Binary Quadratic Forms and Hecke Operators for $SL_2(\mathbb{Z})$

Mark McConnell

Princeton University

October 13, 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Joint with Erik Bahnson and Kyrie McIntosh.

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ● ●

Background

Let **G** be the algebraic group SL_n of a finite-dimensional division algebra D over \mathbb{Q} , possibly commutative. Let $G = \mathbf{G}(\mathbb{R})$.

In most of this talk, D will be \mathbb{Q} , so $G = \mathrm{SL}_n(\mathbb{R})$ as usual.

X = G/(maxl cpct) = Riemannian symmetric space. $\Gamma \subset G$ arithmetic subgroup. $\Gamma \backslash X$ locally symmetric space.

A rational finite-dimensional representation of G gives a representation of Γ , hence a local system \mathcal{M} on $\Gamma \setminus X$. Will suppose \mathcal{M} satisfies integrality conditions so that Hecke operators are defined.

Goal

Compute the Hecke operators on $H^*(\Gamma \setminus X; \mathcal{M})$.

Computations using the Well-Rounded Retract

Avner Ash and his collaborators have done such computations for $G = SL_3(\mathbb{R})$ and $SL_4(\mathbb{R})$ for a range of subgroups Γ and coefficient systems \mathcal{M} .

Compute a range of Hecke operators on the cohomology, identify Hecke eigenclasses, and identify Galois representations which match the Hecke data and therefore are (conjecturally) attached to the eigenclasses.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Ash–Gunnells–M. have a series of papers for SL_4 .

Based on the well-rounded retract, which we now recall.

Consider \mathbb{R}^n with a positive-definite quadratic form. Lattice $L \subset \mathbb{R}^n$ of rank n.

Arithmetic minimum $m(L) = \min\{||x|| : x \in L, x \neq 0\}$. The minimal vectors of L are $\{x \in L : ||x|| = m(L)\}$. L is well rounded if its minimal vectors span \mathbb{R}^n . Let $W \subset X$ be the space of bases of well-rounded lattices.

Theorem (Ash, late 1970s)

- There is an SL_n(ℤ)-equivariant deformation retraction X → W. Call W the well-rounded retract.
- dim $W = \dim X (n-1) = \binom{n}{2}$, the virtual coh'l dim (vcd).
- W is a locally finite regular cell complex. Cells characterized by coords in Zⁿ of their minimal vectors w.r.t. the basis.
- $\Gamma \setminus W$ is a finite cell complex.

W is dual to Voronoi's decomposition of X into polyhedral cones via *perfect forms*.

The vertices of the retract W are the perfect forms.

Ash [1984] generalizes this to $\mathbf{G} = \mathrm{SL}_n$ over any D.

The Ash–Rudolph algorithm computes the Hecke operators on H^i when i = vcd.

An algorithm of Gunnells computes the Hecke operators on H^i for i = vcd - 1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Well-Tempered Retract

Robert MacPherson and I introduced an algorithm for Hecke operators on $H^i(\Gamma \setminus X; \mathcal{M})$ for $\mathbf{G} = \operatorname{SL}_n$ for any nover any finite-dimensional division algebra D over \mathbb{Q} and for all i.

This talk will take $G = SL_n(\mathbb{R})$ and $\Gamma \subseteq SL_n(\mathbb{Z})$, for simplicity.

I have working code for $\Gamma \subseteq SL_n(\mathbb{Z})$ for n = 2, 3, 4.

ArXiv paper, 2020, for general D. Case of $G = SL_n(\mathbb{R})$ in Galt–M., *Tbilisi Math. Journal*.

Our algorithm uses the *well-tempered retract*, an extension of the well-rounded retract from [Ash 1984], which will be described on the next few slides. Let ℓ be a prime. Let $k \in \{1, \ldots, n\}$ \rightarrow Hecke operator $T(\ell, k)$. Consider $X \times [1, \ell]$. Second coordinate called τ , the *temperament*. In each slice of $X \times [1, \ell]$ for a given τ , we will perform a variant of the well-rounded retraction.

Let $L \subset \mathbb{R}^n$ be any lattice of rank n. Take $M \subset L$, a sublattice with $L/M \cong (\mathbb{Z}/\ell\mathbb{Z})^k$.

Definition

$$y \in L$$
 has tempered length
$$\begin{cases} \tau \cdot \|y\| & \text{if } y \notin M \\ \|y\| & \text{if } y \in M. \end{cases}$$

Do well-rounded retraction with this notion, in each τ -slice separately. Get $\tilde{W} \subset X \times [1, \ell]$, the *well-tempered retract*.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let \tilde{W}_{τ} be the slice of \tilde{W} at τ .

 \tilde{W}_1 is the well-rounded retract. \tilde{W}_ℓ is the well-rounded retract twisted by $\operatorname{diag}(1,\ldots,1,\underbrace{\ell,\ldots,\ell}_k)$. \tilde{W} interpolates between \tilde{W}_1 , which makes L well rounded,

and W_{ℓ} , which makes M well rounded.

The $\Gamma\text{-}\mathrm{action}$ preserves the slices.

As τ goes from 1 to ℓ , there is a finite number of *critical temperaments* where the cell structure abruptly changes.

Movie of T(5,1) for $\Gamma = SL_2(\mathbb{Z})$.

Theorem

 \tilde{W} is a locally finite regular cell complex of dim vcd + 1. Cells characterized by coords in \mathbb{Z}^n of their minimal vectors in both Land M together with intervals in τ . $\Gamma \setminus \tilde{W}$ is a finite cell complex.

Let $\Gamma_0(\ell, k) \subset SL_n(\mathbb{Z})$ be $\equiv \begin{bmatrix} * & * \\ 0 & * \end{bmatrix} \mod \ell$, lower-right block $k \times k$. Definition

The Hecke operator $T(\ell,k)$ is p_*q^* on the cohomology of

$$\begin{array}{c} (\Gamma \cap \Gamma_0(\ell,k)) \backslash \tilde{W} \\ p \downarrow \quad \downarrow q \\ \Gamma \backslash W \end{array}$$

p is the projection onto \tilde{W}_1 . q is the twisted projection onto \tilde{W}_ℓ . $T(\ell,k)$ is computed by p_* on $\Gamma \backslash \tilde{W}_1$ on left, q^* on $\Gamma \backslash \tilde{W}_\ell$ on right. Computation interpolates between these by the cells in the middle. One approach to computing \tilde{W} is to compute a bounded subset of a polytope $\tilde{\Pi}$ dual to \tilde{W} , the *Hecketope*. This is the Voronoi polyhedron (Ryskov polyhedron), adapted with one extra dimension for the temperament.

I used Sage's class Polyhedron over \mathbb{Q} . But $\dim \tilde{\Pi} = n(n+1)/2 + 1$ is big. Must choose the bounds large enough to get all cells mod Γ . Computation is delicate as ℓ grows, even for n = 3. Slow for n = 4.

Goal for this project

Understand the cells of \tilde{W} intrinsically, without computing with $\tilde{\Pi}.$

Tempered Perfect Forms

It suffices to understand the *vertices* of W, because we can compute all other cells from them. Given a set of vertices, take the intersection of their minimal vectors and check by linear algebra what kind of cell they determine (edge, 2-cell, ...).

Vertices occur only at critical temperaments.

Just as the vertices of the well-rounded retract are perfect forms, Definition Vertices of the well-tempered retract are *tempered perfect forms*.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Proposition

A tempered perfect form has rational Gram matrix and rational τ^2 .

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Case of SL_2

For the rest of the talk, specialize to the classical case of $G = SL_2(\mathbb{R})$. $\Gamma = SL_2(\mathbb{Z})$ for simplicity.

k = 1, so $M \subset L$ with index ℓ . Hecke operators denoted $T_{\ell} = T(\ell, 1)$.

Result

We have a description of tempered perfect forms in terms of binary quadratic forms and their class field theory.

3-and-1 Forms, 3-and-3 Forms

Sometimes three vectors in L are minimal vectors. Then we have a perfect form on L already. The only perfect form for n = 2 is for the hexagonal lattice, Change coordinates so $L = \mathbb{Z}[\omega]$ with $\omega^2 + \omega + 1 = 0$.

At least one vector in M must also be tempered-minimal. $\Rightarrow \tau^2$ must be the *norm* of some $\alpha \in \mathbb{Z}[\omega]$.

The norm $|a + b\omega|^2 = a^2 - ab + b^2$. In the picture, $|3 + 2\omega|^2 = 7$.

 $\alpha = 3 + 2\omega$ of norm 7 gives rise to tempered perfect forms for T_ℓ for all $\ell \ge 7$.

Here is a vertex in the well-tempered retract for T_{11} . $L \cong \mathbb{Z}[\omega]$ is the lattice. M is a sublattice of index 11. It is a 3-and-1 form: 3 pairs of minimal vectors in L, 1 pair in M.

au is always the ratio of the radii of the circles. Here $au = \sqrt{7}$.

э

When $|\alpha|^2$ happens to $= \ell$, we get a 3-and-3 form: 3 pairs of minimal vectors in L, 3 pairs in M, at the *middle* critical temperament $\tau = \sqrt{\ell}$, the geometric mean $\sqrt{\ell} \in [1, \ell]$.

Example for $\alpha = 3 + 2\omega$ and T_7 :

A prime ℓ is the norm of an element of $\mathbb{Z}[\omega]$ iff $\ell = 3$ or $\ell \equiv 1 \pmod{6}$.

Corollary

When $\ell = 3$ or $\ell \equiv 1 \pmod{6}$, the well-tempered retract for T_p has, at $\tau^2 = \ell$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- vertices that are 3-and-1 forms, for every prime $p > \ell$,
- vertices that are 3-and-3 forms, when $p = \ell$.

The Gaussian Integers

Other vertices of \tilde{W} have two pairs of minimal vectors in L and two pairs in M.

These are 2-and-2 forms, or doubly well-rounded lattices.

For example, the Gaussian integers give 2-and-2 forms with 90° between the two minimal vectors in L and 90° between the two in M.

Here the fine grid is $L = \mathbb{Z}[i]$. The large grid is M = (-1 + 4i)L, where -1 + 4i has norm 17.

Fermat: a prime ℓ is the sum of two squares iff $\ell = 2$ or $\ell \equiv 1 \pmod{4}$.

Since M as well as L has a *basis* of minimal vectors, $|\alpha|^2$ must equal [L:M]. Hence

Corollary

When $\ell = 2$ or $\ell \equiv 1 \pmod{4}$, the well-tempered retract for T_{ℓ} has vertices that are 2-and-2 forms coming from $\mathbb{Z}[i]$ at the middle temperament $\tau = \sqrt{\ell}$.

Other 2-and-2 Forms

Even for small ℓ we see 2-and-2 forms not based on equilateral triangles or squares.

Example

 T_{11} at the middle temperament $\tau = \sqrt{11}$. The lattice vectors have coordinates in $\mathbb{Q}(\sqrt{-35})$, with $35 = 5 \cdot 7$.

We knew something cool was going on when we found a 2-and-2 form with *non-integer* τ^2 and *different* angles on the two circles.

Example $\ell = 23. \ \tau^2 = \frac{391}{19} = \frac{17 \cdot 23}{19}.$ Vectors have coordinates in $\mathbb{Q}(\sqrt{-1155})$, where $1155 = 3 \cdot 5 \cdot 7 \cdot 11.$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○ ○

Review of Binary Quadratic Forms

Consider positive-definite quadratic forms for $x, y \in \mathbb{Z}$, $ax^2 + bxy + cy^2$ with $a, b, c \in \mathbb{Z}$ primitive (gcd 1). Discriminant $D = b^2 - 4ac$. D < 0 throughout this talk.

Correspondence between forms and certain rank-2 lattices in \mathbb{C} ,

$$ax^2 + bxy + cy^2 \quad \leftrightarrow \quad \mathbb{Z}\left\langle 1, \frac{-b + \sqrt{D}}{2a} \right\rangle.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The lattice is a *fractional ideal* contained in $K = \mathbb{Q}(\sqrt{D})$.

Let \mathcal{O}_K be the ring of integers of K, of discriminant $d_K < 0$. $\mathcal{O}_K = \mathbb{Z}[r]$.¹

An order $\mathcal{O} \subseteq \mathcal{O}_K$ is a subring which contains 1 and has rank 2.

 \mathcal{O}_K is the maximal order. Every order is $\mathcal{O} = \mathbb{Z}[fr]$ for an integer $f \ge 1$. This \mathcal{O} has discriminant $D = f^2 d_K$. Conversely, D determines \mathcal{O} .

For a rank-2 lattice L in K, the order for L is the ring of all $\alpha \in K$ satisfying $\alpha L \subseteq L$. This ring *is* an order. We say L has complex multiplication.

$${}^1r = \frac{1+\sqrt{d_K}}{2}$$
 when $d_K \equiv 1 \pmod{4}$. $r = \frac{\sqrt{d_K}}{2}$ when $d_K \equiv 0 \pmod{4}$.

The product of two lattices (fractional ideals) of K having order \mathcal{O} has the same order \mathcal{O} . (False in general for cubic and higher fields.)

If a lattice \subseteq its order \mathcal{O} , define its *norm* to be its index in \mathcal{O} . These norms are multiplicative.

Say lattices L_1 , L_2 are *similar* if $L_2 = \alpha L_1$ for $\alpha \in K$, $\alpha \neq 0$.

Theorem (Lagrange, Legendre, Gauss): The similarity classes of lattices in K having a given order \mathcal{O} form a finite abelian group under multiplication, the *class group of* \mathcal{O} .

Our proofs sometimes use lattices, sometimes $ax^2 + bxy + cy^2$. The form $ax^2 + bxy + cy^2$ for L has the same D as the order for L. Quadratic forms are *equivalent* if they differ by an $SL_2(\mathbb{Z})$ change of coords. Equivalent forms \leftrightarrow similar lattices. Class groups are \cong . See Appendix for more of the $ax^2 + bxy + cy^2$ perspective.

Proposition

A lattice in K is well rounded iff every similar lattice is well rounded.

In $\mathbb C,$ multiplication by α is a rotation times a homothety.

We change our thinking from well-rounded lattices to *well-rounded classes* in the class group of an order O.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This and the next theorem are the heart of our classification of 2-and-2 forms.

As before, $M \subset L$ with prime index ℓ .

Proposition

If $M \subset L$ is a tempered 2-and-2 perfect form, then L and M have the same order \mathcal{O} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem

Fix a discriminant D < 0. Let \mathcal{O} be the order of discriminant D. Let C_1 , C_2 be well-rounded classes in the class group of \mathcal{O} . Suppose there is a class \mathcal{L} in which some lattice has norm ℓ in \mathcal{O} . Then there is a 2-and-2 form $M \subset L$ in the well-tempered retract for T_ℓ where the minimal vectors in L are a basis of a well-rounded lattice of class C_1 , and the minimal vectors in M are a basis of a well-rounded lattice of class C_2 .

$$\tau^2 = \ell \cdot \frac{\operatorname{norm}(L)}{\operatorname{norm}(M)}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Conversely, every 2-and-2 form arises in this way for some D.

Example of D = -1155

D belongs to the maximal order $\mathcal{O}_K = \mathbb{Z}[r]$ with $r = \frac{1+\sqrt{-1155}}{2}$. $K = \mathbb{Q}(\sqrt{-1155})$. Recall $1155 = 3 \cdot 5 \cdot 7 \cdot 11$. The class group of \mathcal{O}_K is $(\mathbb{Z}/2\mathbb{Z})^3$. Draw it as a cube.

 \mathfrak{p}_p is a prime ideal of \mathcal{O}_K of prime norm p. The ramified \mathfrak{p}_3 , \mathfrak{p}_5 , \mathfrak{p}_7 generate the group (x, y, z axes). In each of the eight classes, the \mathfrak{p}_p with smallest p is shown. Exactly two of the eight classes are well rounded, \mathfrak{p}_{17} and \mathfrak{p}_{19} . $\mathfrak{p}_{17} \cdot \mathfrak{p}_{23} \sim \mathfrak{p}_{19}$. This explains page 22. Idea

Each discriminant D defines a finite number (zero or more) of "patterns" that a 2-and-2 vertex in \tilde{W} can have.

For a given class C in the class group of O, there are infinitely many primes ℓ such that C has an ideal of norm ℓ .

Therefore each "pattern" will occur for infinitely many ℓ .

Example of D = -1155

This D gives a 2-and-2 form iff \mathfrak{p}_{ℓ} is split and $\sim (1)$ or $\sim \mathfrak{p}_{23}$. $\mathbb{Z}/1155\mathbb{Z}$ has $\varphi(1155) = 480$ units. 240 give \mathfrak{p}_{ℓ} that split. 8 classes \Rightarrow 30 elements per class. $\mathfrak{p}_{\ell} \sim (1)$ (resp., $\mathfrak{p}_{\ell} \sim \mathfrak{p}_{23}$) iff $\ell \equiv$ the following mod 1155:

1, 4, 16, 64, 169, 214, 256, 289, 331, 361, 379, 394, 421, 466, 499,

 $526, 529, 631, 676, 694, 709, 751, 841, 856, 949, 961, 991, 1024, 1054, 1114; \\23, 53, 92, 113, 137, 158, 212, 218, 302, 317, 323, 368, 422, 443, 452,$

533, 548, 617, 632, 653, 683, 848, 863, 872, 947, 977, 1037, 1082, 1103, 1142.

To compute T_ℓ for a given $\ell,$ we need a finiteness theorem in the converse direction.

We need to know that, for a given ℓ , only finitely many patterns can arise, and which ones.

This converse is another part of our main result.

Theorem

Given ℓ , 2-and-2 vertices will appear in the well-tempered retract for T_{ℓ} only for discriminants D with

 $|D| < 4\ell^2.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In the cases we have seen so far, the ℓ have been determined by congruences modulo D.

Genus theory (Lagrange) tells us there is a subgroup \mathcal{H} , the *principal genus*, of the class group \mathcal{G} .

A prime $\ell \nmid D$ is the norm of an element of a coset of \mathcal{G}/\mathcal{H} iff ℓ satisfies a \equiv condition mod D.

When the principal genus is the union of two or more classes, congruences mod D are not enough to determine which class contains elements of norm ℓ .

Instead, ℓ must satisfy higher-degree polynomial conditions mod D derived from the Hilbert class field.

We see examples at D = -55, etc., where class group $\cong \mathbb{Z}/4\mathbb{Z}$.

The Rule of Three

Proposition

The order \mathcal{O} of discriminant $D \equiv 1 \pmod{4}$ has a well-rounded class iff we can factor |D| = FG with $F \leq G$ relatively prime and

$$\frac{G}{F} \leqslant 3.$$

(There is a similar statement for $D \equiv 0 \pmod{4}$.)

This is why we encounter many |D| = pq with p, q primes near each other: $35 = 5 \cdot 7$, $55 = 5 \cdot 11$, 15, 91, 143, 731, ...

To get two well-rounded classes, factor |D| in two different ways:

$$1155 = 3 \cdot 5 \cdot 7 \cdot 11 = \underbrace{33 \cdot 35}_{\text{ratio } 1.06} = \underbrace{21 \cdot 55}_{\text{ratio } 2.62}.$$

Appendix on Binary Quadratic Forms

 $ax^2 + bxy + cy^2$ is reduced if

 $-a \leqslant b < a, \quad c \geqslant a \text{ when } b \leqslant 0, \quad c > a \text{ when } b > 0.$

Reduced forms satisfy $|b| \leq a \leq \sqrt{-D/3}$, so it is easy to enumerate them for small |D|.

Theorem (Lagrange, Gauss): every equivalence class of quadratic forms contains a unique reduced form.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Lemma

A reduced form $ax^2 + bxy + cy^2$ is well rounded iff a = c.

a = c is the arc at the bottom of the fundamental domain.

b = 0 is the vertical line up the middle of the fundamental domain.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $b = \frac{1}{2}$ is the vertical line up the right-hand boundary.

Proposition

A well-rounded class has order 1 or 2 in the class group.

Proof. A well-rounded lattice L has a \mathbb{Z} -basis $\{v_1, v_2\}$ of vectors of equal length.

Let $\alpha = v_1 + v_2$, the diagonal of the rhombus spanned by v_1, v_2 .

Then $\alpha^{-1}L = \diamondsuit$ is symmetric under complex conjugation. But complex conjugation is the inverse on the class group.