Binary Quadratic Forms and Hecke Operators for $\mathrm{SL}_{2}(\mathbb{Z})$

Mark McConnell
Princeton University

October 13, 2021

Joint with Erik Bahnson and Kyrie McIntosh.

Background

Let \mathbf{G} be the algebraic group SL_{n} of a finite-dimensional division algebra D over \mathbb{Q}, possibly commutative. Let $G=\mathbf{G}(\mathbb{R})$.

In most of this talk, D will be \mathbb{Q},
so $G=\mathrm{SL}_{n}(\mathbb{R})$ as usual.
$X=G /($ maxl cpct $)=$ Riemannian symmetric space.
$\Gamma \subset G$ arithmetic subgroup.
$\Gamma \backslash X$ locally symmetric space.

A rational finite-dimensional representation of G gives a representation of Γ, hence a local system \mathcal{M} on $\Gamma \backslash X$. Will suppose \mathcal{M} satisfies integrality conditions so that Hecke operators are defined.

Goal
Compute the Hecke operators on $H^{*}(\Gamma \backslash X ; \mathcal{M})$.

Computations using the Well-Rounded Retract

Avner Ash and his collaborators have done such computations for $G=\mathrm{SL}_{3}(\mathbb{R})$ and $\mathrm{SL}_{4}(\mathbb{R})$ for a range of subgroups Γ and coefficient systems \mathcal{M}.

Compute a range of Hecke operators on the cohomology, identify Hecke eigenclasses, and identify Galois representations which match the Hecke data and therefore are (conjecturally) attached to the eigenclasses.

Ash-Gunnells-M. have a series of papers for SL_{4}.
Based on the well-rounded retract, which we now recall.

Consider \mathbb{R}^{n} with a positive-definite quadratic form. Lattice $L \subset \mathbb{R}^{n}$ of rank n.
Arithmetic minimum $m(L)=\min \{\|x\|: x \in L, x \neq 0\}$.
The minimal vectors of L are $\{x \in L:\|x\|=m(L)\}$.
L is well rounded if its minimal vectors span \mathbb{R}^{n}.
Let $W \subset X$ be the space of bases of well-rounded lattices.
Theorem (Ash, late 1970s)

- There is an $\mathrm{SL}_{n}(\mathbb{Z})$-equivariant deformation retraction $X \rightarrow W$. Call W the well-rounded retract.
- $\operatorname{dim} W=\operatorname{dim} X-(n-1)=\binom{n}{2}$, the virtual coh'l dim (vcd).
- W is a locally finite regular cell complex. Cells characterized by coords in \mathbb{Z}^{n} of their minimal vectors w.r.t. the basis.
- $\Gamma \backslash W$ is a finite cell complex.
W is dual to Voronoi's decomposition of X into polyhedral cones via perfect forms.
The vertices of the retract W are the perfect forms.
Ash [1984] generalizes this to $\mathbf{G}=\mathrm{SL}_{n}$ over any D.

The Ash-Rudolph algorithm computes the Hecke operators on H^{i} when $i=\operatorname{vcd}$.

An algorithm of Gunnells computes the Hecke operators on H^{i} for $i=\operatorname{vcd}-1$.

The Well-Tempered Retract

Robert MacPherson and I introduced an algorithm for Hecke operators on $H^{i}(\Gamma \backslash X ; \mathcal{M})$
for $\mathbf{G}=\mathrm{SL}_{n}$ for any n
over any finite-dimensional division algebra D over \mathbb{Q} and for all i.

This talk will take $G=\mathrm{SL}_{n}(\mathbb{R})$ and $\Gamma \subseteq \mathrm{SL}_{n}(\mathbb{Z})$, for simplicity.
I have working code for $\Gamma \subseteq \mathrm{SL}_{n}(\mathbb{Z})$ for $n=2,3,4$.
ArXiv paper, 2020, for general D. Case of $G=\mathrm{SL}_{n}(\mathbb{R})$ in Galt-M., Tbilisi Math. Journal.

Our algorithm uses the well-tempered retract, an extension of the well-rounded retract from [Ash 1984], which will be described on the next few slides.

Let ℓ be a prime. Let $k \in\{1, \ldots, n\} \quad \rightsquigarrow$ Hecke operator $T(\ell, k)$.
Consider $X \times[1, \ell]$. Second coordinate called τ, the temperament. In each slice of $X \times[1, \ell]$ for a given τ, we will perform a variant of the well-rounded retraction.

Let $L \subset \mathbb{R}^{n}$ be any lattice of rank n.
Take $M \subset L$, a sublattice with $L / M \cong(\mathbb{Z} / \ell \mathbb{Z})^{k}$.

Definition

$y \in L$ has tempered length $\left\{\begin{array}{cc}\tau \cdot\|y\| & \text { if } y \notin M \\ \|y\| & \text { if } y \in M .\end{array}\right.$
Do well-rounded retraction with this notion, in each τ-slice separately. Get $\tilde{W} \subset X \times[1, \ell]$, the well-tempered retract.

Let \tilde{W}_{τ} be the slice of \tilde{W} at τ.
\tilde{W}_{1} is the well-rounded retract.
\tilde{W}_{ℓ} is the well-rounded retract twisted by $\operatorname{diag}(1, \ldots, 1, \underbrace{\ell, \ldots, \ell}_{k})$.
\tilde{W} interpolates between \tilde{W}_{1}, which makes L well rounded, and \tilde{W}_{ℓ}, which makes M well rounded.

The Γ-action preserves the slices.

As τ goes from 1 to ℓ, there is a finite number of critical temperaments where the cell structure abruptly changes.

Movie of $T(5,1)$ for $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$.

Theorem

\tilde{W} is a locally finite regular cell complex of dim vcd +1 . Cells characterized by coords in \mathbb{Z}^{n} of their minimal vectors in both L and M together with intervals in $\tau . \Gamma \backslash \tilde{W}$ is a finite cell complex.

Let $\Gamma_{0}(\ell, k) \subset \mathrm{SL}_{n}(\mathbb{Z})$ be $\equiv\left[\begin{array}{c}* \\ 0 \\ { }_{*}^{*}\end{array}\right] \bmod \ell$, lower-right block $k \times k$.

Definition

The Hecke operator $T(\ell, k)$ is $p_{*} q^{*}$ on the cohomology of

$$
\begin{gathered}
\left(\Gamma \cap \Gamma_{0}(\ell, k)\right) \backslash \tilde{W} \\
p \downarrow \quad \downarrow q \\
\Gamma \backslash W
\end{gathered}
$$

p is the projection onto \tilde{W}_{1}.
q is the twisted projection onto \tilde{W}_{ℓ}.
$T(\ell, k)$ is computed by p_{*} on $\Gamma \backslash \tilde{W}_{1}$ on left, q^{*} on $\Gamma \backslash \tilde{W}_{\ell}$ on right.
Computation interpolates between these by the cells in the middle.

One approach to computing \tilde{W} is to compute a bounded subset of a polytope $\tilde{\Pi}$ dual to \tilde{W}, the Hecketope.
This is the Voronoi polyhedron (Ryskov polyhedron), adapted with one extra dimension for the temperament.

I used Sage's class Polyhedron over \mathbb{Q}.
But $\operatorname{dim} \tilde{\Pi}=n(n+1) / 2+1$ is big.
Must choose the bounds large enough to get all cells $\bmod \Gamma$.
Computation is delicate as ℓ grows, even for $n=3$.
Slow for $n=4$.

Goal for this project
Understand the cells of \tilde{W} intrinsically, without computing with $\tilde{\Pi}$.

Tempered Perfect Forms

It suffices to understand the vertices of \tilde{W}, because we can compute all other cells from them.
Given a set of vertices, take the intersection of their minimal vectors and check by linear algebra what kind of cell they determine (edge, 2-cell, ...).

Vertices occur only at critical temperaments.

Just as the vertices of the well-rounded retract are perfect forms, Definition
Vertices of the well-tempered retract are tempered perfect forms.

Proposition
A tempered perfect form has rational Gram matrix and rational τ^{2}.

Case of SL_{2}

For the rest of the talk, specialize to the classical case of $G=\mathrm{SL}_{2}(\mathbb{R})$.
$\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$ for simplicity.
$k=1$, so $M \subset L$ with index ℓ.
Hecke operators denoted $T_{\ell}=T(\ell, 1)$.

Result

We have a description of tempered perfect forms
in terms of binary quadratic forms
and their class field theory.

3-and-1 Forms, 3-and-3 Forms

Sometimes three vectors in L are minimal vectors.
Then we have a perfect form on L already.
The only perfect form for $n=2$ is for the hexagonal lattice,
Change coordinates so $L=\mathbb{Z}[\omega]$ with $\omega^{2}+\omega+1=0$.
At least one vector in M must also be tempered-minimal.
$\Rightarrow \tau^{2}$ must be the norm of some $\alpha \in \mathbb{Z}[\omega]$.
The norm $|a+b \omega|^{2}=a^{2}-a b+b^{2}$.
In the picture, $|3+2 \omega|^{2}=7$.

$\alpha=3+2 \omega$ of norm 7 gives rise to tempered perfect forms for T_{ℓ} for all $\ell \geqslant 7$.

Here is a vertex in the well-tempered retract for T_{11}. $L \cong \mathbb{Z}[\omega]$ is the lattice. M is a sublattice of index 11 .
It is a 3-and-1 form: 3 pairs of minimal vectors in $L, 1$ pair in M.
τ is always the ratio of the radii of the circles. Here $\tau=\sqrt{7}$.

When $|\alpha|^{2}$ happens to $=\ell$, we get a 3 -and- 3 form:
3 pairs of minimal vectors in $L, 3$ pairs in M, at the middle critical temperament $\tau=\sqrt{\ell}$, the geometric mean $\sqrt{\ell} \in[1, \ell]$.

Example for $\alpha=3+2 \omega$ and T_{7} :

A prime ℓ is the norm of an element of $\mathbb{Z}[\omega]$ iff $\ell=3$ or $\ell \equiv 1(\bmod 6)$.

Corollary
When $\ell=3$ or $\ell \equiv 1(\bmod 6)$, the well-tempered retract for T_{p} has, at $\tau^{2}=\ell$,

- vertices that are 3-and-1 forms, for every prime $p>\ell$,
- vertices that are 3 -and-3 forms, when $p=\ell$.

The Gaussian Integers

Other vertices of \tilde{W} have two pairs of minimal vectors in L and two pairs in M.
These are 2-and-2 forms, or doubly well-rounded lattices.

For example, the Gaussian integers give 2-and-2 forms with 90° between the two minimal vectors in L and 90° between the two in M.

Here the fine grid is $L=\mathbb{Z}[i]$.
The large grid is $M=(-1+4 i) L$, where $-1+4 i$ has norm 17 .

Fermat: a prime ℓ is the sum of two squares iff $\ell=2$ or $\ell \equiv 1(\bmod 4)$.

Since M as well as L has a basis of minimal vectors, $|\alpha|^{2}$ must equal $[L: M]$. Hence

Corollary

When $\ell=2$ or $\ell \equiv 1(\bmod 4)$, the well-tempered retract for T_{ℓ} has vertices that are 2 -and- 2 forms coming from $\mathbb{Z}[i]$ at the middle temperament $\tau=\sqrt{\ell}$.

Other 2-and-2 Forms

Even for small ℓ we see 2 -and- 2 forms not based on equilateral triangles or squares.
Example
T_{11} at the middle temperament $\tau=\sqrt{11}$.
The lattice vectors have coordinates in $\mathbb{Q}(\sqrt{-35})$, with $35=5 \cdot 7$.

We knew something cool was going on when we found a 2 -and- 2 form with non-integer τ^{2} and different angles on the two circles.
Example
$\ell=23 . \tau^{2}=\frac{391}{19}=\frac{17 \cdot 23}{19}$.
Vectors have coordinates in $\mathbb{Q}(\sqrt{-1155})$, where $1155=3 \cdot 5 \cdot 7 \cdot 11$.

Review of Binary Quadratic Forms

Consider positive-definite quadratic forms for $x, y \in \mathbb{Z}$, $a x^{2}+b x y+c y^{2}$ with $a, b, c \in \mathbb{Z}$ primitive $(\operatorname{gcd} 1)$.
Discriminant $D=b^{2}-4 a c$.
$D<0$ throughout this talk.
Correspondence between forms and certain rank-2 lattices in \mathbb{C},

$$
a x^{2}+b x y+c y^{2} \quad \leftrightarrow \quad \mathbb{Z}\left\langle 1, \frac{-b+\sqrt{D}}{2 a}\right\rangle
$$

The lattice is a fractional ideal contained in $K=\mathbb{Q}(\sqrt{D})$.

Let \mathcal{O}_{K} be the ring of integers of K, of discriminant $d_{K}<0$.
$\mathcal{O}_{K}=\mathbb{Z}[r] .{ }^{1}$
An order $\mathcal{O} \subseteq \mathcal{O}_{K}$ is a subring which contains 1 and has rank 2 .
\mathcal{O}_{K} is the maximal order.
Every order is $\mathcal{O}=\mathbb{Z}[f r]$ for an integer $f \geqslant 1$.
This \mathcal{O} has discriminant $D=f^{2} d_{K}$. Conversely, D determines \mathcal{O}.
For a rank-2 lattice L in K, the order for L is the ring of all $\alpha \in K$ satisfying $\alpha L \subseteq L$.
This ring is an order.
We say L has complex multiplication.

$$
{ }^{1} r=\frac{1+\sqrt{d_{K}}}{2} \text { when } d_{K} \equiv 1(\bmod 4) . r=\frac{\sqrt{d_{K}}}{2} \text { when } d_{K} \equiv 0(\bmod \equiv 4) .
$$

The product of two lattices (fractional ideals) of K having order \mathcal{O} has the same order \mathcal{O}.
(False in general for cubic and higher fields.)
If a lattice \subseteq its order \mathcal{O}, define its norm to be its index in \mathcal{O}.
These norms are multiplicative.
Say lattices L_{1}, L_{2} are similar if $L_{2}=\alpha L_{1}$ for $\alpha \in K, \alpha \neq 0$.

Theorem (Lagrange, Legendre, Gauss): The similarity classes of lattices in K having a given order \mathcal{O} form a finite abelian group under multiplication, the class group of \mathcal{O}.

Our proofs sometimes use lattices, sometimes $a x^{2}+b x y+c y^{2}$. The form $a x^{2}+b x y+c y^{2}$ for L has the same D as the order for L.
Quadratic forms are equivalent if they differ by an $\mathrm{SL}_{2}(\mathbb{Z})$ change of coords. Equivalent forms \leftrightarrow similar lattices. Class groups are \cong.
See Appendix for more of the $a x^{2}+b x y+c y^{2}$ perspective.

Well-Rounded Classes

Proposition

A lattice in K is well rounded iff every similar lattice is well rounded.
In \mathbb{C}, multiplication by α is a rotation times a homothety.

We change our thinking from well-rounded lattices to well-rounded classes in the class group of an order \mathcal{O}.

This and the next theorem are the heart of our classification of 2-and-2 forms.

As before, $M \subset L$ with prime index ℓ.
Proposition
If $M \subset L$ is a tempered 2 -and- 2 perfect form, then
L and M have the same order \mathcal{O}.

Theorem

Fix a discriminant $D<0$. Let \mathcal{O} be the order of discriminant D. Let $\mathcal{C}_{1}, \mathcal{C}_{2}$ be well-rounded classes in the class group of \mathcal{O}.
Suppose there is a class \mathcal{L} in which some lattice has norm ℓ in \mathcal{O}. Then there is a 2-and-2 form $M \subset L$ in the well-tempered retract for T_{ℓ} where the minimal vectors in L are a basis of a well-rounded lattice of class \mathcal{C}_{1}, and the minimal vectors in M are a basis of a well-rounded lattice of class \mathcal{C}_{2}.

$$
\tau^{2}=\ell \cdot \frac{\operatorname{norm}(L)}{\operatorname{norm}(M)}
$$

Conversely, every 2-and-2 form arises in this way for some D.

Example of $D=-1155$
D belongs to the maximal order $\mathcal{O}_{K}=\mathbb{Z}[r]$ with $r=\frac{1+\sqrt{-1155}}{2}$. $K=\mathbb{Q}(\sqrt{-1155})$. Recall $1155=3 \cdot 5 \cdot 7 \cdot 11$.
The class group of \mathcal{O}_{K} is $(\mathbb{Z} / 2 \mathbb{Z})^{3}$. Draw it as a cube.

\mathfrak{p}_{p} is a prime ideal of \mathcal{O}_{K} of prime norm p.
The ramified $\mathfrak{p}_{3}, \mathfrak{p}_{5}, \mathfrak{p}_{7}$ generate the group (x, y, z axes).
In each of the eight classes, the \mathfrak{p}_{p} with smallest p is shown.
Exactly two of the eight classes are well rounded, \mathfrak{p}_{17} and \mathfrak{p}_{19}.
$\mathfrak{p}_{17} \cdot \mathfrak{p}_{23} \sim \mathfrak{p}_{19}$. This explains page 22.

Idea

Each discriminant D defines a finite number (zero or more) of "patterns" that a 2 -and- 2 vertex in \tilde{W} can have.

For a given class \mathcal{C} in the class group of \mathcal{O}, there are infinitely many primes ℓ such that \mathcal{C} has an ideal of norm ℓ.

Therefore each "pattern" will occur for infinitely many ℓ.

Example of $D=-1155$

This D gives a 2-and-2 form iff \mathfrak{p}_{ℓ} is split and $\sim(1)$ or $\sim \mathfrak{p}_{23}$. $\mathbb{Z} / 1155 \mathbb{Z}$ has $\varphi(1155)=480$ units. 240 give \mathfrak{p}_{ℓ} that split. 8 classes $\Rightarrow 30$ elements per class. $\mathfrak{p}_{\ell} \sim(1)$ (resp., $\mathfrak{p}_{\ell} \sim \mathfrak{p}_{23}$) iff $\ell \equiv$ the following mod 1155 :
$1,4,16,64,169,214,256,289,331,361,379,394,421,466,499$, $526,529,631,676,694,709,751,841,856,949,961,991,1024,1054,1114 ;$
$23,53,92,113,137,158,212,218,302,317,323,368,422,443,452$,
$533,548,617,632,653,683,848,863,872,947,977,1037,1082,1103,1142$.

To compute T_{ℓ} for a given ℓ, we need a finiteness theorem in the converse direction.
We need to know that, for a given ℓ, only finitely many patterns can arise, and which ones.

This converse is another part of our main result.
Theorem
Given $\ell, 2-a n d-2$ vertices will appear in the well-tempered retract for T_{ℓ} only for discriminants D with

$$
|D|<4 \ell^{2}
$$

In the cases we have seen so far, the ℓ have been determined by congruences modulo D.

Genus theory (Lagrange) tells us there is a subgroup \mathcal{H}, the principal genus, of the class group \mathcal{G}.

A prime $\ell \nmid D$ is the norm of an element of a coset of $\mathcal{G} / \mathcal{H}$ iff ℓ satisfies $a \equiv$ condition $\bmod D$.

When the principal genus is the union of two or more classes, congruences mod D are not enough to determine which class contains elements of norm ℓ.
Instead, ℓ must satisfy higher-degree polynomial conditions mod D derived from the Hilbert class field.

We see examples at $D=-55$, etc., where class group $\cong \mathbb{Z} / 4 \mathbb{Z}$.

The Rule of Three

Proposition

The order \mathcal{O} of discriminant $D \equiv 1(\bmod 4)$ has a well-rounded class iff we can factor $|D|=F G$ with $F \leqslant G$ relatively prime and

$$
\frac{G}{F} \leqslant 3
$$

(There is a similar statement for $D \equiv 0(\bmod 4)$.)

This is why we encounter many $|D|=p q$ with p, q primes near each other: $35=5 \cdot 7,55=5 \cdot 11,15,91,143,731, \ldots$

To get two well-rounded classes, factor $|D|$ in two different ways:

$$
1155=3 \cdot 5 \cdot 7 \cdot 11=\underbrace{33 \cdot 35}_{\text {ratio } 1.06}=\underbrace{21 \cdot 55}_{\text {ratio } 2.62} .
$$

Appendix on Binary Quadratic Forms

$a x^{2}+b x y+c y^{2}$ is reduced if

$$
-a \leqslant b<a, \quad c \geqslant a \text { when } b \leqslant 0, \quad c>a \text { when } b>0 .
$$

Reduced forms satisfy $|b| \leqslant a \leqslant \sqrt{-D / 3}$, so it is easy to enumerate them for small $|D|$.

Theorem (Lagrange, Gauss): every equivalence class of quadratic forms contains a unique reduced form.

Lemma

A reduced form $a x^{2}+b x y+c y^{2}$ is well rounded iff $a=c$.

$a=c$ is the arc at the bottom of the fundamental domain.
$b=0$ is the vertical line up the middle of the fundamental domain.
$b=\frac{1}{2}$ is the vertical line up the right-hand boundary.

Proposition

A well-rounded class has order 1 or 2 in the class group.
Proof. A well-rounded lattice L has a \mathbb{Z}-basis $\left\{v_{1}, v_{2}\right\}$ of vectors of equal length.
Let $\alpha=v_{1}+v_{2}$, the diagonal of the rhombus spanned by v_{1}, v_{2}.

Then $\alpha^{-1} L=\diamond$ is symmetric under complex conjugation. But complex conjugation is the inverse on the class group.

