A Visual Introduction to Geometric Data Analysis

Henry Adams and Lara Kassab
Geometry: Education, Art, and Research Banff International Research Station, Feb 19-21, 2021

Artificial Intelligence

People telling me AI is going to destroy the world

My neural network

Artificial Intelligence

INCS, IT CAN BE HARD TO EXPLAIN THE DIfFERENCE BETWEEN THE EASY AND THE VIRTUAUCY IMPOSSIBLE.

High-Dimensional Data

High-Dimensional Data

High-Dimensional Data

High-Dimensional Data

Example: Diabetes study
145 points in 5-dimensional space

An attempt to define the nature of chemical diabetes using a multidimensional analysis by G. M. Reaven and R. G. Miller, 1979

A Visual Introduction to Classic Machine Learning

A Visual Introduction to Classic Machine Learning

https://vas3k.com/blog/machine_learning/

Unsupervised Learning

Unsupervised Learning

Clustering

K-means Clustering

K-means Clustering

K-means Clustering

K-means Clustering

K-means Clustering

Let's try again with different initial centers.

K-means Clustering

K-means Clustering

K-means Clustering

K-means Clustering

K-means Clustering

K-means Clustering

Single - linkage Clustering

Single - linkage Clustering
Nitation

Single - linkage Clustering

Single - linkage Clustering

Single - linkage Clustering

Single - linkage Clustering

Single - linkage Clustering

Single - linkage Clustering

Single - linkage Clustering

Single - linkage Clustering

Single - linkage Clustering

Single - linkage Clustering

Single - linkage Clustering

Single - linkage Clustering

${ }^{-}$

Single - linkage Clustering

Single - linkage Clustering

\bullet

Single - linkage Clustering

Single - linkage Clustering

Single - linkage Clustering

Dimensionality Reduction

Dimensionality Reduction

Principal Component Analysis

Faces Images Dataset

Faces Images Dataset
$112 \times 92=10304$ dimensions

Reconstructed from 111 dimensions.

Isomap

Images by Terenbaum, de Silva, Langford

Isomap

Images by Terenbaum, de Silva, Langford

Isomap

A

Images by Tenenbaum, de Silva, Langford

Isomap

Images by Tenenbaum, de Silva, Langford

Isomap

Images by Tenenbaum, de Silva, Langford

Topic Modeling

Topic Modeling

team runs

Topic Modeling

Topic Modeling

Collection of documents

Word - frequency representation

Topic Modeling
Topic Keywords (word clouds!)

Faces Images Dataset

Actual Image

NMF Reconstructed Image

Faces Images Dataset

$$
112 \times 92=10304 \text { dimensions }
$$

Reconstructed from 111 alimensions.

Supervised Learning

Classification

Classification

Decision Trees

Decision Trees

Decision Trees

Decision Trees

Decision Trees

Decision Trees

Decision Trees

Decision Trees

Decision Trees

Decision Trees

Decision Trees

K-nearest Neighbors

Support Vector Machines (SVM)

Support Vector Machines (SVM)

Support Vector Machines (SVM)

Support Vector Machines (SVM)

Support Vector Machines (SVM)

Support Vector Machines (SVM)

Support Vector Machines (SVM)

Support Vector Machines (SVM)

Support Vector Machines (SVM)

Support Vector Machines (SVM)

Support Vector Machines (SVM)

Support Vector Machines (SVM)

Support Vector Machines (SVM)

Support Vector Machines (SVM)

Support Vector Machines (SVM) $\because \because \cdot$

Support Vector Machines (SVM)

Al and Art

Style Trasfer (Generative Adversarial Networhs)

https://softologyblog.wordpress.com/2019/03/31/style-transfer-gans-generative-adversarialnetworks/
https://github.com/cysmith/neural-style-tf
https://deepart.io/

Thank you for attending!

