> From Geometry to Arithmetic to Geometry Geometry via Arithmetic workshop, BIRS, 12–16 July 2021

> Jason Michael Starr Report on joint work with Zhiyu Tian (BICMR) arXiv:1704.02932, arXiv:1811.02466 and arXiv:1907.07041

> > 12 July 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Statement and Results.

Conjecture. James Ax.

Hypersurfaces X_1, \ldots, X_c in \mathbb{P}^n_K with $\deg(X_1) + \cdots + \deg(X_c) \le n$ contain a common geometrically irreducible *K*-variety.

János Kollár, char 0

True; even holds for all specializations of Fano manifolds.

Amit Hogadi and Chenyang Xu, char 0

True for all specializations of rationally connected varieties.

The proof uses MMP in char. 0.

Michael Fried and Moishe Jarden, char p > 0

True if $\deg(X_1)^2 + \cdots + \deg(X_c)^2 \le n$ or if $K \supseteq \overline{\mathbb{F}}_p$.

The proof uses the Chebotarev Density Theorem, and the second

Statement and Results.

Conjecture. James Ax.

Hypersurfaces X_1, \ldots, X_c in \mathbb{P}^n_K with $\deg(X_1) + \cdots + \deg(X_c) \le n$ contain a common geometrically irreducible *K*-variety.

János Kollár, char 0

True; even holds for all specializations of Fano manifolds.

Amit Hogadi and Chenyang Xu, char 0

True for all specializations of rationally connected varieties.

The proof uses MMP in char. 0.

Michael Fried and Moishe Jarden, char p > 0

True if $\deg(X_1)^2 + \cdots + \deg(X_c)^2 \le n$ or if $K \supseteq \overline{\mathbb{F}}_p$.

The proof uses the Chebotarev Density Theorem,

Statement and Results.

Conjecture. James Ax.

Hypersurfaces X_1, \ldots, X_c in \mathbb{P}^n_K with $\deg(X_1) + \cdots + \deg(X_c) \le n$ contain a common geometrically irreducible *K*-variety.

János Kollár, char 0

True; even holds for all specializations of Fano manifolds.

Amit Hogadi and Chenyang Xu, char 0

True for all specializations of rationally connected varieties.

The proof uses MMP in char. 0.

Michael Fried and Moishe Jarden, char p > 0

True if $\deg(X_1)^2 + \cdots + \deg(X_c)^2 \le n$ or if $K \supseteq \overline{\mathbb{F}}_p$.

The proof uses the Chebotarev Density Theorem, and the second

Statement and Results.

Conjecture. James Ax.

Hypersurfaces X_1, \ldots, X_c in \mathbb{P}^n_K with $\deg(X_1) + \cdots + \deg(X_c) \le n$ contain a common geometrically irreducible *K*-variety.

János Kollár, char 0

True; even holds for all specializations of Fano manifolds.

Amit Hogadi and Chenyang Xu, char 0

True for all specializations of rationally connected varieties.

The proof uses MMP in char. 0.

Michael Fried and Moishe Jarden, char p > 0

True if $\deg(X_1)^2 + \cdots + \deg(X_c)^2 \leq n$ or if $K \supseteq \overline{\mathbb{F}}_p$.

The proof uses the Chebotarev Density Theorem, and the second

Statement and Results.

Conjecture. James Ax.

Hypersurfaces X_1, \ldots, X_c in \mathbb{P}^n_K with $\deg(X_1) + \cdots + \deg(X_c) \le n$ contain a common geometrically irreducible *K*-variety.

János Kollár, char 0

True; even holds for all specializations of Fano manifolds.

Amit Hogadi and Chenyang Xu, char 0

True for all specializations of rationally connected varieties.

The proof uses MMP in char. 0.

Michael Fried and Moishe Jarden, char p > 0

True if $\deg(X_1)^2 + \cdots + \deg(X_c)^2 \leq n$ or if $K \supseteq \overline{\mathbb{F}}_p$.

Statement and Results.

Conjecture. James Ax.

Hypersurfaces X_1, \ldots, X_c in \mathbb{P}^n_K with $\deg(X_1) + \cdots + \deg(X_c) \le n$ contain a common geometrically irreducible *K*-variety.

János Kollár, char 0

True; even holds for all specializations of Fano manifolds.

Amit Hogadi and Chenyang Xu, char 0

True for all specializations of rationally connected varieties.

The proof uses MMP in char. 0.

Michael Fried and Moishe Jarden, char p > 0

True if $\deg(X_1)^2 + \cdots + \deg(X_c)^2 \leq n$ or if $K \supseteq \overline{\mathbb{F}}_p$.

The proof uses the Chebotarev Density Theorem.

Geometric Proofs in Positive Characteristic.

Prime Regular DVR: Regular extension of a DVR with finite residue field (unramified, separable fraction field).

Separably rationally connected: $\exists f : \mathbb{P}^1_K \to X$, $f^*T_{X/K}$ ample.

S, $K \supseteq \overline{\mathbb{F}}_p$

 X_R proper, flat over a prime regular DVR R, if geom. generic fiber is sep. rat. connected then base change by $R/\mathfrak{m} \to K$ has a geom. irred. K-subvariety.

Proof uses "RC Fibration Theorem" and Bertini's Connectedness Theorem.

S, char p > 0

If geometric generic fiber is "rationally simply connected" then base change by $R/\mathfrak{m} \to K$ has a geom. irred. *K*-subvariety.

Geometric Proofs in Positive Characteristic.

Prime Regular DVR: Regular extension of a DVR with finite residue field (unramified, separable fraction field). **Separably rationally connected**: $\exists f : \mathbb{P}^1_K \to X$, $f^*T_{X/K}$ ample.

S, $K \supseteq \overline{\mathbb{F}}_{p}$

 X_R proper, flat over a prime regular DVR R, if geom. generic fiber is sep. rat. connected then base change by $R/\mathfrak{m} \to K$ has a geom. irred. K-subvariety.

Proof uses "RC Fibration Theorem" and Bertini's Connectedness Theorem.

S, char p > 0

If geometric generic fiber is "rationally simply connected" then base change by $R/\mathfrak{m} \to K$ has a geom. irred. *K*-subvariety.

Geometric Proofs in Positive Characteristic.

Prime Regular DVR: Regular extension of a DVR with finite residue field (unramified, separable fraction field). **Separably rationally connected**: $\exists f : \mathbb{P}^1_K \to X$, $f^*T_{X/K}$ ample.

S, $K \supseteq \overline{\mathbb{F}}_p$

 X_R proper, flat over a prime regular DVR R, if geom. generic fiber is sep. rat. connected then base change by $R/\mathfrak{m} \to K$ has a geom. irred. K-subvariety.

Proof uses "RC Fibration Theorem" and Bertini's Connectedness Theorem.

S, char p > 0

If geometric generic fiber is "rationally simply connected" then base change by $R/\mathfrak{m} \to K$ has a geom. irred. *K*-subvariety.

Geometric Proofs in Positive Characteristic.

Prime Regular DVR: Regular extension of a DVR with finite residue field (unramified, separable fraction field). **Separably rationally connected**: $\exists f : \mathbb{P}^1_K \to X$, $f^*T_{X/K}$ ample.

S, $K \supseteq \overline{\mathbb{F}}_p$

 X_R proper, flat over a prime regular DVR R, if geom. generic fiber is sep. rat. connected then base change by $R/\mathfrak{m} \to K$ has a geom. irred. K-subvariety.

Proof uses "RC Fibration Theorem" and Bertini's Connectedness Theorem.

S, char p > 0

If geometric generic fiber is "rationally simply connected" then base change by $R/\mathfrak{m} \to K$ has a geom. irred. *K*-subvariety.

Geometric Proofs in Positive Characteristic.

Prime Regular DVR: Regular extension of a DVR with finite residue field (unramified, separable fraction field). **Separably rationally connected**: $\exists f : \mathbb{P}^1_K \to X$, $f^*T_{X/K}$ ample.

S, $K \supseteq \overline{\mathbb{F}}_p$

 X_R proper, flat over a prime regular DVR R, if geom. generic fiber is sep. rat. connected then base change by $R/\mathfrak{m} \to K$ has a geom. irred. K-subvariety.

Proof uses "RC Fibration Theorem" and Bertini's Connectedness Theorem.

S, char p > 0

If geometric generic fiber is "rationally simply connected" then base change by $R/\mathfrak{m} \to K$ has a geom. irred. K-subvariety.

Geometric Proofs in Positive Characteristic.

Prime Regular DVR: Regular extension of a DVR with finite residue field (unramified, separable fraction field). **Separably rationally connected**: $\exists f : \mathbb{P}^1_K \to X$, $f^*T_{X/K}$ ample.

S, $K \supseteq \overline{\mathbb{F}}_p$

 X_R proper, flat over a prime regular DVR R, if geom. generic fiber is sep. rat. connected then base change by $R/\mathfrak{m} \to K$ has a geom. irred. K-subvariety.

Proof uses "RC Fibration Theorem" and Bertini's Connectedness Theorem.

S, char p > 0

If geometric generic fiber is "rationally simply connected" then base change by $R/\mathfrak{m} \to K$ has a geom. irred. K-subvariety.

Proof uses "R1C Fibration Theorem", Esnault's work and joint work with Chenyang Xu. $(\Box) (\Box$

(Parameterized) Quasi-maps:

 $\mathsf{QM}_{\mathbb{P}^1}(\mathbb{P}^n, e) = \mathbb{P}\mathsf{Hom}(H^0(\mathbb{P}^n, \mathcal{O}(1)), H^0(\mathbb{P}^1, \mathcal{O}(e))) \supset \\\mathsf{Hom}((\mathbb{P}^1, \mathcal{O}(e)), (\mathbb{P}^n, \mathcal{O}(1))).$

Unparameterized Quasi-maps: GIT quotient $OM_*(\mathbb{P}^n, \alpha) := OM_*(\mathbb{P}^n, \alpha) / / Aut(\mathbb{P}^1)$

 $\mathsf{QM}_0(\mathbb{P}^n, e) := \mathsf{QM}_{\mathbb{P}^1}(\mathbb{P}^n, e) / / \mathsf{Aut}(\mathbb{P}^1).$

Stable maps: $\mathcal{M}_{0,0}(\mathbb{P}^n, e)$, stack of degree e maps f from

genus-0, at-worst-nodal curves with *f*-ample canonical bundle.

Quasi-map Contraction: Everywhere regular morphism

 $\overline{\mathcal{M}}_{0,0}(\mathbb{P}^n,e) \to \mathsf{QM}_0(\mathbb{P}^n,e).$

Projective target $X = \text{Zero}(h_1, \ldots, h_c) \subset \mathbb{P}^n$: $QM_{\mathbb{P}^1}(X, e)$, resp. $QM_0(X, e)$, $\overline{\mathcal{M}}_{0,0}(X, e)$ is the locus where pullbacks of h_1, \ldots, h_c vanish identically.

(Parameterized) Quasi-maps:

 $\mathsf{QM}_{\mathbb{P}^1}(\mathbb{P}^n, e) = \mathbb{P}\mathsf{Hom}(H^0(\mathbb{P}^n, \mathcal{O}(1)), H^0(\mathbb{P}^1, \mathcal{O}(e))) \supset \\\mathsf{Hom}((\mathbb{P}^1, \mathcal{O}(e)), (\mathbb{P}^n, \mathcal{O}(1))).$

Unparameterized Quasi-maps: GIT quotient

 $\mathsf{QM}_0(\mathbb{P}^n, e) := \mathsf{QM}_{\mathbb{P}^1}(\mathbb{P}^n, e) / / \mathsf{Aut}(\mathbb{P}^1).$

Stable maps: $\overline{\mathcal{M}}_{0,0}(\mathbb{P}^n, e)$, stack of degree *e* maps *f* from genus-0, at-worst-nodal curves with *f*-ample canonical bundle. **Quasi-map Contraction**: Everywhere regular morphism $\overline{\mathcal{M}}_{0,0}(\mathbb{P}^n, e) \to \mathrm{QM}_0(\mathbb{P}^n, e)$.

Projective target $X = \text{Zero}(h_1, \ldots, h_c) \subset \mathbb{P}^n$: $QM_{\mathbb{P}^1}(X, e)$, resp. $QM_0(X, e)$, $\overline{\mathcal{M}}_{0,0}(X, e)$ is the locus where pullbacks of h_1, \ldots, h_c vanish identically.

(Parameterized) Quasi-maps:

 $\mathsf{QM}_{\mathbb{P}^1}(\mathbb{P}^n, e) = \mathbb{P}\mathsf{Hom}(H^0(\mathbb{P}^n, \mathcal{O}(1)), H^0(\mathbb{P}^1, \mathcal{O}(e))) \supset$ Hom $((\mathbb{P}^1, \mathcal{O}(e)), (\mathbb{P}^n, \mathcal{O}(1))).$ Unparameterized Quasi-maps: GIT quotient $\mathsf{QM}_0(\mathbb{P}^n, e) := \mathsf{QM}_{\mathbb{P}^1}(\mathbb{P}^n, e) / / \mathsf{Aut}(\mathbb{P}^1).$ **Stable maps**: $\overline{\mathcal{M}}_{0,0}(\mathbb{P}^n, e)$, stack of degree *e* maps *f* from genus-0, at-worst-nodal curves with *f*-ample canonical bundle. **Projective target** $X = \text{Zero}(h_1, \ldots, h_c) \subset \mathbb{P}^n$: $QM_{\mathbb{P}^1}(X, e)$, resp.

(Parameterized) Quasi-maps:

 $\begin{array}{l} \mathsf{QM}_{\mathbb{P}^1}(\mathbb{P}^n, e) = \mathbb{P}\mathsf{Hom}(H^0(\mathbb{P}^n, \mathcal{O}(1)), H^0(\mathbb{P}^1, \mathcal{O}(e))) \supset \\ \mathsf{Hom}((\mathbb{P}^1, \mathcal{O}(e)), (\mathbb{P}^n, \mathcal{O}(1))). \end{array}$ $\begin{array}{l} \textbf{Unparameterized Quasi-maps: GIT quotient} \\ \mathsf{QM}_0(\mathbb{P}^n, e) := \mathsf{QM}_{\mathbb{P}^1}(\mathbb{P}^n, e) / / \mathsf{Aut}(\mathbb{P}^1). \end{array}$ $\begin{array}{l} \textbf{Stable maps: } \overline{\mathcal{M}}_{0,0}(\mathbb{P}^n, e), \text{ stack of degree } e \text{ maps } f \text{ from } \\ \texttt{genus-0, at-worst-nodal curves with } f\text{-ample canonical bundle.} \end{array}$ $\begin{array}{l} \textbf{Quasi-map Contraction: Everywhere regular morphism} \\ \overline{\mathcal{M}}_{0,0}(\mathbb{P}^n, e) \rightarrow \mathsf{QM}_0(\mathbb{P}^n, e). \end{array}$

Projective target $X = \text{Zero}(h_1, \ldots, h_c) \subset \mathbb{P}^n$: $QM_{\mathbb{P}^1}(X, e)$, resp. $QM_0(X, e)$, $\overline{\mathcal{M}}_{0,0}(X, e)$ is the locus where pullbacks of h_1, \ldots, h_c vanish identically.

(Parameterized) Quasi-maps:

 $\mathsf{QM}_{\mathbb{P}^1}(\mathbb{P}^n, e) = \mathbb{P}\mathsf{Hom}(H^0(\mathbb{P}^n, \mathcal{O}(1)), H^0(\mathbb{P}^1, \mathcal{O}(e))) \supset$ Hom $((\mathbb{P}^1, \mathcal{O}(e)), (\mathbb{P}^n, \mathcal{O}(1))).$ Unparameterized Quasi-maps: GIT quotient $\mathsf{QM}_0(\mathbb{P}^n, e) := \mathsf{QM}_{\mathbb{P}^1}(\mathbb{P}^n, e) / / \mathsf{Aut}(\mathbb{P}^1).$ **Stable maps**: $\overline{\mathcal{M}}_{0,0}(\mathbb{P}^n, e)$, stack of degree *e* maps *f* from genus-0, at-worst-nodal curves with *f*-ample canonical bundle. Quasi-map Contraction: Everywhere regular morphism $\overline{\mathcal{M}}_{0,0}(\mathbb{P}^n, e) \to \mathsf{QM}_0(\mathbb{P}^n, e).$ **Projective target** $X = \text{Zero}(h_1, \ldots, h_c) \subset \mathbb{P}^n$: $QM_{\mathbb{P}^1}(X, e)$, resp. $QM_0(X, e), \overline{\mathcal{M}}_{0,0}(X, e)$ is the locus where pullbacks of h_1, \ldots, h_c vanish identically.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

First Irreducibility Theorems.

A. Kuznetsov, B. Kim – R. Pandharipande

Spaces of rational curves with fixed class are integral, smooth and have the "expected dimension" for X = G/P.

J. Harris – M. Roth – S, I. Coskun – S

General $X_d \subset \mathbb{P}^n$ with $d \leq (n+4)/2$, spaces are integral, LCI and have the "expected" dimension.

R. Beheshti – M. Kumar

Same for $d \le (2n + 2)/3$.

E. Riedl – D. Yang

Same for $d \leq n - 2$, the optimal result.

Corollary

First Irreducibility Theorems.

A. Kuznetsov, B. Kim – R. Pandharipande

Spaces of rational curves with fixed class are integral, smooth and have the "expected dimension" for X = G/P.

J. Harris – M. Roth – S, I. Coskun – S

General $X_d \subset \mathbb{P}^n$ with $d \leq (n+4)/2$, spaces are integral, LCI and have the "expected" dimension.

R. Beheshti – M. Kumar

Same for $d \le (2n+2)/3$.

E. Riedl – D. Yang

Same for $d \leq n - 2$, the optimal result.

Corollary

First Irreducibility Theorems.

A. Kuznetsov, B. Kim – R. Pandharipande

Spaces of rational curves with fixed class are integral, smooth and have the "expected dimension" for X = G/P.

J. Harris – M. Roth – S, I. Coskun – S

General $X_d \subset \mathbb{P}^n$ with $d \leq (n+4)/2$, spaces are integral, LCI and have the "expected" dimension.

R. Beheshti – M. Kumar

Same for $d \le (2n+2)/3$.

E. Riedl – D. Yang

Same for $d \leq n-2$, the optimal result.

Corollary

First Irreducibility Theorems.

A. Kuznetsov, B. Kim – R. Pandharipande

Spaces of rational curves with fixed class are integral, smooth and have the "expected dimension" for X = G/P.

J. Harris – M. Roth – S, I. Coskun – S

General $X_d \subset \mathbb{P}^n$ with $d \leq (n+4)/2$, spaces are integral, LCI and have the "expected" dimension.

R. Beheshti – M. Kumar

Same for $d \le (2n+2)/3$.

E. Riedl – D. Yang

Same for $d \leq n-2$, the optimal result.

Corollary

First Irreducibility Theorems.

A. Kuznetsov, B. Kim – R. Pandharipande

Spaces of rational curves with fixed class are integral, smooth and have the "expected dimension" for X = G/P.

J. Harris – M. Roth – S, I. Coskun – S

General $X_d \subset \mathbb{P}^n$ with $d \leq (n+4)/2$, spaces are integral, LCI and have the "expected" dimension.

R. Beheshti – M. Kumar

Same for $d \le (2n+2)/3$.

E. Riedl – D. Yang

Same for $d \leq n-2$, the optimal result.

Corollary

New Irreducibility Theorems.

Tim Browning – Pankaj Vishe, **Tim Browning – Will Sawin**, char 0 or char > d

Smooth $X_d \subset \mathbb{P}^n$ with $(2d - 1)2^{d-1} < n$ have $Hom(\mathbb{P}^1, X)$ integral, LCI with "expected" dimension.

D. Testa proved irreducibility for del Pezzo surfaces of degree > 1. Using their formulation of the Geometric Manin Conjecture, there are results for Fano threefolds by Brian Lehmann – Sho Tanimoto. Combined with the Movable Bend and Break, there are newer results by Beheshti – Lehmann – Riedl – Tanimoto, Shimizu – Tanimoto, et al.

Browning-Vishe and Browning-Sawin follow a strategy of Jordan Ellenberg – Akshay Venkatesh via point-counting estimates of associated Hom spaces over finite fields, which are then proved by the Circle Method.

New Irreducibility Theorems.

Tim Browning – Pankaj Vishe, **Tim Browning – Will Sawin**, char 0 or char > d

Smooth $X_d \subset \mathbb{P}^n$ with $(2d - 1)2^{d-1} < n$ have $Hom(\mathbb{P}^1, X)$ integral, LCI with "expected" dimension.

D. Testa proved irreducibility for del Pezzo surfaces of degree > 1. Using their formulation of the Geometric Manin Conjecture, there are results for Fano threefolds by Brian Lehmann – Sho Tanimoto. Combined with the Movable Bend and Break, there are newer results by Beheshti – Lehmann – Riedl – Tanimoto, Shimizu – Tanimoto, et al.

Browning-Vishe and Browning-Sawin follow a strategy of Jordan Ellenberg – Akshay Venkatesh via point-counting estimates of associated Hom spaces over finite fields, which are then proved by the Circle Method.

New Irreducibility Theorems.

Tim Browning – Pankaj Vishe, **Tim Browning – Will Sawin**, char 0 or char > d

Smooth $X_d \subset \mathbb{P}^n$ with $(2d - 1)2^{d-1} < n$ have $Hom(\mathbb{P}^1, X)$ integral, LCI with "expected" dimension.

D. Testa proved irreducibility for del Pezzo surfaces of degree > 1. Using their formulation of the Geometric Manin Conjecture, there are results for Fano threefolds by Brian Lehmann – Sho Tanimoto. Combined with the Movable Bend and Break, there are newer results by Beheshti – Lehmann – Riedl – Tanimoto, Shimizu – Tanimoto, et al.

Browning-Vishe and Browning-Sawin follow a strategy of Jordan Ellenberg – Akshay Venkatesh via point-counting estimates of associated Hom spaces over finite fields, which are then proved by the Circle Method.

Geometric Method.

S – **Zhiyu Tian**, char 0 or char > d

Smooth $X_d \subset \mathbb{P}^n$ with $d + \binom{2d+1}{d+1} < n$ have $QM_{\mathbb{P}^1}(X, e)$ integral, ample complete intersection in $QM_{\mathbb{P}^1}(\mathbb{P}^n, e)$ with "expected" dimension.

Above inequality is roughly $4^d/\sqrt{\pi d} < n$ compared to $d2^d < n$ in Browning–Vishe–Sawin. Prithvirai Chowdhurv extended this to complete intersections.

S, char 0 or char > d

Linear *m*-plane sections of X dominate moduli if $d + \binom{2d+1}{d+1} < n$.

Geometric Method.

S – **Zhiyu Tian**, char 0 or char > d

Smooth $X_d \subset \mathbb{P}^n$ with $d + \binom{2d+1}{d+1} < n$ have $QM_{\mathbb{P}^1}(X, e)$ integral, ample complete intersection in $QM_{\mathbb{P}^1}(\mathbb{P}^n, e)$ with "expected" dimension.

Above inequality is roughly $4^d/\sqrt{\pi d} < n$ compared to $d2^d < n$ in Browning–Vishe–Sawin.

Prithviraj Chowdhury extended this to complete intersections.

S, char 0 or char > d

Linear *m*-plane sections of X dominate moduli if $d + \binom{2d+1}{d+1} < n$.

Geometric Method.

S – **Zhiyu Tian**, char 0 or char > d

Smooth $X_d \subset \mathbb{P}^n$ with $d + \binom{2d+1}{d+1} < n$ have $QM_{\mathbb{P}^1}(X, e)$ integral, ample complete intersection in $QM_{\mathbb{P}^1}(\mathbb{P}^n, e)$ with "expected" dimension.

Above inequality is roughly $4^d/\sqrt{\pi d} < n$ compared to $d2^d < n$ in Browning–Vishe–Sawin.

Prithviraj Chowdhury extended this to complete intersections.

S, char 0 or char > d

Linear *m*-plane sections of X dominate moduli if $d + \binom{2d+1}{d+1} < n$.

Geometric Method.

S – **Zhiyu Tian**, char 0 or char > d

Smooth $X_d \subset \mathbb{P}^n$ with $d + \binom{2d+1}{d+1} < n$ have $QM_{\mathbb{P}^1}(X, e)$ integral, ample complete intersection in $QM_{\mathbb{P}^1}(\mathbb{P}^n, e)$ with "expected" dimension.

Above inequality is roughly $4^d/\sqrt{\pi d} < n$ compared to $d2^d < n$ in Browning–Vishe–Sawin.

Prithviraj Chowdhury extended this to complete intersections.

S, char 0 or char > d

Linear *m*-plane sections of X dominate moduli if $d + \binom{2d+1}{d+1} < n$.

Geometric Method.

S – **Zhiyu Tian**, char 0 or char > d

Smooth $X_d \subset \mathbb{P}^n$ with $d + \binom{2d+1}{d+1} < n$ have $QM_{\mathbb{P}^1}(X, e)$ integral, ample complete intersection in $QM_{\mathbb{P}^1}(\mathbb{P}^n, e)$ with "expected" dimension.

Above inequality is roughly $4^d/\sqrt{\pi d} < n$ compared to $d2^d < n$ in Browning–Vishe–Sawin.

Prithviraj Chowdhury extended this to complete intersections.

S, char 0 or char > d

Linear *m*-plane sections of X dominate moduli if $d + \binom{2d+1}{d+1} < n$.

Conjecture and Lefschetz Hyperplane Theorem.

The spaces $\text{Hom}((\mathbb{P}^1, 0), (X, x_0), e)$ admit "glueing operations" by "glueing on a line" and deforming. Cohen-Jones-Segal study a stable limit (in homotopy theory) and its variation under "evaluation" to $x_0 \in X$.

Cohen – Jones – Segal Conjecture

For X Fano, if the stable limit with its evaluation to X is a quasifibration, then the stable limit is homotopic to the double loop space of X.

Conjecture and Lefschetz Hyperplane Theorem.

The spaces $\operatorname{Hom}((\mathbb{P}^1, 0), (X, x_0), e)$ admit "glueing operations" by "glueing on a line" and deforming. Cohen-Jones-Segal study a stable limit (in homotopy theory) and its variation under "evaluation" to $x_0 \in X$.

Cohen – Jones – Segal Conjecture

For X Fano, if the stable limit with its evaluation to X is a quasifibration, then the stable limit is homotopic to the double loop space of X.

Original formulation due to Segal following his theorem for $X = \mathbb{P}^n$. Many cases proved for X "quasi-homogeneous". Cohen – Jones – Segal give a Floer theory heuristic, and use it to reprove the conjecture for X = G/P. The homotopy type of X satisfies the Lefschetz hyperplane theorem: for $X \subset P$ an ample complete intersection, have isomorphism of homotopy groups until dim $\mathbb{C}(X)$; (A) is the provement of X = OSC

Conjecture and Lefschetz Hyperplane Theorem.

The spaces $\operatorname{Hom}((\mathbb{P}^1, 0), (X, x_0), e)$ admit "glueing operations" by "glueing on a line" and deforming. Cohen-Jones-Segal study a stable limit (in homotopy theory) and its variation under "evaluation" to $x_0 \in X$.

Cohen – Jones – Segal Conjecture

For X Fano, if the stable limit with its evaluation to X is a quasifibration, then the stable limit is homotopic to the double loop space of X.

Conjecture and Lefschetz Hyperplane Theorem.

The spaces $\text{Hom}((\mathbb{P}^1, 0), (X, x_0), e)$ admit "glueing operations" by "glueing on a line" and deforming. Cohen-Jones-Segal study a stable limit (in homotopy theory) and its variation under "evaluation" to $x_0 \in X$.

Cohen – Jones – Segal Conjecture

For X Fano, if the stable limit with its evaluation to X is a quasifibration, then the stable limit is homotopic to the double loop space of X.

Original formulation due to Segal following his theorem for $X = \mathbb{P}^n$. Many cases proved for X "quasi-homogeneous". Cohen – Jones – Segal give a Floer theory heuristic, and use it to reprove the conjecture for X = G/P.

Conjecture and Lefschetz Hyperplane Theorem.

The spaces Hom(($\mathbb{P}^1, 0$), (X, x_0), e) admit "glueing operations" by "glueing on a line" and deforming. Cohen-Jones-Segal study a stable limit (in homotopy theory) and its variation under "evaluation" to $x_0 \in X$.

Cohen – Jones – Segal Conjecture

For X Fano, if the stable limit with its evaluation to X is a quasifibration, then the stable limit is homotopic to the double loop space of X.

Original formulation due to Segal following his theorem for $X = \mathbb{P}^n$. Many cases proved for X "quasi-homogeneous". Cohen – Jones – Segal give a Floer theory heuristic, and use it to reprove the conjecture for X = G/P. The homotopy type of X satisfies the Lefschetz hyperplane theorem: for $X \subset P$ an ample complete intersection, have isomorphism of homotopy groups until dim $_{\mathbb{C}}(X)$.

Singularities.

The closed complement $QM_{\mathbb{P}^1}(X, e) \setminus Hom(\mathbb{P}^1, X, e)$ is contained in the singular locus of $QM_{\mathbb{P}^1}(X, e)$. So smooth "Purity Theorems" do not apply.

Grothendieck's "SGA2 Conjectures", proved by Hamm - Lê and sharpened by Goresky-MacPherson, do apply in homotopical degree < c - 1 if the singular locus has codimension $\geq c$.

Browning–Sawin

For $n > 3(d-1)2^{d-1}$ the singular locus of Hom (\mathbb{P}^1, X, e) has codimension at least $\left(\frac{n}{2^{d-2}} - 6d + 6\right) \lfloor \frac{e+d}{d-1} \rfloor$.

S – Zhiyu Tian

Singularities.

The closed complement $QM_{\mathbb{P}^1}(X, e) \setminus Hom(\mathbb{P}^1, X, e)$ is contained in the singular locus of $QM_{\mathbb{P}^1}(X, e)$. So smooth "Purity Theorems" do not apply. Grothendieck's "SGA2 Conjectures", proved by Hamm - Lê and sharpened by Goresky-MacPherson, do apply in homotopical degree < c - 1 if the singular locus has codimension $\ge c$.

Browning-Sawin

For $n > 3(d-1)2^{d-1}$ the singular locus of Hom (\mathbb{P}^1, X, e) has codimension at least $\left(\frac{n}{2^{d-2}} - 6d + 6\right) \lfloor \frac{e+d}{d-1} \rfloor$.

S – Zhiyu Tian

Singularities.

The closed complement $QM_{\mathbb{P}^1}(X, e) \setminus Hom(\mathbb{P}^1, X, e)$ is contained in the singular locus of $QM_{\mathbb{P}^1}(X, e)$. So smooth "Purity Theorems" do not apply. Grothendieck's "SGA2 Conjectures", proved by Hamm - Lê and sharpened by Goresky-MacPherson, do apply in homotopical degree < c - 1 if the singular locus has codimension $\ge c$.

Browning–Sawin

For $n > 3(d-1)2^{d-1}$ the singular locus of Hom (\mathbb{P}^1, X, e) has codimension at least $\left(\frac{n}{2^{d-2}} - 6d + 6\right) \lfloor \frac{e+d}{d-1} \rfloor$.

S – Zhiyu Tian

Singularities.

The closed complement $QM_{\mathbb{P}^1}(X, e) \setminus Hom(\mathbb{P}^1, X, e)$ is contained in the singular locus of $QM_{\mathbb{P}^1}(X, e)$. So smooth "Purity Theorems" do not apply. Grothendieck's "SGA2 Conjectures", proved by Hamm - Lê and sharpened by Goresky-MacPherson, do apply in homotopical degree < c - 1 if the singular locus has codimension $\ge c$.

Browning–Sawin

For $n > 3(d-1)2^{d-1}$ the singular locus of Hom (\mathbb{P}^1, X, e) has codimension at least $\left(\frac{n}{2^{d-2}} - 6d + 6\right) \lfloor \frac{e+d}{d-1} \rfloor$.

S – Zhiyu Tian

Chris Skinner's Theorem.

Chris Skinner

Weak approximation holds over global (number) fields for smooth X_d in \mathbb{P}^n if $n > 2(d-1)2^{d-1}$.

The proof uses the Circle Method. The method seems to work for function fields if char > d.

 C_k a smooth k-curve, after base change to $k(C_{\overline{k}})$, weak ・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Chris Skinner's Theorem.

Chris Skinner

Weak approximation holds over global (number) fields for smooth X_d in \mathbb{P}^n if $n > 2(d-1)2^{d-1}$.

The proof uses the Circle Method. The method seems to work for function fields if char > d.

 C_k a smooth k-curve, after base change to $k(C_{\overline{k}})$, weak ・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Chris Skinner's Theorem.

Chris Skinner

Weak approximation holds over global (number) fields for smooth X_d in \mathbb{P}^n if $n > 2(d-1)2^{d-1}$.

The proof uses the Circle Method. The method seems to work for function fields if char > d.

For X_d defined over a global function field $k(C_k)$, with $k = \mathbb{F}_q$ and C_k a smooth k-curve, after base change to $\overline{k}(C_{\overline{k}})$, weak approximation holds under a much weaker hypothesis, roughly $n > d^2$. This follows from Hassett's theorem deducing weak approximation from "rational simple connectedness" and joint work with Zhiyu Tian extending rational simple connectedness of 2-Fano hypersurfaces to positive characteristic.

We also have a result over $\mathbb{F}_q(C)$ when *n* is greater than a doubly-exponential function in *d* using a variant of the Morin-Predonzan unirationality theorem.

Chris Skinner's Theorem.

Chris Skinner

Weak approximation holds over global (number) fields for smooth X_d in \mathbb{P}^n if $n > 2(d-1)2^{d-1}$.

The proof uses the Circle Method. The method seems to work for function fields if char > d.

For X_d defined over a global function field $k(C_k)$, with $k = \mathbb{F}_q$ and C_k a smooth k-curve, after base change to $\overline{k}(C_{\overline{k}})$, weak approximation holds under a much weaker hypothesis, roughly $n > d^2$. This follows from Hassett's theorem deducing weak approximation from "rational simple connectedness" and joint work with Zhiyu Tian extending rational simple connectedness of 2-Fano hypersurfaces to positive characteristic. We also have a result over $\mathbb{F}_q(C)$ when n is greater than a doubly-exponential function in d using a variant of the

Morin-Predonzan unirationality theorem.

Ax's "PAC implies QAC" Conjecture.	Irreducibility of Spaces of Rational Curves.	The Cohen-Jones-Segal Conjecture.	Weak Appro
			••

Thank You.

THANK YOU.

