Difference equations over fields of elliptic functions

Ehud de Shalit

Hebrew University, Jerusalem

November 6, 2020

《曰》 《聞》 《臣》 《臣》 三臣

The conjecture of Loxton and van der Poorten

• $K = \bigcup_{s \in \mathbb{N}} \mathbb{C}(x^{1/s}), \ \widehat{K} = \bigcup_{s \in \mathbb{N}} \mathbb{C}((x^{1/s}))$ (Puiseux power series)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• $\sigma, \tau \in Aut(K)$: $\sigma(x) = x^p, \tau(x) = x^q \ (p,q \in \mathbb{N})$ multiplicatively independent), extended to \widehat{K}

The conjecture of Loxton and van der Poorten

- $\mathcal{K} = \bigcup_{s \in \mathbb{N}} \mathbb{C}(x^{1/s}), \ \widehat{\mathcal{K}} = \bigcup_{s \in \mathbb{N}} \mathbb{C}((x^{1/s}))$ (Puiseux power series)
- $\sigma, \tau \in Aut(K)$: $\sigma(x) = x^p, \tau(x) = x^q \ (p, q \in \mathbb{N})$ multiplicatively independent), extended to \widehat{K}

Theorem (Adamczewski-Bell, 2017)

Let $f \in \widehat{K}$ satisfy the Mahler equations

$$\begin{cases} \sum_{i=0}^{n} a_i \sigma^{n-i}(f) = 0\\ \sum_{i=0}^{m} b_i \tau^{m-i}(f) = 0 \end{cases}$$

< □ > < 個 > < 注 > < 注 > ... 注

with $a_i, b_i \in K$. Then $f \in K$.

The conjecture of Loxton and van der Poorten

- $\mathcal{K} = \bigcup_{s \in \mathbb{N}} \mathbb{C}(x^{1/s}), \ \widehat{\mathcal{K}} = \bigcup_{s \in \mathbb{N}} \mathbb{C}((x^{1/s}))$ (Puiseux power series)
- $\sigma, \tau \in Aut(K)$: $\sigma(x) = x^p, \tau(x) = x^q \ (p,q \in \mathbb{N})$ multiplicatively independent), extended to \widehat{K}

Theorem (Adamczewski-Bell, 2017)

Let $f \in \widehat{K}$ satisfy the Mahler equations

$$\begin{cases} \sum_{i=0}^{n} a_i \sigma^{n-i}(f) = 0\\ \sum_{i=0}^{m} b_i \tau^{m-i}(f) = 0 \end{cases}$$

with $a_i, b_i \in K$. Then $f \in K$.

- **1** It follows that if $a_i, b_i \in \mathbb{C}(x)$ and $f \in \mathbb{C}((x))$ then $f \in \mathbb{C}(x)$.
- Solution 3 Solution 3 Constant Constant Solution 3 Solution

An additive analogue

•
$$K = \mathbb{C}(x), \ \widehat{K} = \mathbb{C}((x))$$

• $\sigma, \tau \in Aut(K) : \sigma(x) = px, \tau(x) = qx \ (p,q \in \mathbb{C}^{\times}$ multiplicatively independent), extended to \widehat{K} .

An additive analogue

•
$$K = \mathbb{C}(x), \ \widehat{K} = \mathbb{C}((x))$$

• $\sigma, \tau \in Aut(K) : \sigma(x) = px, \tau(x) = qx \ (p,q \in \mathbb{C}^{\times}$ multiplicatively independent), extended to \widehat{K} .

Theorem (Bézivin-Boutabaa, 1992)

Let $f \in \widehat{K}$ satisfy the difference equations

$$\begin{cases} \sum_{i=0}^{n} a_i \sigma^{n-i}(f) = 0\\ \sum_{i=0}^{m} b_i \tau^{m-i}(f) = 0 \end{cases}$$

with $a_i, b_i \in K$. Then $f \in K$.

An additive analogue

•
$$K = \mathbb{C}(x), \ \widehat{K} = \mathbb{C}((x))$$

• $\sigma, \tau \in Aut(K) : \sigma(x) = px, \tau(x) = qx \ (p,q \in \mathbb{C}^{\times}$ multiplicatively independent), extended to \widehat{K} .

Theorem (Bézivin-Boutabaa, 1992)

Let $f \in \widehat{K}$ satisfy the difference equations

$$\begin{cases} \sum_{i=0}^{n} a_i \sigma^{n-i}(f) = 0\\ \sum_{i=0}^{m} b_i \tau^{m-i}(f) = 0 \end{cases}$$

with $a_i, b_i \in K$. Then $f \in K$.

- Theorem "lives" on $\mathbb{G} = \mathbb{G}_{a,\mathbb{C}}$, $K = \mathbb{C}(\widetilde{\mathbb{G}})$, $\sigma, \tau \in End(\mathbb{G})$.
- R.Schäfke and M.Singer (JEMS, 2019): a uniform treatment of both theorems, as well as of other similar results.
- Adamczewski-Dreyfus-Hardouin-Wibmer (arXiv, October 2020): a remarkable strengthening.

An elliptic analogue

- $\Lambda \subset \mathbb{C}$ lattice, $K_{\Lambda} = \mathbb{C}(\mathscr{O}(z,\Lambda), \mathscr{O}(z,\Lambda))$ field of Λ -elliptic functions.
- $K = \bigcup_{\Lambda \subset \Lambda_0} K_{\Lambda} = \mathbb{C}(\widetilde{\mathbb{G}})$ where $\mathbb{G} = \mathbb{C}/\Lambda_0$ elliptic curve, $\widehat{K} = \mathbb{C}((z))$.
- $p,q \in \mathbb{Z}$ multiplicatively independent, $\sigma, \tau \in Aut(K)$, $\sigma f(z) = f(pz), \tau f(z) = f(qz)$, extended to \widehat{K} . Again, $\sigma, \tau \in End(\mathbb{G})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

An elliptic analogue

- $\Lambda \subset \mathbb{C}$ lattice, $K_{\Lambda} = \mathbb{C}(\mathcal{O}(z,\Lambda), \mathcal{O}'(z,\Lambda))$ field of Λ -elliptic functions.
- $K = \bigcup_{\Lambda \subset \Lambda_0} K_{\Lambda} = \mathbb{C}(\widetilde{\mathbb{G}})$ where $\mathbb{G} = \mathbb{C}/\Lambda_0$ elliptic curve, $\widehat{K} = \mathbb{C}((z))$.
- $p,q \in \mathbb{Z}$ multiplicatively independent, $\sigma, \tau \in Aut(K)$, $\sigma f(z) = f(pz), \tau f(z) = f(qz)$, extended to \widehat{K} . Again, $\sigma, \tau \in End(\mathbb{G})$.

Theorem (dS, 2020)

Suppose (p,q) = 1. Assume $f \in \widehat{K}$ satisfies the elliptic difference equations

$$\begin{cases} \sum_{i=0}^{n} a_i \sigma^{n-i}(f) = 0\\ \sum_{i=0}^{m} b_i \tau^{m-i}(f) = 0 \end{cases}$$

with $a_i, b_i \in K$. Then $f \in R = K[z, z^{-1}, \zeta(z, \Lambda)]$ where $\zeta(z, \Lambda)$ (the Weierstrass zeta function) is a primitive of $\wp(z, \Lambda)$ for some $\Lambda \subset \Lambda_0$.

Remarks

- Do not know if can relax (p,q) = 1.
- ② Theorem is optimal: any f ∈ R satisfies simultaneously p- and q- elliptic difference equations.
- May ask for a finer result: if coefficients are in K_{Λ} , for which $\Lambda' \subset \Lambda$ does $f \in R_{\Lambda'} = K_{\Lambda'}[z, z^{-1}, \zeta(z, \Lambda')]$?

Remarks

- Do not know if can relax (p,q) = 1.
- ② Theorem is optimal: any f ∈ R satisfies simultaneously p- and q- elliptic difference equations.
- May ask for a finer result: if coefficients are in K_{Λ} , for which $\Lambda' \subset \Lambda$ does $f \in R_{\Lambda'} = K_{\Lambda'}[z, z^{-1}, \zeta(z, \Lambda')]$?
 - Basic difference I: proving that f ∈ C((x)) is in C(x) goes by meromorphic continuation, since a function that is everywhere meromorphic (including at the boundary points) is rational. Proving f ∈ R, involves, besides meromorphic continuation to C, issues of periodicity.
 - Basic difference II: f need not be in K! This is related to the existence of non-trivial vector bundles over $\mathbb{G} = \mathbb{C}/\Lambda_0$ which are invariant under pull-back by σ and τ (Atiyah's bundles, 1957). In the rational case, every vector bundle over $\mathbb{G} = \mathbb{G}_m$ or \mathbb{G}_a is trivial.

(日本) (日本) (日本)

Γ-difference modules

Let K be a field, $\Gamma \rightarrow Aut(K)$ a group action, $C = K^{\Gamma}$ the constant field.

Definition

A Γ -difference module over K is a finite dimensional vector space M over K, equipped with a semi-linear action of Γ , i.e. $\forall \gamma \in \Gamma$ a $\Phi_{\gamma} \in GL_{C}(M)$, s.t.

《曰》 《聞》 《臣》 《臣》 三臣

•
$$\Phi_{\gamma}(av) = \gamma(a) \Phi_{\gamma}(v) \ (a \in K, v \in M)$$

•
$$\Phi_{\gamma\delta} = \Phi_{\gamma} \circ \Phi_{\delta}$$

Γ-difference modules

Let K be a field, $\Gamma \rightarrow Aut(K)$ a group action, $C = K^{\Gamma}$ the constant field.

Definition

A Γ -difference module over K is a finite dimensional vector space M over K, equipped with a semi-linear action of Γ , i.e. $\forall \gamma \in \Gamma$ a $\Phi_{\gamma} \in GL_{C}(M)$, s.t.

•
$$\Phi_{\gamma}(av) = \gamma(a) \Phi_{\gamma}(v) \; (a \in K, v \in M)$$

•
$$\Phi_{\gamma\delta} = \Phi_{\gamma} \circ \Phi_{\delta}$$

Example

In the three examples of $\mathbb{G} = \mathbb{G}_m$, \mathbb{G}_a , \mathbb{C}/Λ_0 we have $K = \mathbb{C}(\widetilde{\mathbb{G}})$, $\Gamma = \langle \sigma, \tau \rangle \simeq \mathbb{Z}^2$ ($\because p, q$ multiplicatively independent) and

$$M = Span_K \left\{ \sigma^i \tau^j f \right\} \subset \widehat{K}.$$

Simultaneous Mahler / difference / elliptic difference equations $\Leftrightarrow \dim_{\mathcal{K}} M < \infty$.

- The three theorems are derived from theorems stating that **under the given assumptions** *M* is "*degenerate*" in some sense.
- Key point (food for thought):

$$2 = \operatorname{rk}(\Gamma) > \operatorname{tr.deg.}(K/C) = 1.$$

- In the two rational cases "degeneracy" means $M = M_0 \otimes_{\mathbb{C}} K$ where M_0 is a \mathbb{C} -representation of Γ (in our case, a pair of commuting $\Phi_{\sigma}, \Phi_{\tau} \in GL(M_0)$) and the action of Γ is extended to M semi-linearly. We say that M can be descended from Kto \mathbb{C} , or that it has an underlying \mathbb{C} -structure.
- In the elliptic case *M* is the elliptic (*p*, *q*)-difference module in the title of the lecture, and "degeneracy" will be a more subtle structure theorem (related to the above-mentioned Atiyah vector bundles).

Coordinates and matrices

Let $\Gamma = \langle \sigma, \tau \rangle \simeq \mathbb{Z}^2 \subset Aut(K)$ as in the three examples. Let M be a Γ -difference module, e_1, \ldots, e_r a basis /K.

- $\Phi_{\sigma}(e_j) = \sum_{i=1}^r a_{ij}e_i, \ \Phi_{\tau}(e_j) = \sum_{i=1}^r b_{ij}e_i$
- Only condition: $\Phi_{\sigma} \circ \Phi_{\tau} = \Phi_{\tau} \circ \Phi_{\sigma} \iff \sigma(B)A = \tau(A)B$, $A^{-1} = (a_{ij}), B^{-1} = (b_{ij})$ (Consistency condition).
- Change of basis → (A', B') = (σ(C)⁻¹AC, τ(C)⁻¹BC) (Gauge equivalence).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Coordinates and matrices

Let $\Gamma = \langle \sigma, \tau \rangle \simeq \mathbb{Z}^2 \subset Aut(K)$ as in the three examples. Let M be a Γ -difference module, e_1, \ldots, e_r a basis /K.

- $\Phi_{\sigma}(e_j) = \sum_{i=1}^r a_{ij}e_i, \ \Phi_{\tau}(e_j) = \sum_{i=1}^r b_{ij}e_i$
- Only condition: $\Phi_{\sigma} \circ \Phi_{\tau} = \Phi_{\tau} \circ \Phi_{\sigma} \iff \sigma(B)A = \tau(A)B$, $A^{-1} = (a_{ij}), B^{-1} = (b_{ij})$ (Consistency condition).
- Change of basis $\rightsquigarrow (A', B') = (\sigma(C)^{-1}AC, \tau(C)^{-1}BC)$ (Gauge equivalence).

Corollary

The classification of Γ -difference modules over K is equivalent to the classification of consistent pairs (A, B) in $GL_r(K) \times GL_r(K)$ up to gauge equivalence. Equivalently, the non-abelian cohomology $H^1(\Gamma, GL_r(K))$ (a pointed set only!).

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Coordinates and matrices

Let $\Gamma = \langle \sigma, \tau \rangle \simeq \mathbb{Z}^2 \subset Aut(K)$ as in the three examples. Let M be a Γ -difference module, e_1, \ldots, e_r a basis /K.

- $\Phi_{\sigma}(e_j) = \sum_{i=1}^r a_{ij}e_i, \ \Phi_{\tau}(e_j) = \sum_{i=1}^r b_{ij}e_i$
- Only condition: $\Phi_{\sigma} \circ \Phi_{\tau} = \Phi_{\tau} \circ \Phi_{\sigma} \iff \sigma(B)A = \tau(A)B$, $A^{-1} = (a_{ij}), B^{-1} = (b_{ij})$ (Consistency condition).
- Change of basis → (A', B') = (σ(C)⁻¹AC, τ(C)⁻¹BC) (Gauge equivalence).

Corollary

The classification of Γ -difference modules over K is equivalent to the classification of consistent pairs (A, B) in $GL_r(K) \times GL_r(K)$ up to gauge equivalence. Equivalently, the non-abelian cohomology $H^1(\Gamma, GL_r(K))$ (a pointed set only!).

 Replacing GL_r by a linear algebraic group G over K ~→ "Γ-difference modules with G-structure" (e.g. orthogonal, symplectic, filtrations,...). See R. Kottwitz "Isocrystals with additional structure", Comp.Math. 1985.

Γ -difference modules over \widehat{K}

Recall either $\widehat{K} = \bigcup_{s \in \mathbb{N}} \mathbb{C}((x^{1/s})), \ \sigma(x) = x^p, \ \tau(x) = x^q$ (Mahler case, $\mathbb{G} = \mathbb{G}_m$) or $\widehat{K} = \mathbb{C}((x)), \ \sigma(x) = px, \ \tau(x) = qx$ ($\mathbb{G} = \mathbb{G}_a$ or \mathbb{C}/Λ_0).

< ∃ →

Γ -difference modules over \widehat{K}

Recall either $\widehat{K} = \bigcup_{s \in \mathbb{N}} \mathbb{C}((x^{1/s})), \ \sigma(x) = x^p, \ \tau(x) = x^q$ (Mahler case, $\mathbb{G} = \mathbb{G}_m$) or $\widehat{K} = \mathbb{C}((x)), \ \sigma(x) = px, \ \tau(x) = qx$ ($\mathbb{G} = \mathbb{G}_a$ or \mathbb{C}/Λ_0).

Theorem (Formal structure theorem)

Let M be a Γ -difference module over \widehat{K} . Then $M = M_0 \otimes_{\mathbb{C}} \widehat{K}$ for a Γ -invariant \mathbb{C} -vector space M_0 . Equivalently, any consistent pair (A, B) is gauge-equivalent over \widehat{K} to a commuting scalar pair (A_0, B_0) .

- 2 Mahler case: (A_0, B_0) unique up to conjugation.
- Similar theorems for F-isocrystals, by Manin and Dieudonné...

Proof of the Loxton-van der Poorten conjecture

Let $K = \bigcup_{s \in \mathbb{N}} \mathbb{C}(x^{1/s}), \sigma(x) = x^p, \tau(x) = x^q$. Theorem of Adamczewski and Bell follows from:

Theorem

Let M be a Γ -difference module. Then $M = M_0 \otimes_{\mathbb{C}} K$ for a unique Γ -invariant \mathbb{C} -vector space M_0 .

(日) (四) (문) (문) (문) (문)

Proof of the Loxton-van der Poorten conjecture

Let $K = \bigcup_{s \in \mathbb{N}} \mathbb{C}(x^{1/s}), \sigma(x) = x^p, \tau(x) = x^q$. Theorem of Adamczewski and Bell follows from:

Theorem

Let M be a Γ -difference module. Then $M = M_0 \otimes_{\mathbb{C}} K$ for a unique Γ -invariant \mathbb{C} -vector space M_0 .

Sketch of proof:

• Let $t_0 = x$, $t_{\infty} = 1/x$, $t_1 = x - 1$, local parameters. For $i = 0, \infty, 1$ let $\widehat{\mathcal{O}}_i = \mathbb{C}[[t_i]]$, $\widehat{\mathcal{K}}_i = \mathbb{C}((t_i))$. Let (A, B) be a consistent pair over K describing M in some basis. By the formal structure theorem, there are $C_i \in GL_r(\widehat{\mathcal{K}}_i)$ such that

$$(\sigma(C_i)^{-1}AC_i, \tau(C_i)^{-1}BC_i) = (A_i, B_i) \in GL_r(\mathbb{C}) \times GL_r(\mathbb{C})$$

(for $i = 0, \infty$ we may have to replace x by $x^{1/s}$ first).

< □ > < (四 > < (回 >) < (回 >) < (回 >)) 三 回

Proof of the Loxton-van der Poorten conjecture

Let $K = \bigcup_{s \in \mathbb{N}} \mathbb{C}(x^{1/s}), \sigma(x) = x^p, \tau(x) = x^q$. Theorem of Adamczewski and Bell follows from:

Theorem

Let M be a Γ -difference module. Then $M = M_0 \otimes_{\mathbb{C}} K$ for a unique Γ -invariant \mathbb{C} -vector space M_0 .

Sketch of proof:

• Let $t_0 = x$, $t_{\infty} = 1/x$, $t_1 = x - 1$, local parameters. For $i = 0, \infty, 1$ let $\widehat{\mathcal{O}}_i = \mathbb{C}[[t_i]]$, $\widehat{\mathcal{K}}_i = \mathbb{C}((t_i))$. Let (A, B) be a consistent pair over K describing M in some basis. By the formal structure theorem, there are $C_i \in GL_r(\widehat{\mathcal{K}}_i)$ such that

$$(\sigma(C_i)^{-1}AC_i, \tau(C_i)^{-1}BC_i) = (A_i, B_i) \in GL_r(\mathbb{C}) \times GL_r(\mathbb{C})$$

(for $i = 0, \infty$ we may have to replace x by $x^{1/s}$ first).

 By weak approximation, replacing (A, B) by a gauge-equivalent pair over K, may assume

$$C_i \in GL_r(\widehat{\mathscr{O}}_i).$$

<ロ> (四) (四) (종) (종) (종) (종)

Estimates on formal Taylor expansion + local analyticity of A
 ⇒ C_i analytic in |t_i| < ε.

글 🕨 🖌 글

э

- Estimates on formal Taylor expansion + local analyticity of A ⇒ C_i analytic in |t_i| < ε.
- Functional equation

$$C_i = A^{-1}\sigma(C_i)A_i,$$

gives meromorphic continuation of C_0 to $0 \le |x| < 1$, of C_{∞} to $1 < |x| \le \infty$, of C_1 to $0 < |x| < \infty$. Note, for any $\varepsilon > 0$, the union of $\sigma^n(D(1,\varepsilon))$ is $\mathbb{P}^1 - \{0,\infty\}$.

- Estimates on formal Taylor expansion + local analyticity of A ⇒ C_i analytic in |t_i| < ε.
- Functional equation

$$C_i = A^{-1} \sigma(C_i) A_i,$$

gives meromorphic continuation of C_0 to $0 \le |x| < 1$, of C_{∞} to $1 < |x| \le \infty$, of C_1 to $0 < |x| < \infty$. Note, for any $\varepsilon > 0$, the union of $\sigma^n(D(1,\varepsilon))$ is $\mathbb{P}^1 - \{0,\infty\}$.

• $C_{01} = C_0^{-1}C_1$ meromorphic in 0 < |x| < 1 and satisfies

$$A_0 C_{01} = \sigma(C_{01})A_1.$$

This forces C_{01} to be scalar, since Laurent expansions on annuli of analyticity will be supported on $p^n\mathbb{Z}$ for any n. Thus C_1 is analytic at 0. Similar argument on $C_{\infty 1} = C_{\infty}^{-1}C_1$ shows C_1 is meromorphic everywhere on \mathbb{P}^1 , hence in $GL_r(K)$. QED

Elliptic (p,q)-difference modules of rank 1,2

Let $K = \bigcup_{\Lambda \subset \Lambda_0} K_{\Lambda}$, $\sigma f(z) = f(z/p)$, $\tau f(z) = f(z/q)$, $p, q \in \mathbb{N}$ multiplicatively independent.

Proposition (dS, CMB 2020)

For $a, b \in \mathbb{C}^{ imes}$ let $M_1(a, b)$ be the module Ke where

$$\sigma(e)=a^{-1}e,\ \tau(e)=b^{-1}e.$$

Then every rank 1 elliptic (p,q)-difference module M is isomorphic to a unique $M_1(a,b)$. Equivalently, M has a unique \mathbb{C} structure. Equivalently, $H^1(\Gamma, \mathbb{C}^{\times}) \simeq H^1(\Gamma, K^{\times})$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Elliptic (p,q)-difference modules of rank 1,2

Let $K = \bigcup_{\Lambda \subset \Lambda_0} K_{\Lambda}$, $\sigma f(z) = f(z/p)$, $\tau f(z) = f(z/q)$, $p, q \in \mathbb{N}$ multiplicatively independent.

Proposition (dS, CMB 2020)

For $a, b \in \mathbb{C}^{ imes}$ let $M_1(a, b)$ be the module Ke where

$$\sigma(e)=a^{-1}e,\ \tau(e)=b^{-1}e.$$

Then every rank 1 elliptic (p,q)-difference module M is isomorphic to a unique $M_1(a,b)$. Equivalently, M has a unique \mathbb{C} structure. Equivalently, $H^1(\Gamma, \mathbb{C}^{\times}) \simeq H^1(\Gamma, K^{\times})$.

In rank 2 this is already false. Let

$$\zeta(z,\Lambda) = rac{\sigma'(z,\Lambda)}{\sigma(z,\Lambda)}$$
 (Weierstrass zeta function)

 $\zeta'(z,\Lambda) = -\wp(z,\Lambda), \ \zeta(z+\omega,\Lambda) = \zeta(z,\Lambda) + \eta(\omega,\Lambda) \ (\omega \in \Lambda)$

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ≯ ヨ のへで

where η is the Legendre η -function.

Let

$$g_p(z,\Lambda) = p\zeta(qz,\Lambda) - \zeta(pqz,\Lambda), \ g_q(z,\Lambda) = q\zeta(pz,\Lambda) - \zeta(pqz,\Lambda).$$

Then $g_p, g_q \in K$. The matrices

$$A = \begin{pmatrix} 1 & g_p(z,\Lambda) \\ 0 & p \end{pmatrix}, B = \begin{pmatrix} 1 & g_q(z,\Lambda) \\ 0 & q \end{pmatrix}$$

form a consistent pair, and we let M_2^{st} be the associated module:

$$M_2^{st} = K^2, \ \Phi_{\sigma}(v) = A^{-1}\sigma(v), \ \Phi_{\tau}(v) = B^{-1}\tau(v).$$

→ ∃ → < ∃ →</p>

э

Let

$$g_p(z,\Lambda) = p\zeta(qz,\Lambda) - \zeta(pqz,\Lambda), \ g_q(z,\Lambda) = q\zeta(pz,\Lambda) - \zeta(pqz,\Lambda).$$

Then $g_p, g_q \in K$. The matrices

$$A = \begin{pmatrix} 1 & g_p(z,\Lambda) \\ 0 & p \end{pmatrix}, B = \begin{pmatrix} 1 & g_q(z,\Lambda) \\ 0 & q \end{pmatrix}$$

form a consistent pair, and we let M_2^{st} be the associated module:

$$M_2^{st} = K^2, \ \Phi_{\sigma}(v) = A^{-1}\sigma(v), \ \Phi_{\tau}(v) = B^{-1}\tau(v).$$

Proposition

Every rank 2 elliptic (p,q)-difference module either admits a unique \mathbb{C} -structure or is isomorphic to $M_2^{st}(a,b) = M_2^{st} \otimes M_1(a,b)$ for unique $a, b \in \mathbb{C}^{\times}$.

Let M be a rank r module over K, represented by the consistent pair (A, B) in some basis.

• By the formal structure theorem there exists $C \in GL_r(\widehat{K})$ such that $(\sigma(C)^{-1}AC, \tau(C)^{-1}BC) = (A_0, B_0)$ is a commuting pair of scalar matrices.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let M be a rank r module over K, represented by the consistent pair (A, B) in some basis.

- By the formal structure theorem there exists $C \in GL_r(\widehat{K})$ such that $(\sigma(C)^{-1}AC, \tau(C)^{-1}BC) = (A_0, B_0)$ is a commuting pair of scalar matrices.
- Let $D \in GL_r(K)$ be very close to C. Replacing (A, B) by the gauge-equivalent $(\sigma(D)^{-1}AD, \tau(D)^{-1}BD)$ and C by $D^{-1}C$ we may assume $C \in GL_r(\widehat{\mathcal{O}})$ where $\widehat{\mathcal{O}} = \mathbb{C}[[z]]$. Then A is analytic at 0.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ≯ ヨ のへで

Let M be a rank r module over K, represented by the consistent pair (A, B) in some basis.

- By the formal structure theorem there exists $C \in GL_r(\widehat{K})$ such that $(\sigma(C)^{-1}AC, \tau(C)^{-1}BC) = (A_0, B_0)$ is a commuting pair of scalar matrices.
- Let $D \in GL_r(K)$ be very close to C. Replacing (A, B) by the gauge-equivalent $(\sigma(D)^{-1}AD, \tau(D)^{-1}BD)$ and C by $D^{-1}C$ we may assume $C \in GL_r(\widehat{\mathcal{O}})$ where $\widehat{\mathcal{O}} = \mathbb{C}[[z]]$. Then A is analytic at 0.
- Estimates on the formal Taylor expansion of C + analyticity of A at $0 \Rightarrow C$ is analytic in $D(0,\varepsilon)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let M be a rank r module over K, represented by the consistent pair (A, B) in some basis.

- By the formal structure theorem there exists $C \in GL_r(\widehat{K})$ such that $(\sigma(C)^{-1}AC, \tau(C)^{-1}BC) = (A_0, B_0)$ is a commuting pair of scalar matrices.
- Let $D \in GL_r(K)$ be very close to C. Replacing (A, B) by the gauge-equivalent $(\sigma(D)^{-1}AD, \tau(D)^{-1}BD)$ and C by $D^{-1}C$ we may assume $C \in GL_r(\widehat{\mathcal{O}})$ where $\widehat{\mathcal{O}} = \mathbb{C}[[z]]$. Then A is analytic at 0.
- Estimates on the formal Taylor expansion of C + analyticity of A at $0 \Rightarrow C$ is analytic in $D(0,\varepsilon)$
- Functional equation $\sigma(C) = ACA_0^{-1}$ and the fact that $\bigcup \sigma^n(D(0,\varepsilon)) = \mathbb{C} \Rightarrow C$ is everywhere meromorphic on \mathbb{C} .

Unfortunately (or fortunately...) C need not be Λ -periodic for any Λ , as the rank 2 example above shows.

Let *M* be the sheaf of meromorphic functions on C (in the classical topology), *O* the sheaf of holomorphic functions,

$$\mathscr{G} = GL_r(\mathscr{M}), \ \mathscr{H} = GL_r(\mathscr{O}), \ \mathscr{F} = \mathscr{G}/\mathscr{H}.$$

Let *M* be the sheaf of meromorphic functions on C (in the classical topology), *O* the sheaf of holomorphic functions,

$$\mathscr{G} = GL_r(\mathscr{M}), \ \mathscr{H} = GL_r(\mathscr{O}), \ \mathscr{F} = \mathscr{G}/\mathscr{H}$$

Note: (1) C ∈ Γ(ℂ, 𝒢) (2) 𝔅 is a sheaf of cosets, its sections are discretely supported (i.e. s ∈ 𝔅(U) ⇒ {ξ ∈ U | s_ξ ≠ 0_ξ} has no accumulation point in U) and (3) the stalk at each ξ,

$$\mathscr{F}_{\xi} = GL_r(\mathbb{C}((z-\xi)))/GL_r(\mathbb{C}[[z-\xi]])$$

is an affine Grassmanian.

Let *M* be the sheaf of meromorphic functions on C (in the classical topology), *O* the sheaf of holomorphic functions,

$$\mathscr{G} = GL_r(\mathscr{M}), \ \mathscr{H} = GL_r(\mathscr{O}), \ \mathscr{F} = \mathscr{G}/\mathscr{H}$$

Note: (1) C ∈ Γ(ℂ, 𝒢) (2) 𝔅 is a sheaf of cosets, its sections are discretely supported (i.e. s ∈ 𝔅(U) ⇒ {ξ ∈ U | s_ξ ≠ 0_ξ} has no accumulation point in U) and (3) the stalk at each ξ,

$$\mathscr{F}_{\xi} = GL_r(\mathbb{C}((z-\xi)))/GL_r(\mathbb{C}[[z-\xi]])$$

is an *affine Grassmanian*.

• We identify the stalk at ξ and the stalk at $\xi + \omega$ ($w \in \Lambda$) via translation. We call $s \in \Gamma(\mathbb{C}, \mathscr{F})$ Λ -periodic if $s_{\xi} = s_{\xi+\omega}$ for every $\xi \in \mathbb{C}, \ \omega \in \Lambda$. We denote by $\Gamma_{\Lambda}(\mathbb{C}, \mathscr{F})$ the Λ -periodic sections of \mathscr{F} .

Let *M* be the sheaf of meromorphic functions on C (in the classical topology), *O* the sheaf of holomorphic functions,

$$\mathscr{G} = \mathsf{GL}_r(\mathscr{M}), \ \mathscr{H} = \mathsf{GL}_r(\mathscr{O}), \ \mathscr{F} = \mathscr{G}/\mathscr{H}.$$

Note: (1) C ∈ Γ(ℂ, 𝒢) (2) 𝔅 is a sheaf of cosets, its sections are discretely supported (i.e. s ∈ 𝔅(U) ⇒ {ξ ∈ U | s_ξ ≠ 0_ξ} has no accumulation point in U) and (3) the stalk at each ξ,

$$\mathscr{F}_{\xi} = GL_r(\mathbb{C}((z-\xi)))/GL_r(\mathbb{C}[[z-\xi]])$$

is an *affine Grassmanian*.

- We identify the stalk at ξ and the stalk at $\xi + \omega$ ($w \in \Lambda$) via translation. We call $s \in \Gamma(\mathbb{C}, \mathscr{F})$ Λ -periodic if $s_{\xi} = s_{\xi+\omega}$ for every $\xi \in \mathbb{C}$, $\omega \in \Lambda$. We denote by $\Gamma_{\Lambda}(\mathbb{C}, \mathscr{F})$ the Λ -periodic sections of \mathscr{F} .
- If $s \in \Gamma(\mathbb{C}, \mathscr{F})$ we call $s' \in \Gamma(\mathbb{C}, \mathscr{F})$ a modification at 0 of s if $s|_{\mathbb{C}-\{0\}} = s'|_{\mathbb{C}-\{0\}}$.

Theorem (Periodicity Theorem)

Assume (p,q) = 1. Let $\overline{C} \in \Gamma(\mathbb{C}, \mathscr{F})$ be the image of $C \in \Gamma(\mathbb{C}, \mathscr{G})$. Then there exists a modification of \overline{C} at 0, denoted s, which is Λ -periodic, i.e. $s \in \Gamma_{\Lambda}(\mathbb{C}, \mathscr{F})$ for some $\Lambda \subset \Lambda_0$.

《曰》 《聞》 《臣》 《臣》 三臣

Theorem (Periodicity Theorem)

Assume (p,q) = 1. Let $\overline{C} \in \Gamma(\mathbb{C}, \mathscr{F})$ be the image of $C \in \Gamma(\mathbb{C}, \mathscr{G})$. Then there exists a modification of \overline{C} at 0, denoted s, which is Λ -periodic, i.e. $s \in \Gamma_{\Lambda}(\mathbb{C}, \mathscr{F})$ for some $\Lambda \subset \Lambda_0$.

Example. r = 1, $\mathscr{F} = \mathscr{M}^{\times}/\mathscr{O}^{\times} \stackrel{\text{deg}}{=} \mathbb{Z}$. Here C(z) is a global meromorphic function such that C(pz)/C(z) and C(qz)/C(z) are both elliptic. The theorem says that a suitable modification at 0 of the *divisor* of C is periodic. In this case, by Abel-Jacobi we can infer that $z^m C(z)$ itself must be periodic for a suitable m.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Theorem (Periodicity Theorem)

Assume (p,q) = 1. Let $\overline{C} \in \Gamma(\mathbb{C}, \mathscr{F})$ be the image of $C \in \Gamma(\mathbb{C}, \mathscr{G})$. Then there exists a modification of \overline{C} at 0, denoted s, which is Λ -periodic, i.e. $s \in \Gamma_{\Lambda}(\mathbb{C}, \mathscr{F})$ for some $\Lambda \subset \Lambda_0$.

Example. r = 1, $\mathscr{F} = \mathscr{M}^{\times}/\mathscr{O}^{\times} \stackrel{\text{deg}}{=} \mathbb{Z}$. Here C(z) is a global meromorphic function such that C(pz)/C(z) and C(qz)/C(z) are both elliptic. The theorem says that a suitable modification at 0 of the *divisor* of *C* is periodic. In this case, by Abel-Jacobi we can infer that $z^m C(z)$ itself must be periodic for a suitable *m*.

• Fix
$$\Lambda$$
, $\mathbb{A}_{\Lambda} = \prod_{\xi \in \mathbb{C}/\Lambda} \widehat{K}_{\xi} \supset \mathbb{O}_{\Lambda} = \prod_{\xi \in \mathbb{C}/\Lambda} \widehat{\mathscr{O}}_{\xi}$ adeles of K_{Λ}

•
$$s \in \Gamma_{\Lambda}(\mathbb{C}, \mathscr{F}) = GL_r(\mathbb{A}_{\Lambda})/GL_r(\mathbb{O}_{\Lambda}).$$

• *C* is determined by *M* only up to
$$C \rightsquigarrow DC$$
 with $D \in GL_r(K_\Lambda) \Rightarrow$ a well-defined

$$[s] \in Bun_{r,\Lambda} = GL_r(K_{\Lambda}) \setminus GL_r(\mathbb{A}_{\Lambda})/GL_r(\mathbb{O}_{\Lambda}).$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

The vector bundle associated to M

- Recall $Bun_{r,\Lambda}$ classifies isomorphism classes of vector bundles of rank r on the elliptic curve \mathbb{C}/Λ .
- $M \rightsquigarrow C \rightsquigarrow s$ (periodic modification at 0 of \overline{C}) $\rightsquigarrow [s] = [\mathscr{E}_{\Lambda}]$
- Functoriality: If $\Lambda' \subset \Lambda$ then $pr^*_{\Lambda',\Lambda}(\mathscr{E}_{\Lambda}) \simeq \mathscr{E}_{\Lambda'}$. Also, $\mathscr{E}_{\Lambda} \simeq [p]^*(\mathscr{E}_{\Lambda})$.

The vector bundle associated to M

- Recall $Bun_{r,\Lambda}$ classifies isomorphism classes of vector bundles of rank r on the elliptic curve \mathbb{C}/Λ .
- $M \rightsquigarrow C \rightsquigarrow s$ (periodic modification at 0 of \overline{C}) $\rightsquigarrow [s] = [\mathscr{E}_{\Lambda}]$
- Functoriality: If $\Lambda' \subset \Lambda$ then $pr^*_{\Lambda',\Lambda}(\mathscr{E}_{\Lambda}) \simeq \mathscr{E}_{\Lambda'}$. Also, $\mathscr{E}_{\Lambda} \simeq [p]^*(\mathscr{E}_{\Lambda})$.

Atiyah (1957) classified vector bundles on elliptic curves.

Theorem (Atiyah)

For each r there exists a unique vector bundle \mathscr{F}_r on \mathbb{C}/Λ which is indecomposable of rank r, has degree 0 and admits non-trivial global sections.

伺 ト イヨ ト イヨ ト

Proposition

(i) Given M, there exists a unique partition

(*)
$$r = r_1 + r_2 + \dots + r_k, r_1 \le r_2 \le \dots \le r_k$$

such that for all small enough Λ the vector bundle \mathscr{E}_{Λ} is isomorphic to $\mathscr{F}_{r_1} \oplus \cdots \oplus \mathscr{F}_{r_k}$. (ii) The vector bundle \mathscr{F}_r corresponds to the class $[U_r] \in Bun_{r,\Lambda}$ where

$$U_r = \exp(\zeta(z,\Lambda)N_r)$$

<ロト <四ト <注入 <注下 <注下 <

and N_r is the nilpotent matrix with 1 in the (i, i+1) entry $(1 \le i \le r-1)$ and 0 elsewhere.

Call (*) the *type* of *M*.

Proposition

(i) Given M, there exists a unique partition

(*)
$$r = r_1 + r_2 + \dots + r_k, r_1 \le r_2 \le \dots \le r_k$$

such that for all small enough Λ the vector bundle \mathscr{E}_{Λ} is isomorphic to $\mathscr{F}_{r_1} \oplus \cdots \oplus \mathscr{F}_{r_k}$. (ii) The vector bundle \mathscr{F}_r corresponds to the class $[U_r] \in Bun_{r,\Lambda}$ where

$$U_r = \exp(\zeta(z,\Lambda)N_r)$$

and N_r is the nilpotent matrix with 1 in the (i, i+1) entry $(1 \le i \le r-1)$ and 0 elsewhere.

Call (*) the *type* of *M*.

- *M* admits a \mathbb{C} -structure \Leftrightarrow its type is $(1,1,\ldots,1)$
- From now on assume (to simplify the presentation) that the type of M is (r), i.e. \mathscr{E}_{Λ} is indecomposable.

<ロ> (四) (四) (명) (명) (명) (명)

• $[s] = [U_r] \in Bun_{r,\Lambda}$ implies that, after a gauge transformation, we may assume

$$C = U_r D$$

and D is everhwhere holomorphic (with a holomorphic inverse), except possibly at 0.

3

• $[s] = [U_r] \in Bun_{r,\Lambda}$ implies that, after a gauge transformation, we may assume

$$C = U_r D$$

and D is everhwhere holomorphic (with a holomorphic inverse), except possibly at 0.

• Letting $T = D(z/p)A_0D(z)^{-1}$ and $S = D(z/q)B_0D(z)^{-1}$ the matrices T and S are in $GL_r(\mathscr{O})$ and

(1)
$$A = U_r(z/p)TU_r(z)^{-1}, B = U_r(z/q)SU_r(z)^{-1}.$$

▲ Ξ ▶ ▲ Ξ ▶ Ξ • 𝔍 ℚ ℚ

• $[s] = [U_r] \in Bun_{r,\Lambda}$ implies that, after a gauge transformation, we may assume

$$C = U_r D$$

and D is everhwhere holomorphic (with a holomorphic inverse), except possibly at 0.

• Letting $T = D(z/p)A_0D(z)^{-1}$ and $S = D(z/q)B_0D(z)^{-1}$ the matrices T and S are in $GL_r(\mathcal{O})$ and

(1)
$$A = U_r(z/p)TU_r(z)^{-1}, B = U_r(z/q)SU_r(z)^{-1}.$$

Lemma (Key Lemma)

After conjugation by a scalar matrix commuting with U_r this forces

(2)
$$T = a \cdot \text{diag}[1, p, p^2, \dots, p^{r-1}], S = b \cdot \text{diag}[1, q, q^2, \dots, q^{r-1}]$$

for some $a, b \in \mathbb{C}^{\times}$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

3

Theorem (Main Structure Theorem for type (r))

If the type of M is (r) then, up to a twist by $M_1(a,b)$, $M \simeq M_r^{st}$ where M_r^{st} corresponds to the consistent pair (A, B) given by (1) and (2).

(日) (월) (원) (원) (원) (원)

Theorem (Main Structure Theorem for type (r))

If the type of M is (r) then, up to a twist by $M_1(a,b)$, $M \simeq M_r^{st}$ where M_r^{st} corresponds to the consistent pair (A, B) given by (1) and (2).

Final remarks.

- The Key Lemma and the Periodicity Theorem are the main technical steps.
- When the type is arbitrary, a more complicated structure theorem, but still completely explicit.
- The theorem asserting that f ∈ K satisfying simultaneously elliptic p- and q-difference equations lies in R = K[z, z⁻¹, ζ(z, Λ)] follows from the Main Structure Theorem applied to

$$M = Span_K(\sigma^i \tau^j f) \subset \widehat{K}.$$

Periodicity Theorem (r = 1)

• When r (the rank of M) is 1, the affine Grassmanian

$$\mathscr{F}_{\zeta} \simeq \mathbb{C}((z-\zeta))^{\times}/\mathbb{C}[[z-\zeta]]^{\times} \simeq \mathbb{Z}$$

is a group, and the Periodicity Theorem follows from:

Theorem

Let $s : \mathbb{R}^d \to \mathbb{Z}$ be a discretely supported function. Suppose $p, q \in \mathbb{N}, p, q \ge 2, (p, q) = 1$. If both $s_p(x) = s(px) - s(x)$ and $s_q(x) = s(qx) - s(x)$ are \mathbb{Z}^d -periodic, then after modifying s at 0 it becomes Λ -periodic for some lattice $\Lambda \subset \mathbb{Z}^d$.

Periodicity Theorem (r = 1)

• When r (the rank of M) is 1, the affine Grassmanian

$$\mathscr{F}_{\zeta} \simeq \mathbb{C}((z-\zeta))^{\times}/\mathbb{C}[[z-\zeta]]^{\times} \simeq \mathbb{Z}$$

is a group, and the Periodicity Theorem follows from:

Theorem

Let $s : \mathbb{R}^d \to \mathbb{Z}$ be a discretely supported function. Suppose $p, q \in \mathbb{N}, p, q \ge 2, (p,q) = 1$. If both $s_p(x) = s(px) - s(x)$ and $s_q(x) = s(qx) - s(x)$ are \mathbb{Z}^d -periodic, then after modifying s at 0 it becomes Λ -periodic for some lattice $\Lambda \subset \mathbb{Z}^d$.

If s_p is any discretely supported \mathbb{Z}^d -periodic function

$$s(x) = \sum_{i=1}^{\infty} s_p(x/p^i)$$

is discretely supported, and satisfies $s_p(x) = s(px) - s(x)$, but need not be periodic.

The proof breaks into (i) periodicity on \mathbb{Q}^d (ii) periodicity on $\mathbb{R}^d - \mathbb{Q}^d$, and uses different arguments in each case.

• Let S be a finite set of primes. For $x \in \mathbb{Z}$ write $x'_{S} = \prod_{p \in S} p^{-ord_{p}(x)}x$ (the S-deprived part of x). Fix $N \ge 1$ and say $x \sim_{S} y$ if $ord_{p}(x) = ord_{p}(y)$ for all $p \in S$ and also $x'_{S} \equiv y'_{S} \mod N$. The key to the case (i) is the following elementary Lemma.

Lemma

Let S and T be disjoint nonempty finite sets of primes, $N \ge 1$. Let \sim be the equivalence relation on \mathbb{Z} generated by \sim_S and \sim_T . Then if x, y are non-zero, $x \sim y \Leftrightarrow x \equiv y \mod N$.

◆□▶ ◆舂▶ ◆理▶ ◆理▶ 三語…

Key Lemma (r=2)

Need to study the consequences of the functional equation

$$A(z)U(z) = U(z/p)T(z)$$

where

$$A = \begin{pmatrix} a(z) & b(z) \\ c(z) & d(z) \end{pmatrix}, \ U = \begin{pmatrix} 1 & \zeta(z) \\ 0 & 1 \end{pmatrix}, \ T = \begin{pmatrix} \alpha(z) & \beta(z) \\ \gamma(z) & \delta(z) \end{pmatrix}$$

a, b, c, d Λ -elliptic, $\zeta(z) = \zeta(pqz, \Lambda)$, and $\alpha, \beta, \gamma, \delta$ everywhere holomorphic.

Key Lemma (r=2)

Need to study the consequences of the functional equation

$$A(z)U(z) = U(z/p)T(z)$$

where

$$A = \begin{pmatrix} a(z) & b(z) \\ c(z) & d(z) \end{pmatrix}, \ U = \begin{pmatrix} 1 & \zeta(z) \\ 0 & 1 \end{pmatrix}, \ T = \begin{pmatrix} \alpha(z) & \beta(z) \\ \gamma(z) & \delta(z) \end{pmatrix}$$

a, b, c, d Λ -elliptic, $\zeta(z) = \zeta(pqz, \Lambda)$, and $\alpha, \beta, \gamma, \delta$ everywhere holomorphic.

• $\binom{1}{*} \sim c(z) = \gamma(z)$ constant (both elliptic and entire)

Key Lemma (r=2)

Need to study the consequences of the functional equation

$$A(z)U(z) = U(z/p)T(z)$$

where

$$A = \begin{pmatrix} a(z) & b(z) \\ c(z) & d(z) \end{pmatrix}, \ U = \begin{pmatrix} 1 & \zeta(z) \\ 0 & 1 \end{pmatrix}, \ T = \begin{pmatrix} \alpha(z) & \beta(z) \\ \gamma(z) & \delta(z) \end{pmatrix}$$

a, b, c, d Λ -elliptic, $\zeta(z) = \zeta(pqz, \Lambda)$, and $\alpha, \beta, \gamma, \delta$ everywhere holomorphic.

•
$$\binom{}{*} \sim c(z) = \gamma(z) \text{ constant (both elliptic and entire)}$$

• $\binom{}{*} \sim \text{Bootstrapping: } c\zeta(z) + d(z) = \delta(z) \Rightarrow c = \gamma = 0$
 $(\text{take } \sum_{z \in \mathbb{C}/\Lambda} Res_z) \Rightarrow d(z) = \delta(z) \text{ constant.}$

•
$$\binom{*}{1}$$
 \sim Rescale: $\delta = d = p$. Now $a(z) = \alpha(z)$, so constant too.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

•
$$\binom{*}{} \longrightarrow$$
 Rescale: $\delta = d = p$. Now $a(z) = \alpha(z)$, so constant
too.
• $\binom{*}{} \longrightarrow a\zeta(z) + b(z) = p\zeta(z/p) + \beta(z) \Rightarrow$ (take
 $\sum_{z \in \mathbb{C}/\Lambda} \operatorname{Res}_z) a = \alpha = 1$, but then
 $\zeta(z) - p\zeta(z/p) = g_p(z) = \beta(z) - b(z)$

so $\beta(z)$ is both elliptic and holomorphic, hence constant.

•
$$\binom{*}{} \longrightarrow \text{Rescale: } \delta = d = p. \text{ Now } a(z) = \alpha(z), \text{ so constant}$$

too.
• $\binom{*}{} \longrightarrow a\zeta(z) + b(z) = p\zeta(z/p) + \beta(z) \Rightarrow (\text{take}$
 $\sum_{z \in \mathbb{C}/\Lambda} \operatorname{Res}_z) a = \alpha = 1, \text{ but then}$
 $\zeta(z) - p\zeta(z/p) = g_p(z) = \beta(z) - b(z)$

so $\beta(z)$ is both elliptic and holomorphic, hence constant.

• Conjugating all matrices by an upper unipotent matrix may assume $\beta = 0$. Thus

$$T = \left(\begin{array}{cc} 1 & 0 \\ 0 & p \end{array}
ight), \ A = \left(\begin{array}{cc} 1 & g_p(z) \\ 0 & p \end{array}
ight).$$

(中) (종) (종) (종) (종) (종)

•
$$\binom{*}{}$$
 \rightarrow Rescale: $\delta = d = p$. Now $a(z) = \alpha(z)$, so constant
too.
• $\binom{*}{}$ $\rightarrow a\zeta(z) + b(z) = p\zeta(z/p) + \beta(z) \Rightarrow$ (take
 $\sum_{z \in \mathbb{C}/\Lambda} \operatorname{Res}_z) a = \alpha = 1$, but then
 $\zeta(z) - p\zeta(z/p) = g_p(z) = \beta(z) - b(z)$

so $\beta(z)$ is both elliptic and holomorphic, hence constant.

• Conjugating all matrices by an upper unipotent matrix may assume $\beta = 0$. Thus

$$T = \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix}, \ A = \begin{pmatrix} 1 & g_p(z) \\ 0 & p \end{pmatrix}$$

• Higher r: same principles, only the algebra is more involved.

• The details can be found at

arXiv: 2007.09508

• Stay tuned for Hardouin's lecture on Friday!