
permutalib/polyhedral: Advanced methods
for lattice and group computations

Mathieu Dutour Sikirić

October 8, 2021



Introduction

I Over many years, I have worked on polyhedral computation
using symmetries.

I The fields considered are lattice theory, optimization,
topology, group theory, number theory.

I Most of the computations were done using GAP, but GAP
has several limitations (slowness, large memory usage,
threading limitation).

I Thus I decided to rewrite most of what I need in C++:
I The code is completely available on github and I contribute

daily to it.
I It is Open Source and everyone can contribute.
I Installations issues are addressed with dockerfile which allow

easy installs.

https://github.com/MathieuDutSik/permutalib

https://github.com/MathieuDutSik/polyhedral_common

https://hub.docker.com/r/mathieuds/polyhedralcpp

https://github.com/MathieuDutSik/permutalib
https://github.com/MathieuDutSik/polyhedral_common
https://hub.docker.com/r/mathieuds/polyhedralcpp


Why C++?

C++ is well suited for high performance mathematical parallel
computation

I The language has improved a lot since previous standards.

I Since C++11, there has been a strong push for making it
simpler.

I Extremely fast computation are possible.

I Functional programming is partially possible with
std::function.

I Many parallelization techniques are available (Threads,
multiprocess, distributed, etc.)

I Templates allow to write abstract code and have tight
abstrations, which is a very mathematical thing.

Interfacing with C, Python, Rust, Julia, Java is possible if the
need arise.



I. Permutation

Group Library



permutalib design goals
I For general groups, we have some algorithms but in general

groups can be very wild. When algorithms exist, they
invariably depend on some finite group subcalls.

I For finite groups, what we have is permutation groups and
this is where we can effectively decide. GAP has
implementation of most functionality we may need.

I Reimplementing all GAP permutation group algorithm is not
needed.

I What we need for applications:
I Computing the stabilizer of a set under a permutation group.
I Testing if two sets are equivalent under a permutation group.
I Finding the canonical form of the action of a group on sets.
I Iterating over the all group elements.

I All of the above have been implemented in C++ based on
GAP code and the result is 10 to 100 times faster than GAP.

I There are other code by Christopher Jefferson (Vole) that
provides functionality in Rust.



Orbit splitting and double cosets

I If we have an orbit xG for a group G , we often want to split
the orbits for a subgroup H.

I We compute a double coset decomposition with Gx the
stabilizer of x in G .

G = Gxg1H∪ . . .∪GxgpH and xG = ∪jxgjH

I So we need DoubleCoset decomposition:
I A partial non-optimal solution is available by using the

canonical form.
I Implementing the GAP algorithm requires much more to be

implemented: Centre, Centralizer, Normalizer/Conjugator,
RightCosets, AscendingChain, etc.

I There are heuristic questions to be considered. Does it make
sense to store the double cosets? What about building the full
orbit and then splitting it?



II. Graph algorithms

and Canonical Form



Partition backtrack graph software

I Given a graph G the problem is to find the automorphism
group of this graph.

I There are software based on Partition-Backtrack that allows
to make this computation really fast.

I The field was started with nauty by Brendan McKay (around
10000 users) which is the first really fast program for such
computation

I Better software is now Traces which is 10 times faster.

I We also have isomorphism check.

I The focus on graphs is because we can reduce almost all
combinatorial structures to a graphical one (Edge weighted
graphs, hypergraphs, cellular complexes, etc.)



Canonical form of graphs

I The partition backtrack programs such as Traces also
compute a canonical form of the graph.

I In many cases (but not all), this allows to find a canonical
form for the original object considered.

I This is useful for many reasons:
I This allows to dispense from invariants.
I Isomorphism tests becomes very easy.
I We can compute the hash of an object.
I From the hash we get easy partitioning of object class.
I We can use standard data structures such as

std::unordered set which have very good performance
guarantees.

I Traces does not provide isomorphism check but instead
provides a canonical form computation that can then be
compared for equality.



III. Canonical form

of polytopes and lattices



Linear symmetry groups of a polyhedral cone

I Suppose C is a full-dimensional polyhedral cone generated by
vectors (v1)1≤i≤N in Rn.

I The linear symmetry group Lin(C ) is the group of
transformations σ ∈ Sym(N) such that there exist
A ∈ GLn(R) with Avi = vσ(i) (There are other groups related
to polyhedral cones)

I Define the form

Q =
N∑
i=1

tvivi

I Define the edge colored graph E (C ) on N vertices with vertex
and edge color

cij = viQ
−1tvj

I The automorphism group of the edge colored graph is Lin(C ).



Canonical form of a polyhedral cone, polytope

I By duplicating the colors of E (C ), we can reduce the vertex
and edge colored graph to a classic graph Cl(E (C )) on which
we can apply Traces.

I This allows to compute the automorphism group of the
polyhedral cone and to compute the isomorphsim of
polyhedral cones.

I For the canonical form one has to work harder:
I First from the canonical form of the vertices of G (E (C )), we

can get a canonical ordering of the vertices of E (C ).
I From the canonical ordering of the vectors (vi )1≤i≤N we can

get a standard basis B.
I We express the vectors vi in the basis B and this gets us

Can((vi )1≤i≤N)

I The form is canonical, that is
Can((vi )1≤i≤N) = Can((Avσ(i))1≤i≤N).

I The strategy works effectively up to 30000 vertices.



Accelerating the computation

I There are 3 ways to accelerate the computation:
I We can determine some subset of the vertices that will be

preserved. Then compute the automorphism group of this
subset and check if all symmetries will preserve the full
polyhedral cone.

I Another idea is to map the colors to another set of colors.
Again check if it works.

I Yet another idea is to compute for a subset and if the group is
larger to compute the stabilizer of the subset of the remaining
points.

I By using the first strategy, we can get to 100000 vertices.

I All such strategies allow to find a canonical form and compute
the automorphism group.



Canonical form of lattices

I For a positive definite quadratic form A and x ∈ Zn, define
A[x ] = xAxT . For λ > 0 we define

Minλ(A) = {x ∈ Zn s.t. A[x ] ≤ λ}

I Define λmin the minimum λ such that Minλ is full dimensional
and span Zn.

I We define an edge weighted graph on Minλmin
= {v1, . . . , vN}

and wij = viAvT
j .

I This allows to obtain an ordering of Minλmin
.

I We apply the Hermite Normal Form in order to obtain a
canonical form for Minλmin

and thus the matrix A.

I This is in many case faster than Minkowski reduction.



Integral linear groups

I Given a polytope P, we want to compute the integral
symmetry group, that is LinZ(P).

I If P is spanned by (vi )1≤i≤m define L′ = Zv1 + · · ·+ Zvm. If
vi ∈ Zn then L′ ⊂ L = Zn.

I Define d the smallest integer such that L′ ⊂ L ⊂ 1
d L′.

I We compute G = Lin(P). The group G becomes embedded
in GLn(Zd) and L corresponds to a subset of (Zd)n.

I Thus the integral stabilizer becomes a problem of solving the
set stabilizer.

I Similarly works for the isomorphism and canonical form
(TODO).



IV. Dual description

and face enumeration



Dual description problem

I Given a polytope P defined by vertices we want to find its
facets

I The problem of going from the facets to the vertices is
equivalent to this one by duality.

I The dual description problem is useful for many different kind
of computations: Delaunay polytopes, perfect form, etc.

I Typically, the polytopes of interest are the one with a large
symmetry group. We do not want the full set of facets, just
representatives.

I n-dimensional Hypercube has 2n facets but 2n vertices.
Combinatorial explosion is to be expected in general.



The adjacency decomposition method

Input: The vertex-set of a polytope P and a group G acting on P.
Output: O, the orbits of facets of P.

I Compute some initial facet F (by linear programming) and
insert the corresponding orbit into O as undone.

I For every undone orbit O of facet:
I Take a representative F of O.
I Find the ridges contained in F , i.e. the facets of the facet F

(this is a dual description computation).
I For every ridge R, find the corresponding adjacent facet F ′

such that R = F ∩ F ′.
I For every adjacent facet found test if the corresponding orbit is

already present in O. If no insert it as undone.
I Mark the orbit O as done.

I Terminate when all orbits are done.

Reinvented many times (D. Jaquet 1993, T. Christof and G.
Reinelt 1996).



The recursive adjacency method

In most cases the orbits of maximum incidence also have the
highest symmetry and are the most difficult to compute.

I The computation of adjacent facets is a dual-description
computation.

I So, the idea is to apply the Adjacency Decomposition method
to those orbits as well.

I Based on information on the symmetry group, the incidence
and the depth, we decide if we should spawn the adjacency
method at a deeper level or apply directly cdd/ppl/lrs.

Issues:

I The number of cases to consider can grow dramatically.

I If one takes the stabilizer of a face, then the size of the groups
involved may be too small to be efficient.



Program comparisons
Templatized code taking any coefficient type:
I lrs (T ring): it iterates over all admissible basis in the simplex

algorithm of linear programming
I It is a tree search, no memory limitation, easy to parallelize.
I Ideal if the polytope has a lot of vertices.

I cdd (T field): it adds inequalities one after the other and
maintain the double description throughout the computation
I All vertices and facets are stored, memory limited, hard to

parallelize.
I Good performance if the polytope has degenerate vertices.

External program accessible from the code:
I pd (rational): We have a partial list of vertices, we compute

the facets with lrs. If it does not coincide with LF then we
can generate a missed vertex by linear programming.
I It is a recommended method if there are less vertices than

facets.
I Bad performance for general polytopes.

I lrs/cdd/ppl (rational) Classical programs accessible from
polyhedral common.



Banking methods (or memoization)

I When one applies the Recursive Adjacency decomposition
method, one needs to compute the dual description of faces.

I Some dual description may occur several times.
I The idea is to store the dual description of faces and when a

dual description is needed to see if it has been already done.
This is an ideal case for std::unordered map. Still not
without problem:
I Need heuristic for when to decide to store or not.
I Need heuristic when to check the sorage system or not.
I Do we store for the full symmetry group or for the group that

we had encountered?
I We implement this either as a class or a client-server for

multiprocessor cases.



Performance

I The cut polytope CUTn is a classic polytope in combinatorial
optimization. It has 2n vertices, dimension n(n−1)

2 and 2nn!
symmetries.

I The last instance that can be computed easily on computer is
CUT8.
I With the old GAP code: 2 days
I With the GAP code using canonicalization: 90 minutes
I With the newest C++ code: 39 minutes.
I On a recent laptop: 19 minutes.

I Most of the runtime is in the group library.

I For storing 2.108 facets the memory expense was 8G which is
reasonable.



Face lattice computations

I Given a polytope of dimension d given by N vertices, we are
interested in the faces of this polytope.

I The vertices are the faces of dimension 0 and the facets the
faces of dimension d − 1.

I For a d-dimensional simplex the number of faces of dimension
i is

(d+1
i+1

)
.

I Two different scenarios:
I We are only interested in the faces of small dimension k (say

k = 1, 2, 3, . . . ). Then we can use linear programming and
essentially we are limited only by the combinatorial explosion
in those dimensions.

I We want all dimensions. This includes the facets of course.
Thus first step is to compute the facets and then to use the
linear algebra (faster than linear programming) for deciding if a
set is a facet. Much more intensive.

I The spanned faces are first canonicalized and then inserted
into an unordered set.



V. Iso-edge domains

in dimension six



Iso-edge domains

I The notion of C -types is a weakening of the notion of L-types
in geometry of numbers where instead of taking into accounts
all the faces of a Delaunay polytope, we use only the edges.

I The iso-edge domains form a tesselation of the cone Sn
>0 of

positive definite quadratic forms.

I The iso-edge domain is encoded by a family of 2(2n − 1)
vectors.

I From this family of vectors, we can obtain the defining
inequalities of the iso-edge domains.

I More details on
I Mathieu Dutour Sikirić, Mario Kummer, Iso Edge domains, to

appear in Expositiones Mathematicae arxiv:2102.11139



Enumeration in dimension six

I We need to enumerate configurations of 63 vectors in
dimension six.

I We use the canonical form of such cones:
I This allows to assign the iso-edge domains to one of the

20-processors canonically.
I This allows to use hash tables.

I For the canonical form, instead of using the weight

wij = viAvT
j we use wij =

∣∣∣viAvT
j

∣∣∣. This reduce the graph to

2n − 1 vertices. We have to keep in mind that this may not
work but we can handle failure cases gracefully.

I For the determination of possible switching to an adjacent
domain, we use a nontrivial condition in dimension 3 to
reduce the number of cases.

I Cdd was used for eliminating non-redundant inequality and we
solved a bug in Clarkson method while doing so.

I It took 7 days on 20 processors and we got 55083358 types.



VI. Last points



Other functionalities

I The code for copositive programming is part of it src copos.

I The implementation of Vinberg algorithm for computing the
fundamental domain of hyperbolic Coxeter groups is
src vinberg

I The code for computing shortest vector configurations is in
src short

I The sparse solver using Approximate Message Passing is in
src sparse solver

I There is also code for enumerating Delaunay polytopes in
lattice as well as computing perfect forms.

I A lot of the work is motivated by the objective of computing
the perfect forms in dimension 9, but this is still a work in
progress.


