊇ Fp.

The proof uses the Chebotarev Density Theorem.
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Geometric Proofs in Positive Characteristic.

Prime Regular DVR: Regular extension of a DVR with finite
residue field (unramified, separable fraction field).
Separably rationally connected: ∃f : P1

K → X , f ∗TX/K ample.

S, K ⊇ Fp

XR proper, flat over a prime regular DVR R, if geom. generic fiber
is sep. rat. connected then base change by R/m→ K has a geom.
irred. K -subvariety.

Proof uses “RC Fibration Theorem” and Bertini’s Connectedness
Theorem.

S, char p > 0

If geometric generic fiber is “rationally simply connected” then
base change by R/m→ K has a geom. irred. K -subvariety.

Proof uses “R1C Fibration Theorem”, Esnault’s work and joint
work with Chenyang Xu.
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Spaces of Rational Curves in Projective Space.

(Parameterized) Quasi-maps:
QMP1(Pn, e) = PHom(H0(Pn,O(1)),H0(P1,O(e))) ⊃
Hom((P1,O(e)), (Pn,O(1))).
Unparameterized Quasi-maps: GIT quotient
QM0(Pn, e) := QMP1(Pn, e)//Aut(P1).
Stable maps: M0,0(Pn, e), stack of degree e maps f from
genus-0, at-worst-nodal curves with f -ample canonical bundle.
Quasi-map Contraction: Everywhere regular morphism
M0,0(Pn, e)→ QM0(Pn, e).
Projective target X = Zero(h1, . . . , hc) ⊂ Pn: QMP1(X , e), resp.
QM0(X , e), M0,0(X , e) is the locus where pullbacks of h1, . . . , hc
vanish identically.
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First Irreducibility Theorems.

A. Kuznetsov, B. Kim – R. Pandharipande

Spaces of rational curves with fixed class are integral, smooth and
have the “expected dimension” for X = G/P.

J. Harris – M. Roth – S, I. Coskun – S

General Xd ⊂ Pn with d ≤ (n + 4)/2, spaces are integral, LCI and
have the “expected” dimension.

R. Beheshti – M. Kumar

Same for d ≤ (2n + 2)/3.

E. Riedl – D. Yang

Same for d ≤ n − 2, the optimal result.

Corollary

Genus-0 GW invariants are enumerative.
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New Irreducibility Theorems.

Tim Browning – Pankaj Vishe, Tim Browning – Will Sawin,
char 0 or char > d

Smooth Xd ⊂ Pn with (2d − 1)2d−1 < n have Hom(P1,X )
integral, LCI with “expected” dimension.

D. Testa proved irreducibility for del Pezzo surfaces of degree > 1.
Using their formulation of the Geometric Manin Conjecture, there
are results for Fano threefolds by Brian Lehmann – Sho Tanimoto.
Combined with the Movable Bend and Break, there are newer
results by Beheshti – Lehmann – Riedl – Tanimoto, Shimizu –
Tanimoto, et al.
Browning-Vishe and Browning-Sawin follow a strategy of Jordan
Ellenberg – Akshay Venkatesh via point-counting estimates of
associated Hom spaces over finite fields, which are then proved by
the Circle Method.
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Geometric Method.

S – Zhiyu Tian, char 0 or char > d

Smooth Xd ⊂ Pn with d +
(2d+1
d+1

)
< n have QMP1(X , e) integral,

ample complete intersection in QMP1(Pn, e) with “expected”
dimension.

Above inequality is roughly 4d/
√
πd < n compared to d2d < n in

Browning–Vishe–Sawin.
Prithviraj Chowdhury extended this to complete intersections.

S, char 0 or char > d

Linear m-plane sections of X dominate moduli if d +
(2d+1
d+1

)
< n.

Now set m = d + 2 so that the general m-plane section satisfies
Riedl-Yang. Since we have integrality and “expected” dimension
for the linear section QMP1(Pm, e) of QMP1(X , e) in the projective
space QMP1(Pn, e), every irreducible component of QMP1(X , e)
has the expected dimension and is integral.
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Prithviraj Chowdhury extended this to complete intersections.

S, char 0 or char > d

Linear m-plane sections of X dominate moduli if d +
(2d+1
d+1

)
< n.

Now set m = d + 2 so that the general m-plane section satisfies
Riedl-Yang. Since we have integrality and “expected” dimension
for the linear section QMP1(Pm, e) of QMP1(X , e) in the projective
space QMP1(Pn, e), every irreducible component of QMP1(X , e)
has the expected dimension and is integral.
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Conjecture and Lefschetz Hyperplane Theorem.

The spaces Hom((P1, 0), (X , x0), e) admit “glueing operations” by
“glueing on a line” and deforming. Cohen-Jones-Segal study a
stable limit (in homotopy theory) and its variation under
“evaluation” to x0 ∈ X .

Cohen – Jones – Segal Conjecture

For X Fano, if the stable limit with its evaluation to X is a
quasifibration, then the stable limit is homotopic to the double
loop space of X .

Original formulation due to Segal following his theorem for
X = Pn. Many cases proved for X “quasi-homogeneous”.
Cohen – Jones – Segal give a Floer theory heuristic, and use it to
reprove the conjecture for X = G/P.
The homotopy type of X satisfies the Lefschetz hyperplane
theorem: for X ⊂ P an ample complete intersection, have
isomorphism of homotopy groups until dimC(X ).
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Singularities.

The closed complement QMP1(X , e) \ Hom(P1,X , e) is contained
in the singular locus of QMP1(X , e). So smooth “Purity
Theorems” do not apply.
Grothendieck’s “SGA2 Conjectures”, proved by Hamm - Lê and
sharpened by Goresky-MacPherson, do apply in homotopical
degree < c − 1 if the singular locus has codimension ≥ c .

Browning–Sawin

For n > 3(d − 1)2d−1 the singular locus of Hom(P1,X , e) has
codimension at least

(
n

2d−2 − 6d + 6
)
b e+d
d−1c.

S – Zhiyu Tian

For c = 2b + 3 ≤ n − d , for general X , the singular locus of
QMP1(X , e) and M0,0(X , e) have codimension ≥ c if
n ≥ n0 = d + b + (1/2) +

√
d + b2 + 5b + 2. Same for every

smooth X if n > n0 +
(d+n0−1

n0

)
.



Ax’s “PAC implies QAC” Conjecture. Irreducibility of Spaces of Rational Curves. The Cohen-Jones-Segal Conjecture. Weak Approximation Theorems.

Singularities.

The closed complement QMP1(X , e) \ Hom(P1,X , e) is contained
in the singular locus of QMP1(X , e). So smooth “Purity
Theorems” do not apply.
Grothendieck’s “SGA2 Conjectures”, proved by Hamm - Lê and
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Chris Skinner’s Theorem.

Chris Skinner

Weak approximation holds over global (number) fields for smooth
Xd in Pn if n > 2(d − 1)2d−1.

The proof uses the Circle Method. The method seems to work for
function fields if char > d .
For Xd defined over a global function field k(Ck), with k = Fq and
Ck a smooth k-curve, after base change to k(Ck), weak
approximation holds under a much weaker hypothesis, roughly
n > d2. This follows from Hassett’s theorem deducing weak
approximation from “rational simple connectedness” and joint
work with Zhiyu Tian extending rational simple connectedness of
2-Fano hypersurfaces to positive characteristic.
We also have a result over Fq(C ) when n is greater than a
doubly-exponential function in d using a variant of the
Morin-Predonzan unirationality theorem.
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Thank You.

Thank You.
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