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Background
Let G be the algebraic group SLn of a
finite-dimensional division algebra D over Q, possibly commutative.
Let G = G(R).

In most of this talk, D will be Q,
so G = SLn(R) as usual.

X = G/(maxl cpct) = Riemannian symmetric space.
Γ ⊂ G arithmetic subgroup.
Γ\X locally symmetric space.

A rational finite-dimensional representation of G gives a
representation of Γ, hence a local system M on Γ\X.
Will suppose M satisfies integrality conditions so that
Hecke operators are defined.

Goal
Compute the Hecke operators on H∗(Γ\X;M).



Computations using the Well-Rounded Retract

Avner Ash and his collaborators have done such computations
for G = SL3(R) and SL4(R)
for a range of subgroups Γ and coefficient systems M.

Compute a range of Hecke operators on the cohomology,
identify Hecke eigenclasses,
and identify Galois representations which match the Hecke data
and therefore are (conjecturally) attached to the eigenclasses.

Ash–Gunnells–M. have a series of papers for SL4.

Based on the well-rounded retract, which we now recall.



Consider Rn with a positive-definite quadratic form.
Lattice L ⊂ Rn of rank n.
Arithmetic minimum m(L) = min{‖x‖ : x ∈ L, x 6= 0}.
The minimal vectors of L are {x ∈ L : ‖x‖ = m(L)}.
L is well rounded if its minimal vectors span Rn.
Let W ⊂ X be the space of bases of well-rounded lattices.

Theorem (Ash, late 1970s)

I There is an SLn(Z)-equivariant deformation retraction
X →W . Call W the well-rounded retract.

I dimW = dimX − (n− 1) =
(
n
2

)
, the virtual coh’l dim (vcd).

I W is a locally finite regular cell complex. Cells characterized
by coords in Zn of their minimal vectors w.r.t. the basis.

I Γ\W is a finite cell complex.

W is dual to Voronoi’s decomposition of X into polyhedral cones
via perfect forms.
The vertices of the retract W are the perfect forms.
Ash [1984] generalizes this to G = SLn over any D.



The Ash–Rudolph algorithm computes the Hecke operators
on H i when i = vcd.

An algorithm of Gunnells computes the Hecke operators on H i

for i = vcd− 1.



The Well-Tempered Retract

Robert MacPherson and I introduced an algorithm
for Hecke operators on H i(Γ\X;M)
for G = SLn for any n
over any finite-dimensional division algebra D over Q
and for all i.

This talk will take G = SLn(R) and Γ ⊆ SLn(Z), for simplicity.

I have working code for Γ ⊆ SLn(Z) for n = 2, 3, 4.

ArXiv paper, 2020, for general D.
Case of G = SLn(R) in Galt–M., Tbilisi Math. Journal.

Our algorithm uses the well-tempered retract,
an extension of the well-rounded retract from [Ash 1984],
which will be described on the next few slides.



Let ` be a prime. Let k ∈ {1, . . . , n}  Hecke operator T (`, k).

Consider X × [1, `]. Second coordinate called τ , the temperament.
In each slice of X × [1, `] for a given τ ,
we will perform a variant of the well-rounded retraction.

Let L ⊂ Rn be any lattice of rank n.
Take M ⊂ L, a sublattice with L/M ∼= (Z/`Z)k.

Definition

y ∈ L has tempered length

{
τ · ‖y‖ if y /∈M
‖y‖ if y ∈M.

Do well-rounded retraction with this notion, in each τ -slice
separately. Get W̃ ⊂ X × [1, `], the well-tempered retract.



Let W̃τ be the slice of W̃ at τ .

W̃1 is the well-rounded retract.
W̃` is the well-rounded retract twisted by diag(1, . . . , 1, `, . . . , `︸ ︷︷ ︸

k

).

W̃ interpolates between W̃1, which makes L well rounded,
and W̃`, which makes M well rounded.

The Γ-action preserves the slices.

As τ goes from 1 to `, there is a finite number of critical
temperaments where the cell structure abruptly changes.

Movie of T (5, 1) for Γ = SL2(Z).



Theorem
W̃ is a locally finite regular cell complex of dim vcd + 1. Cells
characterized by coords in Zn of their minimal vectors in both L
and M together with intervals in τ . Γ\W̃ is a finite cell complex.

Let Γ0(`, k) ⊂ SLn(Z) be ≡ [ ∗ ∗0 ∗ ] mod `, lower-right block k × k.

Definition
The Hecke operator T (`, k) is p∗q

∗ on the cohomology of

(Γ ∩ Γ0(`, k))\W̃
p ↓ ↓ q

Γ\W

p is the projection onto W̃1.
q is the twisted projection onto W̃`.
T (`, k) is computed by p∗ on Γ\W̃1 on left, q∗ on Γ\W̃` on right.
Computation interpolates between these by the cells in the middle.



One approach to computing W̃ is to compute a bounded subset of
a polytope Π̃ dual to W̃ , the Hecketope.
This is the Voronoi polyhedron (Ryskov polyhedron),
adapted with one extra dimension for the temperament.

I used Sage’s class Polyhedron over Q.
But dim Π̃ = n(n+ 1)/2 + 1 is big.
Must choose the bounds large enough to get all cells mod Γ.
Computation is delicate as ` grows, even for n = 3.
Slow for n = 4.

Goal for this project

Understand the cells of W̃ intrinsically,
without computing with Π̃.



Tempered Perfect Forms

It suffices to understand the vertices of W̃ ,
because we can compute all other cells from them.
Given a set of vertices, take the intersection of their minimal vectors and check

by linear algebra what kind of cell they determine (edge, 2-cell, . . . ).

Vertices occur only at critical temperaments.

Just as the vertices of the well-rounded retract are perfect forms,

Definition
Vertices of the well-tempered retract are tempered perfect forms.



Proposition

A tempered perfect form has rational Gram matrix and rational τ2.



Case of SL2

For the rest of the talk, specialize to the classical case of
G = SL2(R).
Γ = SL2(Z) for simplicity.

k = 1, so M ⊂ L with index `.
Hecke operators denoted T` = T (`, 1).

Result
We have a description of tempered perfect forms
in terms of binary quadratic forms
and their class field theory.



3-and-1 Forms, 3-and-3 Forms
Sometimes three vectors in L are minimal vectors.
Then we have a perfect form on L already.
The only perfect form for n = 2 is for the hexagonal lattice,
Change coordinates so L = Z[ω] with ω2 + ω + 1 = 0.

At least one vector in M must also be tempered-minimal.
⇒ τ2 must be the norm of some α ∈ Z[ω].

The norm |a+ bω|2 = a2 − ab+ b2.
In the picture, |3 + 2ω|2 = 7.



α = 3 + 2ω of norm 7 gives rise to tempered perfect forms for T`
for all ` > 7.

Here is a vertex in the well-tempered retract for T11.
L ∼= Z[ω] is the lattice. M is a sublattice of index 11.
It is a 3-and-1 form: 3 pairs of minimal vectors in L, 1 pair in M .

τ is always the ratio of the radii of the circles. Here τ =
√

7.



When |α|2 happens to = `, we get a 3-and-3 form:
3 pairs of minimal vectors in L, 3 pairs in M ,
at the middle critical temperament τ =

√
`,

the geometric mean
√
` ∈ [1, `].

Example for α = 3 + 2ω and T7:



A prime ` is the norm of an element of Z[ω]
iff ` = 3 or ` ≡ 1 (mod 6).

Corollary

When ` = 3 or ` ≡ 1 (mod 6), the well-tempered retract for Tp
has, at τ2 = `,

I vertices that are 3-and-1 forms, for every prime p > `,

I vertices that are 3-and-3 forms, when p = `.



The Gaussian Integers
Other vertices of W̃ have two pairs of minimal vectors in L
and two pairs in M .
These are 2-and-2 forms, or doubly well-rounded lattices.

For example, the Gaussian integers give 2-and-2 forms
with 90◦ between the two minimal vectors in L
and 90◦ between the two in M .

Here the fine grid is L = Z[i].
The large grid is M = (−1 + 4i)L, where −1 + 4i has norm 17.



Fermat: a prime ` is the sum of two squares
iff ` = 2 or ` ≡ 1 (mod 4).

Since M as well as L has a basis of minimal vectors,
|α|2 must equal [L : M ]. Hence

Corollary

When ` = 2 or ` ≡ 1 (mod 4), the well-tempered retract for T`
has vertices that are 2-and-2 forms coming from Z[i]
at the middle temperament τ =

√
`.



Other 2-and-2 Forms
Even for small ` we see 2-and-2 forms not based on equilateral
triangles or squares.

Example

T11 at the middle temperament τ =
√

11.
The lattice vectors have coordinates in Q(

√
−35), with 35 = 5 · 7.



We knew something cool was going on
when we found a 2-and-2 form with non-integer τ2

and different angles on the two circles.

Example

` = 23. τ2 =
391

19
=

17 · 23

19
.

Vectors have coordinates in Q(
√
−1155), where 1155 = 3 · 5 · 7 · 11.



Review of Binary Quadratic Forms

Consider positive-definite quadratic forms for x, y ∈ Z,
ax2 + bxy + cy2 with a, b, c ∈ Z primitive (gcd 1).
Discriminant D = b2 − 4ac.
D < 0 throughout this talk.

Correspondence between forms and certain rank-2 lattices in C,

ax2 + bxy + cy2 ↔ Z

〈
1,
−b+

√
D

2a

〉
.

The lattice is a fractional ideal contained in K = Q(
√
D).



Let OK be the ring of integers of K, of discriminant dK < 0.
OK = Z[r].1

An order O ⊆ OK is a subring which contains 1 and has rank 2.

OK is the maximal order.
Every order is O = Z[fr] for an integer f > 1.
This O has discriminant D = f2dK . Conversely, D determines O.

For a rank-2 lattice L in K, the order for L is
the ring of all α ∈ K satisfying αL ⊆ L.
This ring is an order.
We say L has complex multiplication.

1r =
1+
√

dK
2

when dK ≡ 1 (mod 4). r =

√
dK
2

when dK ≡ 0 (mod 4).



The product of two lattices (fractional ideals) of K having order O
has the same order O.
(False in general for cubic and higher fields.)

If a lattice ⊆ its order O, define its norm to be its index in O.
These norms are multiplicative.

Say lattices L1, L2 are similar if L2 = αL1 for α ∈ K, α 6= 0.

Theorem (Lagrange, Legendre, Gauss): The similarity classes of
lattices in K having a given order O form a finite abelian group
under multiplication, the class group of O.

Our proofs sometimes use lattices, sometimes ax2 + bxy + cy2.
The form ax2 + bxy + cy2 for L has the same D as the order for L.
Quadratic forms are equivalent if they differ by an SL2(Z) change of coords.
Equivalent forms ↔ similar lattices. Class groups are ∼=.

See Appendix for more of the ax2 + bxy + cy2 perspective.



Well-Rounded Classes

Proposition

A lattice in K is well rounded iff every similar lattice is well
rounded.
In C, multiplication by α is a rotation times a homothety.

We change our thinking from well-rounded lattices
to well-rounded classes in the class group of an order O.



This and the next theorem are the heart of
our classification of 2-and-2 forms.

As before, M ⊂ L with prime index `.

Proposition

If M ⊂ L is a tempered 2-and-2 perfect form, then
L and M have the same order O.



Theorem
Fix a discriminant D < 0. Let O be the order of discriminant D.
Let C1, C2 be well-rounded classes in the class group of O.
Suppose there is a class L in which some lattice has norm ` in O.
Then there is a 2-and-2 form M ⊂ L in the well-tempered retract
for T` where the minimal vectors in L are a basis of a well-rounded
lattice of class C1, and the minimal vectors in M are a basis of a
well-rounded lattice of class C2.

τ2 = ` · norm(L)

norm(M)
.

Conversely, every 2-and-2 form arises in this way for some D.



Example of D = −1155
D belongs to the maximal order OK = Z[r] with r = 1+

√
−1155
2 .

K = Q(
√
−1155). Recall 1155 = 3 · 5 · 7 · 11.

The class group of OK is (Z/2Z)3. Draw it as a cube.

pp is a prime ideal of OK of prime norm p.
The ramified p3, p5, p7 generate the group (x, y, z axes).
In each of the eight classes, the pp with smallest p is shown.
Exactly two of the eight classes are well rounded, p17 and p19.
p17 · p23 ∼ p19. This explains page 22.



Idea
Each discriminant D defines a finite number (zero or more) of
“patterns” that a 2-and-2 vertex in W̃ can have.

For a given class C in the class group of O, there are infinitely
many primes ` such that C has an ideal of norm `.

Therefore each “pattern” will occur for infinitely many `.

Example of D = −1155
This D gives a 2-and-2 form iff p` is split and ∼ (1) or ∼ p23.
Z/1155Z has ϕ(1155) = 480 units. 240 give p` that split.
8 classes ⇒ 30 elements per class.
p` ∼ (1) (resp., p` ∼ p23) iff ` ≡ the following mod 1155:

1, 4, 16, 64, 169, 214, 256, 289, 331, 361, 379, 394, 421, 466, 499,

526, 529, 631, 676, 694, 709, 751, 841, 856, 949, 961, 991, 1024, 1054, 1114;

23, 53, 92, 113, 137, 158, 212, 218, 302, 317, 323, 368, 422, 443, 452,

533, 548, 617, 632, 653, 683, 848, 863, 872, 947, 977, 1037, 1082, 1103, 1142.



To compute T` for a given `, we need a finiteness theorem in the
converse direction.
We need to know that, for a given `, only finitely many patterns
can arise, and which ones.

This converse is another part of our main result.

Theorem
Given `, 2-and-2 vertices will appear in the well-tempered retract
for T` only for discriminants D with

|D| < 4`2.



In the cases we have seen so far, the ` have been determined by
congruences modulo D.

Genus theory (Lagrange) tells us there is a subgroup H, the
principal genus, of the class group G.

A prime ` - D is the norm of an element of a coset of G/H
iff ` satisfies a ≡ condition mod D.

When the principal genus is the union of two or more classes,
congruences mod D are not enough to determine which class
contains elements of norm `.
Instead, ` must satisfy higher-degree polynomial conditions mod D
derived from the Hilbert class field.

We see examples at D = −55, etc., where class group ∼= Z/4Z.



The Rule of Three

Proposition

The order O of discriminant D ≡ 1 (mod 4) has a well-rounded
class iff we can factor |D| = FG with F 6 G relatively prime and

G

F
6 3.

(There is a similar statement for D ≡ 0 (mod 4).)

This is why we encounter many |D| = pq with p, q primes near
each other: 35 = 5 · 7, 55 = 5 · 11, 15, 91, 143, 731, . . .

To get two well-rounded classes, factor |D| in two different ways:

1155 = 3 · 5 · 7 · 11 = 33 · 35︸ ︷︷ ︸
ratio 1.06

= 21 · 55︸ ︷︷ ︸
ratio 2.62

.



Appendix on Binary Quadratic Forms

ax2 + bxy + cy2 is reduced if

−a 6 b < a, c > a when b 6 0, c > a when b > 0.

Reduced forms satisfy |b| 6 a 6
√
−D/3,

so it is easy to enumerate them for small |D|.

Theorem (Lagrange, Gauss): every equivalence class of quadratic
forms contains a unique reduced form.



Lemma
A reduced form ax2 + bxy + cy2 is well rounded iff a = c.

a = c is the arc at the bottom of the fundamental domain.

b = 0 is the vertical line up the middle of the fundamental domain.

b = 1
2 is the vertical line up the right-hand boundary.



Proposition

A well-rounded class has order 1 or 2 in the class group.

Proof. A well-rounded lattice L has a Z-basis {v1, v2} of vectors of
equal length.
Let α = v1 + v2, the diagonal of the rhombus spanned by v1, v2.

Then α−1L = ♦ is symmetric under complex conjugation.
But complex conjugation is the inverse on the class group.


