A Few additional examples
The purpose of this handout is to give a few more examples of the guiding principle mentioned in the talk.
(1) Let $m_{3,3}:=\left\{\begin{array}{l}\text { smooth cubic } \\ \text { surfaces } s \subseteq \mathbb{R}^{3}\end{array}\right\} \cong \mathbb{P}^{19}-\Sigma_{\text {sing }}$

Let $\widetilde{m}_{3,3}:=\left\{(S, L): S\left\{m_{3,3}\right.\right.$, LeS $\left.\frac{\text { line }}{\uparrow}\right\}$
Cayle-1, C. Jordan: $\tilde{m}_{3,3}$
is a 27-shated coves, with monodromy

$$
\rho: \pi_{1} m_{3,3} \rightarrow W\left(E_{6}\right) \subset S_{27}
$$

Thy (Huxfar 2021, conj. by Forb): The
homomorphism $\rho$ is unique up to Conjugacy.

Let $\mathbb{C}_{s}(1,3):=$ Projective Grassmamian of lines in $\mathbb{P}^{3}$

UConfn $(X):=\{$ unorderesed n-tuples of distinct points in $X$ \}

The above gives a morphism

$$
\Psi: M_{3,3} \longrightarrow \operatorname{Lconf}_{27}(\operatorname{Gr}(1,3))
$$

Guiding Principle gives: $\forall m \geq 1$

$$
\text { If } F: m_{3,3} \rightarrow U \operatorname{conf}_{m}(G(1,3))
$$

is "nontrivial" then $m=27$ and $F \sim \Psi$.
If in addition $F$ is holomorphic then $F=\Psi$.

For generic $S \subset m_{3,3}$,

$$
\mid\left\{L_{i} \cap L_{j}: L_{i} \neq L_{j} \text { links in } S\right\} \mid=135
$$

(only generic since J"Eckhardt Points")

$\leadsto 3$ rational section os of

$$
\begin{aligned}
u_{\operatorname{conf}}^{13 S} \text { }(S) \rightarrow & E_{13 S} \\
& \pi\rceil_{3,3} \sigma \\
& m_{3}
\end{aligned}
$$

Guiding Principle: $\sigma$ should be only rational n-multisection.
(2) Guiding principle \#2: Any" exceptional homomorphism" of finite groups is modular: it can be explained by a map of moduli Spaces.

Example \#1: $S_{4} \rightarrow S_{3}$ explained by

$$
\begin{aligned}
& \underset{\mathrm{Poly}_{4}}{\xrightarrow{\text { Fer }} \mathrm{Poly}_{3}} \\
& S_{4} \downarrow \quad S_{3} \\
& \mathrm{POl}_{4} \xrightarrow[\text { Fer }]{\longrightarrow} \mathrm{Poly}_{3}
\end{aligned}
$$

Example \#2: $S_{6} \cong S P_{4} \mathbb{F}_{2}$ explained by

$$
\begin{aligned}
& M_{0,6} \cong M_{2}[2] \cong \mathrm{H}_{2}[2] \\
& S_{6} \downarrow \downarrow M_{0} \downarrow \mathrm{~S}_{4} \mathbb{F}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& R\left(\left\{P_{1}, \ldots, P_{6}\right\}\right):=2 \text {-shaetes cover } X \rightarrow \mathbb{P}^{\prime} \text { branched } \\
& \text { moves }\left\{P, \ldots, P_{6}\right\} \\
& m_{2}[2]=\left\{(x, \beta): X \varepsilon m_{2}, \beta \text { bo-sis for } H_{1}\left(X ; F_{2}\right)\right\}
\end{aligned}
$$

$\exists$ many more such examples, es.

$$
W\left(E_{6}\right)^{+} \cong P S P_{4}\left(\mathbb{F}_{3}\right)
$$

See Farb-Kisin-wolfson, "Modular Functions and resolvent Problems" for more examples.
(3) A remarkable map:

Given. $S:=$ smooth cubic surface in $\mathbb{P}^{3}$

$$
\text { - } P \varepsilon S \backslash\left\{L_{1}, \ldots, L_{27}\right\}
$$

I 2-shected cover $B l_{p}(S)$ exc.
branched over a smooth quartic
$\pi \downarrow$

$$
\mathbb{P}^{2} \supset Q
$$

$\pi$ is:

$$
\pi(m)= \begin{cases}\operatorname{lin} u \overline{P_{m}} & m \notin e \\ {[m]} & m \varepsilon e\end{cases}
$$

Fact: $\begin{array}{r}\{28 \text { bitangents to } Q\}= \\ \pi\left(\left\{L_{1}, \ldots, L_{27}\right\} \text { on } S\right) \cup \pi(e)\end{array}$
Let $S \rightarrow E_{3,3}:=\left\{(S, P): S\left\{m_{3,3}, p_{4} S\right\}\right.$ $\stackrel{\downarrow}{m_{3,3}}$
Let $m_{4,2}=\left\{\right.$ smooth quartic Curves in $\left.\mathbb{P}^{2}\right\}$ $-5-$

The above gives a dominant rational map $\Psi: U_{3,3} \cdots\left\{(Q, T): Q \varepsilon M_{4,2}, T\right.$ is bitangnt $\}$

$$
\bigsqcup_{m_{4,2}}^{28}
$$



Exercise: Apply Guicling Principle to Is to give conjectures on holomorphic and topological rigidity.
(4) Many classical moduli spaces m locally symmetric Varieties, ie.

$$
\begin{aligned}
& M=\Gamma^{K / K} \quad G=\begin{aligned}
\text { real Semisimply } \\
\text { group of Hermitian }
\end{aligned} \\
& \text { group of Hermitian } \\
& \text { type } \\
& K=\max \text { compact } \\
& \text { Subgroup of } G \\
& \Gamma=\text { arithmetic lattice } \\
& \text { in } G
\end{aligned}
$$

and the tripe of rigidity conjectwes I've been giving can be proved using Margulis

Super rigidity, Congruence subgroup property,

