Difference equations over fields of elliptic functions

Ehud de Shalit
Hebrew University, Jerusalem

November 6, 2020

- $K=\bigcup_{s \in \mathbb{N}} \mathbb{C}\left(x^{1 / s}\right), \widehat{K}=\bigcup_{s \in \mathbb{N}} \mathbb{C}\left(\left(x^{1 / s}\right)\right)$ (Puiseux power series)
- $\sigma, \tau \in \operatorname{Aut}(K): \sigma(x)=x^{p}, \tau(x)=x^{q}(p, q \in \mathbb{N}$ multiplicatively independent), extended to \widehat{K}
- $K=\bigcup_{s \in \mathbb{N}} \mathbb{C}\left(x^{1 / s}\right), \widehat{K}=\bigcup_{s \in \mathbb{N}} \mathbb{C}\left(\left(x^{1 / s}\right)\right)$ (Puiseux power series)
- $\sigma, \tau \in \operatorname{Aut}(K): \sigma(x)=x^{p}, \tau(x)=x^{q}(p, q \in \mathbb{N}$ multiplicatively independent), extended to \widehat{K}

Theorem (Adamczewski-Bell, 2017)

Let $f \in \widehat{K}$ satisfy the Mahler equations

$$
\left\{\begin{array}{l}
\sum_{i=0}^{n} a_{i} \sigma^{n-i}(f)=0 \\
\sum_{i=0}^{m} b_{i} \tau^{m-i}(f)=0
\end{array}\right.
$$

with $a_{i}, b_{i} \in K$. Then $f \in K$.

- $K=\bigcup_{s \in \mathbb{N}} \mathbb{C}\left(x^{1 / s}\right), \widehat{K}=\bigcup_{s \in \mathbb{N}} \mathbb{C}\left(\left(x^{1 / s}\right)\right)$ (Puiseux power series)
- $\sigma, \tau \in \operatorname{Aut}(K): \sigma(x)=x^{p}, \tau(x)=x^{q}(p, q \in \mathbb{N}$ multiplicatively independent), extended to \widehat{K}

Theorem (Adamczewski-Bell, 2017)

Let $f \in \widehat{K}$ satisfy the Mahler equations

$$
\left\{\begin{array}{l}
\sum_{i=0}^{n} a_{i} \sigma^{n-i}(f)=0 \\
\sum_{i=0}^{m} b_{i} \tau^{m-i}(f)=0
\end{array}\right.
$$

with $a_{i}, b_{i} \in K$. Then $f \in K$.
(1) It follows that if $a_{i}, b_{i} \in \mathbb{C}(x)$ and $f \in \mathbb{C}((x))$ then $f \in \mathbb{C}(x)$.
(2) The theorem "lives" on $\mathbb{G}=\mathbb{G}_{m, \mathbb{C}}, K=\mathbb{C}(\widetilde{\mathbb{G}})$ (universal covering), $\sigma, \tau \in \operatorname{End}(\mathbb{G})$.

An additive analogue

- $K=\mathbb{C}(x), \widehat{K}=\mathbb{C}((x))$
- $\sigma, \tau \in \operatorname{Aut}(K): \sigma(x)=p x, \tau(x)=q x\left(p, q \in \mathbb{C}^{\times}\right.$ multiplicatively independent), extended to \widehat{K}.

An additive analogue

- $K=\mathbb{C}(x), \widehat{K}=\mathbb{C}((x))$
- $\sigma, \tau \in \operatorname{Aut}(K): \sigma(x)=p x, \tau(x)=q x\left(p, q \in \mathbb{C}^{\times}\right.$ multiplicatively independent), extended to \widehat{K}.

Theorem (Bézivin-Boutabaa, 1992)

Let $f \in \widehat{K}$ satisfy the difference equations

$$
\left\{\begin{array}{l}
\sum_{i=0}^{n} a_{i} \sigma^{n-i}(f)=0 \\
\sum_{i=0}^{m} b_{i} \tau^{m-i}(f)=0
\end{array}\right.
$$

with $a_{i}, b_{i} \in K$. Then $f \in K$.

An additive analogue

- $K=\mathbb{C}(x), \widehat{K}=\mathbb{C}((x))$
- $\sigma, \tau \in \operatorname{Aut}(K): \sigma(x)=p x, \tau(x)=q x\left(p, q \in \mathbb{C}^{\times}\right.$ multiplicatively independent), extended to \widehat{K}.

Theorem (Bézivin-Boutabaa, 1992)

Let $f \in \widehat{K}$ satisfy the difference equations

$$
\left\{\begin{array}{l}
\sum_{i=0}^{n} a_{i} \sigma^{n-i}(f)=0 \\
\sum_{i=0}^{m} b_{i} \tau^{m-i}(f)=0
\end{array}\right.
$$

with $a_{i}, b_{i} \in K$. Then $f \in K$.
(1) Theorem "lives" on $\mathbb{G}=\mathbb{G}_{a, \mathbb{C}}, K=\mathbb{C}(\widetilde{\mathbb{G}}), \sigma, \tau \in \operatorname{End}(\mathbb{G})$.
(2) R.Schäfke and M.Singer (JEMS, 2019): a uniform treatment of both theorems, as well as of other similar results.
(3) Adamczewski-Dreyfus-Hardouin-Wibmer (arXiv, October 2020): a remarkable strengthening.

An elliptic analogue

- $\Lambda \subset \mathbb{C}$ lattice, $K_{\Lambda}=\mathbb{C}\left(\wp(z, \Lambda), \not \wp^{\prime}(z, \Lambda)\right)$ field of Λ-elliptic functions.
- $K=\bigcup_{\Lambda \subset \Lambda_{0}} K_{\Lambda}=\mathbb{C}(\widetilde{\mathbb{G}})$ where $\mathbb{G}=\mathbb{C} / \Lambda_{0}$ elliptic curve, $\widehat{K}=\mathbb{C}((z))$.
- $p, q \in \mathbb{Z}$ multiplicatively independent, $\sigma, \tau \in \operatorname{Aut}(K)$, $\sigma f(z)=f(p z), \tau f(z)=f(q z)$, extended to \widehat{K}. Again, $\sigma, \tau \in \operatorname{End}(\mathbb{G})$.

An elliptic analogue

- $\Lambda \subset \mathbb{C}$ lattice, $K_{\Lambda}=\mathbb{C}\left(\wp(z, \Lambda), \not \wp^{\prime}(z, \Lambda)\right)$ field of Λ-elliptic functions.
- $K=\bigcup_{\Lambda \subset \Lambda_{0}} K_{\Lambda}=\mathbb{C}(\widetilde{\mathbb{G}})$ where $\mathbb{G}=\mathbb{C} / \Lambda_{0}$ elliptic curve, $\widehat{K}=\mathbb{C}((z))$.
- $p, q \in \mathbb{Z}$ multiplicatively independent, $\sigma, \tau \in \operatorname{Aut}(K)$, $\sigma f(z)=f(p z), \tau f(z)=f(q z)$, extended to \widehat{K}. Again, $\sigma, \tau \in \operatorname{End}(\mathbb{G})$.

Theorem (dS, 2020)

Suppose $(p, q)=1$. Assume $f \in \widehat{K}$ satisfies the elliptic difference equations

$$
\left\{\begin{array}{l}
\sum_{i=0}^{n} a_{i} \sigma^{n-i}(f)=0 \\
\sum_{i=0}^{m} b_{i} \tau^{m-i}(f)=0
\end{array}\right.
$$

with $a_{i}, b_{i} \in K$. Then $f \in R=K\left[z, z^{-1}, \zeta(z, \Lambda)\right]$ where $\zeta(z, \Lambda)$ (the Weierstrass zeta function) is a primitive of $\wp(z, \Lambda)$ for some $\Lambda \subset \Lambda_{0}$.

Remarks

(1) Do not know if can relax $(p, q)=1$.
(2) Theorem is optimal: any $f \in R$ satisfies simultaneously p - and q - elliptic difference equations.
(3) May ask for a finer result: if coefficients are in K_{Λ}, for which $\Lambda^{\prime} \subset \Lambda$ does $f \in R_{\Lambda^{\prime}}=K_{\Lambda^{\prime}}\left[z, z^{-1}, \zeta\left(z, \Lambda^{\prime}\right)\right]$?

Remarks

(1) Do not know if can relax $(p, q)=1$.
(2) Theorem is optimal: any $f \in R$ satisfies simultaneously p - and q - elliptic difference equations.
(3) May ask for a finer result: if coefficients are in K_{Λ}, for which $\Lambda^{\prime} \subset \Lambda$ does $f \in R_{\Lambda^{\prime}}=K_{\Lambda^{\prime}}\left[z, z^{-1}, \zeta\left(z, \Lambda^{\prime}\right)\right]$?

- Basic difference I: proving that $f \in \mathbb{C}((x))$ is in $\mathbb{C}(x)$ goes by meromorphic continuation, since a function that is everywhere meromorphic (including at the boundary points) is rational. Proving $f \in R$, involves, besides meromorphic continuation to \mathbb{C}, issues of periodicity.
- Basic difference II: f need not be in K ! This is related to the existence of non-trivial vector bundles over $\mathbb{G}=\mathbb{C} / \Lambda_{0}$ which are invariant under pull-back by σ and τ (Atiyah's bundles, 1957). In the rational case, every vector bundle over $\mathbb{G}=\mathbb{G}_{m}$ or \mathbb{G}_{a} is trivial.

「-difference modules

Let K be a field, $\Gamma \rightarrow \operatorname{Aut}(K)$ a group action, $C=K^{\Gamma}$ the constant field.

Definition

A Г-difference module over K is a finite dimensional vector space M over K, equipped with a semi-linear action of Γ, i.e. $\forall \gamma \in \Gamma$ a $\Phi_{\gamma} \in G L_{C}(M)$, s.t.

- $\Phi_{\gamma}(a v)=\gamma(a) \Phi_{\gamma}(v)(a \in K, v \in M)$
- $\Phi_{\gamma \delta}=\Phi_{\gamma} \circ \Phi_{\delta}$

Г-difference modules

Let K be a field, $\Gamma \rightarrow \operatorname{Aut}(K)$ a group action, $C=K^{\Gamma}$ the constant field.

Definition

A Г-difference module over K is a finite dimensional vector space M over K, equipped with a semi-linear action of Γ, i.e. $\forall \gamma \in \Gamma$ a $\Phi_{\gamma} \in G L_{C}(M)$, s.t.

- $\Phi_{\gamma}(a v)=\gamma(a) \Phi_{\gamma}(v)(a \in K, v \in M)$
- $\Phi_{\gamma \delta}=\Phi_{\gamma} \circ \Phi_{\delta}$

Example

In the three examples of $\mathbb{G}=\mathbb{G}_{m}, \mathbb{G}_{a}, \mathbb{C} / \Lambda_{0}$ we have $K=\mathbb{C}(\widetilde{\mathbb{G}})$, $\Gamma=\langle\sigma, \tau\rangle \simeq \mathbb{Z}^{2}(\because p, q$ multiplicatively independent $)$ and

$$
M=\operatorname{Span}_{K}\left\{\sigma^{i} \tau^{j} f\right\} \subset \widehat{K}
$$

Simultaneous Mahler / difference / elliptic difference equations \Leftrightarrow $\operatorname{dim}_{K} M<\infty$.

- The three theorems are derived from theorems stating that under the given assumptions M is "degenerate" in some sense.
- Key point (food for thought):

$$
2=\operatorname{rk}(\Gamma)>\operatorname{tr} \cdot \operatorname{deg} .(K / C)=1
$$

- In the two rational cases "degeneracy" means $M=M_{0} \otimes_{\mathbb{C}} K$ where M_{0} is a \mathbb{C}-representation of Γ (in our case, a pair of commuting $\left.\Phi_{\sigma}, \Phi_{\tau} \in G L\left(M_{0}\right)\right)$ and the action of Γ is extended to M semi-linearly. We say that M can be descended from K to \mathbb{C}, or that it has an underlying \mathbb{C}-structure.
- In the elliptic case M is the elliptic (p, q)-difference module in the title of the lecture, and "degeneracy" will be a more subtle structure theorem (related to the above-mentioned Atiyah vector bundles).

Coordinates and matrices

Let $\Gamma=\langle\sigma, \tau\rangle \simeq \mathbb{Z}^{2} \subset \operatorname{Aut}(K)$ as in the three examples. Let M be a Γ-difference module, e_{1}, \ldots, e_{r} a basis $/ K$.

- $\Phi_{\sigma}\left(e_{j}\right)=\sum_{i=1}^{r} a_{i j} e_{i}, \Phi_{\tau}\left(e_{j}\right)=\sum_{i=1}^{r} b_{i j} e_{i}$
- Only condition: $\Phi_{\sigma} \circ \Phi_{\tau}=\Phi_{\tau} \circ \Phi_{\sigma} \Longleftrightarrow \sigma(B) A=\tau(A) B$, $A^{-1}=\left(a_{i j}\right), B^{-1}=\left(b_{i j}\right)$ (Consistency condition).
- Change of basis $\rightsquigarrow\left(A^{\prime}, B^{\prime}\right)=\left(\sigma(C)^{-1} A C, \tau(C)^{-1} B C\right)$ (Gauge equivalence).

Coordinates and matrices

Let $\Gamma=\langle\sigma, \tau\rangle \simeq \mathbb{Z}^{2} \subset \operatorname{Aut}(K)$ as in the three examples. Let M be a Γ-difference module, e_{1}, \ldots, e_{r} a basis $/ K$.

- $\Phi_{\sigma}\left(e_{j}\right)=\sum_{i=1}^{r} a_{i j} e_{i}, \Phi_{\tau}\left(e_{j}\right)=\sum_{i=1}^{r} b_{i j} e_{i}$
- Only condition: $\Phi_{\sigma} \circ \Phi_{\tau}=\Phi_{\tau} \circ \Phi_{\sigma} \Longleftrightarrow \sigma(B) A=\tau(A) B$, $A^{-1}=\left(a_{i j}\right), B^{-1}=\left(b_{i j}\right)$ (Consistency condition).
- Change of basis $\rightsquigarrow\left(A^{\prime}, B^{\prime}\right)=\left(\sigma(C)^{-1} A C, \tau(C)^{-1} B C\right)$ (Gauge equivalence).

Corollary

The classification of Γ-difference modules over K is equivalent to the classification of consistent pairs (A, B) in $G L_{r}(K) \times G L_{r}(K)$ up to gauge equivalence. Equivalently, the non-abelian cohomology $H^{1}\left(\Gamma, G L_{r}(K)\right)$ (a pointed set only!).

Coordinates and matrices

Let $\Gamma=\langle\sigma, \tau\rangle \simeq \mathbb{Z}^{2} \subset \operatorname{Aut}(K)$ as in the three examples. Let M be a Γ-difference module, e_{1}, \ldots, e_{r} a basis $/ K$.

- $\Phi_{\sigma}\left(e_{j}\right)=\sum_{i=1}^{r} a_{i j} e_{i}, \Phi_{\tau}\left(e_{j}\right)=\sum_{i=1}^{r} b_{i j} e_{i}$
- Only condition: $\Phi_{\sigma} \circ \Phi_{\tau}=\Phi_{\tau} \circ \Phi_{\sigma} \Longleftrightarrow \sigma(B) A=\tau(A) B$, $A^{-1}=\left(a_{i j}\right), B^{-1}=\left(b_{i j}\right)$ (Consistency condition).
- Change of basis $\rightsquigarrow\left(A^{\prime}, B^{\prime}\right)=\left(\sigma(C)^{-1} A C, \tau(C)^{-1} B C\right)$ (Gauge equivalence).

Corollary

The classification of Γ-difference modules over K is equivalent to the classification of consistent pairs (A, B) in $G L_{r}(K) \times G L_{r}(K)$ up to gauge equivalence. Equivalently, the non-abelian cohomology $H^{1}\left(\Gamma, G L_{r}(K)\right)$ (a pointed set only!).

- Replacing $G L_{r}$ by a linear algebraic group G over $K \rightsquigarrow$ " Γ-difference modules with G-structure" (e.g. orthogonal, symplectic, filtrations,...). See R. Kottwitz "Isocrystals with additional structure", Comp.Math. 1985.

「-difference modules over \widehat{K}

Recall either $\widehat{K}=\bigcup_{s \in \mathbb{N}} \mathbb{C}\left(\left(x^{1 / s}\right)\right), \sigma(x)=x^{p}, \tau(x)=x^{q}$ (Mahler case, $\left.\mathbb{G}=\mathbb{G}_{m}\right)$ or $\widehat{K}=\mathbb{C}((x))$, $\sigma(x)=p x, \tau(x)=q x\left(\mathbb{G}=\mathbb{G}_{a}\right.$ or $\left.\mathbb{C} / \Lambda_{0}\right)$.

「-difference modules over \widehat{K}

Recall either $\widehat{K}=\bigcup_{s \in \mathbb{N}} \mathbb{C}\left(\left(x^{1 / s}\right)\right.$), $\sigma(x)=x^{p}, \tau(x)=x^{q}$ (Mahler case, $\left.\mathbb{G}=\mathbb{G}_{m}\right)$ or $\widehat{K}=\mathbb{C}((x))$, $\sigma(x)=p x, \tau(x)=q x\left(\mathbb{G}=\mathbb{G}_{a}\right.$ or $\left.\mathbb{C} / \Lambda_{0}\right)$.

Theorem (Formal structure theorem)

Let M be a Γ-difference module over \widehat{K}. Then $M=M_{0} \otimes_{\mathbb{C}} \widehat{K}$ for a Γ-invariant \mathbb{C}-vector space M_{0}. Equivalently, any consistent pair (A, B) is gauge-equivalent over \widehat{K} to a commuting scalar pair $\left(A_{0}, B_{0}\right)$.
(1) Proof based on theory of Newton polygons and slopes: structure of modules over the twisted polynomial ring $\widehat{K}\left\langle\Phi, \Phi^{-1}\right\rangle$.
(2) Mahler case: $\left(A_{0}, B_{0}\right)$ unique up to conjugation.
(3) Similar theorems for F-isocrystals, by Manin and Dieudonné...

Proof of the Loxton-van der Poorten conjecture

Let $K=\bigcup_{s \in \mathbb{N}} \mathbb{C}\left(x^{1 / s}\right), \sigma(x)=x^{p}, \tau(x)=x^{q}$. Theorem of Adamczewski and Bell follows from:

Theorem

Let M be a 「-difference module. Then $M=M_{0} \otimes_{\mathbb{C}} K$ for a unique Γ-invariant \mathbb{C}-vector space M_{0}.

Proof of the Loxton-van der Poorten conjecture

Let $K=\bigcup_{s \in \mathbb{N}} \mathbb{C}\left(x^{1 / s}\right), \sigma(x)=x^{p}, \tau(x)=x^{q}$. Theorem of Adamczewski and Bell follows from:

Theorem

Let M be a Γ-difference module. Then $M=M_{0} \otimes_{\mathbb{C}} K$ for a unique Γ-invariant \mathbb{C}-vector space M_{0}.

Sketch of proof:

- Let $t_{0}=x, t_{\infty}=1 / x, t_{1}=x-1$, local parameters. For $i=0, \infty, 1$ let $\widehat{\mathscr{O}}_{i}=\mathbb{C}\left[\left[t_{i}\right]\right], \widehat{K}_{i}=\mathbb{C}\left(\left(t_{i}\right)\right)$. Let (A, B) be a consistent pair over K describing M in some basis. By the formal structure theorem, there are $C_{i} \in G L_{r}\left(\widehat{K}_{i}\right)$ such that

$$
\left(\sigma\left(C_{i}\right)^{-1} A C_{i}, \tau\left(C_{i}\right)^{-1} B C_{i}\right)=\left(A_{i}, B_{i}\right) \in G L_{r}(\mathbb{C}) \times G L_{r}(\mathbb{C})
$$

(for $i=0, \infty$ we may have to replace x by $x^{1 / s}$ first).

Let $K=\bigcup_{s \in \mathbb{N}} \mathbb{C}\left(x^{1 / s}\right), \sigma(x)=x^{p}, \tau(x)=x^{q}$. Theorem of Adamczewski and Bell follows from:

Theorem

Let M be a 「-difference module. Then $M=M_{0} \otimes_{\mathbb{C}} K$ for a unique Γ-invariant \mathbb{C}-vector space M_{0}.

Sketch of proof:

- Let $t_{0}=x, t_{\infty}=1 / x, t_{1}=x-1$, local parameters. For $i=0, \infty, 1$ let $\widehat{\mathscr{O}}_{i}=\mathbb{C}\left[\left[t_{i}\right]\right], \widehat{K}_{i}=\mathbb{C}\left(\left(t_{i}\right)\right)$. Let (A, B) be a consistent pair over K describing M in some basis. By the formal structure theorem, there are $C_{i} \in G L_{r}\left(\widehat{K}_{i}\right)$ such that

$$
\left(\sigma\left(C_{i}\right)^{-1} A C_{i}, \tau\left(C_{i}\right)^{-1} B C_{i}\right)=\left(A_{i}, B_{i}\right) \in G L_{r}(\mathbb{C}) \times G L_{r}(\mathbb{C})
$$

(for $i=0, \infty$ we may have to replace x by $x^{1 / s}$ first).

- By weak approximation, replacing (A, B) by a gauge-equivalent pair over K, may assume

$$
C_{i} \in G L_{r}\left(\widehat{\mathscr{O}}_{i}\right)
$$

- Estimates on formal Taylor expansion + local analyticity of A $\Rightarrow C_{i}$ analytic in $\left|t_{i}\right|<\varepsilon$.
- Estimates on formal Taylor expansion + local analyticity of A $\Rightarrow C_{i}$ analytic in $\left|t_{i}\right|<\varepsilon$.
- Functional equation

$$
C_{i}=A^{-1} \sigma\left(C_{i}\right) A_{i}
$$

gives meromorphic continuation of C_{0} to $0 \leq|x|<1$, of C_{∞} to $1<|x| \leq \infty$, of C_{1} to $0<|x|<\infty$. Note, for any $\varepsilon>0$, the union of $\sigma^{n}(D(1, \varepsilon))$ is $\mathbb{P}^{1}-\{0, \infty\}$.

- Estimates on formal Taylor expansion + local analyticity of A $\Rightarrow C_{i}$ analytic in $\left|t_{i}\right|<\varepsilon$.
- Functional equation

$$
C_{i}=A^{-1} \sigma\left(C_{i}\right) A_{i}
$$

gives meromorphic continuation of C_{0} to $0 \leq|x|<1$, of C_{∞} to $1<|x| \leq \infty$, of C_{1} to $0<|x|<\infty$. Note, for any $\varepsilon>0$, the union of $\sigma^{n}(D(1, \varepsilon))$ is $\mathbb{P}^{1}-\{0, \infty\}$.

- $C_{01}=C_{0}^{-1} C_{1}$ meromorphic in $0<|x|<1$ and satisfies

$$
A_{0} C_{01}=\sigma\left(C_{01}\right) A_{1}
$$

This forces C_{01} to be scalar, since Laurent expansions on annuli of analyticity will be supported on $p^{n} \mathbb{Z}$ for any n. Thus C_{1} is analytic at 0 . Similar argument on $C_{\infty 1}=C_{\infty}^{-1} C_{1}$ shows C_{1} is meromorphic everywhere on \mathbb{P}^{1}, hence in $G L_{r}(K)$. QED

Let $K=\bigcup_{\Lambda \subset \Lambda_{0}} K_{\Lambda}, \sigma f(z)=f(z / p), \tau f(z)=f(z / q), p, q \in \mathbb{N}$ multiplicatively independent.

Proposition (dS, CMB 2020)

For $a, b \in \mathbb{C}^{\times}$let $M_{1}(a, b)$ be the module Ke where

$$
\sigma(e)=a^{-1} e, \tau(e)=b^{-1} e
$$

Then every rank 1 elliptic (p, q)-difference module M is isomorphic to a unique $M_{1}(a, b)$. Equivalently, M has a unique \mathbb{C} structure. Equivalently, $H^{1}\left(\Gamma, \mathbb{C}^{\times}\right) \simeq H^{1}\left(\Gamma, K^{\times}\right)$.

Let $K=\bigcup_{\Lambda \subset \Lambda_{0}} K_{\Lambda}, \sigma f(z)=f(z / p), \tau f(z)=f(z / q), p, q \in \mathbb{N}$ multiplicatively independent.

Proposition (dS, CMB 2020)

For $a, b \in \mathbb{C}^{\times}$let $M_{1}(a, b)$ be the module Ke where

$$
\sigma(e)=a^{-1} e, \tau(e)=b^{-1} e
$$

Then every rank 1 elliptic (p, q)-difference module M is isomorphic to a unique $M_{1}(a, b)$. Equivalently, M has a unique \mathbb{C} structure. Equivalently, $H^{1}\left(\Gamma, \mathbb{C}^{\times}\right) \simeq H^{1}\left(\Gamma, K^{\times}\right)$.

In rank 2 this is already false. Let

$$
\begin{gathered}
\zeta(z, \Lambda)=\frac{\sigma^{\prime}(z, \Lambda)}{\sigma(z, \Lambda)} \text { (Weierstrass zeta function) } \\
\zeta^{\prime}(z, \Lambda)=-\wp(z, \Lambda), \zeta(z+\omega, \Lambda)=\zeta(z, \Lambda)+\eta(\omega, \Lambda)(\omega \in \Lambda)
\end{gathered}
$$

where η is the Legendre η-function.

Let
$g_{p}(z, \Lambda)=p \zeta(q z, \Lambda)-\zeta(p q z, \Lambda), g_{q}(z, \Lambda)=q \zeta(p z, \Lambda)-\zeta(p q z, \Lambda)$.
Then $g_{p}, g_{q} \in K$. The matrices

$$
A=\left(\begin{array}{cc}
1 & g_{p}(z, \Lambda) \\
0 & p
\end{array}\right), B=\left(\begin{array}{cc}
1 & g_{q}(z, \Lambda) \\
0 & q
\end{array}\right)
$$

form a consistent pair, and we let $M_{2}^{s t}$ be the associated module:

$$
M_{2}^{s t}=K^{2}, \Phi_{\sigma}(v)=A^{-1} \sigma(v), \Phi_{\tau}(v)=B^{-1} \tau(v)
$$

Let
$g_{p}(z, \Lambda)=p \zeta(q z, \Lambda)-\zeta(p q z, \Lambda), g_{q}(z, \Lambda)=q \zeta(p z, \Lambda)-\zeta(p q z, \Lambda)$.
Then $g_{p}, g_{q} \in K$. The matrices

$$
A=\left(\begin{array}{cc}
1 & g_{p}(z, \Lambda) \\
0 & p
\end{array}\right), B=\left(\begin{array}{cc}
1 & g_{q}(z, \Lambda) \\
0 & q
\end{array}\right)
$$

form a consistent pair, and we let $M_{2}^{s t}$ be the associated module:

$$
M_{2}^{s t}=K^{2}, \Phi_{\sigma}(v)=A^{-1} \sigma(v), \Phi_{\tau}(v)=B^{-1} \tau(v)
$$

Proposition

Every rank 2 elliptic (p, q)-difference module either admits a unique \mathbb{C}-structure or is isomorphic to $M_{2}^{s t}(a, b)=M_{2}^{s t} \otimes M_{1}(a, b)$ for unique $a, b \in \mathbb{C}^{\times}$.

Let M be a rank r module over K, represented by the consistent pair (A, B) in some basis.

- By the formal structure theorem there exists $C \in G L_{r}(\widehat{K})$ such that $\left(\sigma(C)^{-1} A C, \tau(C)^{-1} B C\right)=\left(A_{0}, B_{0}\right)$ is a commuting pair of scalar matrices.

Let M be a rank r module over K, represented by the consistent pair (A, B) in some basis.

- By the formal structure theorem there exists $C \in G L_{r}(\widehat{K})$ such that $\left(\sigma(C)^{-1} A C, \tau(C)^{-1} B C\right)=\left(A_{0}, B_{0}\right)$ is a commuting pair of scalar matrices.
- Let $D \in G L_{r}(K)$ be very close to C. Replacing (A, B) by the gauge-equivalent ($\left.\sigma(D)^{-1} A D, \tau(D)^{-1} B D\right)$ and C by $D^{-1} C$ we may assume $C \in G L_{r}(\widehat{\mathscr{O}})$ where $\widehat{\mathscr{O}}=\mathbb{C}[[z]]$. Then A is analytic at 0 .

Let M be a rank r module over K, represented by the consistent pair (A, B) in some basis.

- By the formal structure theorem there exists $C \in G L_{r}(\widehat{K})$ such that $\left(\sigma(C)^{-1} A C, \tau(C)^{-1} B C\right)=\left(A_{0}, B_{0}\right)$ is a commuting pair of scalar matrices.
- Let $D \in G L_{r}(K)$ be very close to C. Replacing (A, B) by the gauge-equivalent $\left(\sigma(D)^{-1} A D, \tau(D)^{-1} B D\right)$ and C by $D^{-1} C$ we may assume $C \in G L_{r}(\widehat{\mathscr{O}})$ where $\widehat{\mathscr{O}}=\mathbb{C}[[z]]$. Then A is analytic at 0 .
- Estimates on the formal Taylor expansion of $C+$ analyticity of A at $0 \Rightarrow C$ is analytic in $D(0, \varepsilon)$

Let M be a rank r module over K, represented by the consistent pair (A, B) in some basis.

- By the formal structure theorem there exists $C \in G L_{r}(\widehat{K})$ such that $\left(\sigma(C)^{-1} A C, \tau(C)^{-1} B C\right)=\left(A_{0}, B_{0}\right)$ is a commuting pair of scalar matrices.
- Let $D \in G L_{r}(K)$ be very close to C. Replacing (A, B) by the gauge-equivalent $\left(\sigma(D)^{-1} A D, \tau(D)^{-1} B D\right)$ and C by $D^{-1} C$ we may assume $C \in G L_{r}(\widehat{\mathscr{O}})$ where $\widehat{\mathscr{O}}=\mathbb{C}[[z]]$. Then A is analytic at 0 .
- Estimates on the formal Taylor expansion of $C+$ analyticity of A at $0 \Rightarrow C$ is analytic in $D(0, \varepsilon)$
- Functional equation $\sigma(C)=A C A_{0}^{-1}$ and the fact that $\cup \sigma^{n}(D(0, \varepsilon))=\mathbb{C} \Rightarrow C$ is everywhere meromorphic on \mathbb{C}. Unfortunately (or fortunately...) C need not be Λ-periodic for any Λ, as the rank 2 example above shows.

The periodicity theorem

- Let \mathscr{M} be the sheaf of meromorphic functions on \mathbb{C} (in the classical topology), \mathscr{O} the sheaf of holomorphic functions,

$$
\mathscr{G}=G L_{r}(\mathscr{M}), \mathscr{H}=G L_{r}(\mathscr{O}), \mathscr{F}=\mathscr{G} / \mathscr{H} .
$$

- Let \mathscr{M} be the sheaf of meromorphic functions on \mathbb{C} (in the classical topology), \mathscr{O} the sheaf of holomorphic functions,

$$
\mathscr{G}=G L_{r}(\mathscr{M}), \mathscr{H}=G L_{r}(\mathscr{O}), \mathscr{F}=\mathscr{G} / \mathscr{H} .
$$

- Note: $(1) C \in \Gamma(\mathbb{C}, \mathscr{G})(2) \mathscr{F}$ is a sheaf of cosets, its sections are discretely supported (i.e. $s \in \mathscr{F}(U) \Rightarrow\left\{\xi \in U \mid s_{\xi} \neq 0_{\xi}\right\}$ has no accumulation point in U) and (3) the stalk at each ξ,

$$
\mathscr{F}_{\xi}=G L_{r}(\mathbb{C}((z-\xi))) / G L_{r}(\mathbb{C}[[z-\xi]])
$$

is an affine Grassmanian.

- Let \mathscr{M} be the sheaf of meromorphic functions on \mathbb{C} (in the classical topology), \mathscr{O} the sheaf of holomorphic functions,

$$
\mathscr{G}=G L_{r}(\mathscr{M}), \mathscr{H}=G L_{r}(\mathscr{O}), \mathscr{F}=\mathscr{G} / \mathscr{H} .
$$

- Note: $(1) C \in \Gamma(\mathbb{C}, \mathscr{G})(2) \mathscr{F}$ is a sheaf of cosets, its sections are discretely supported (i.e. $s \in \mathscr{F}(U) \Rightarrow\left\{\xi \in U \mid s_{\xi} \neq 0_{\xi}\right\}$ has no accumulation point in U) and (3) the stalk at each ξ,

$$
\mathscr{F}_{\xi}=G L_{r}(\mathbb{C}((z-\xi))) / G L_{r}(\mathbb{C}[[z-\xi]])
$$

is an affine Grassmanian.

- We identify the stalk at ξ and the stalk at $\xi+\omega(w \in \Lambda)$ via translation. We call $s \in \Gamma(\mathbb{C}, \mathscr{F}) \Lambda$-periodic if $s_{\xi}=s_{\xi+\omega}$ for every $\xi \in \mathbb{C}, \omega \in \Lambda$. We denote by $\Gamma_{\Lambda}(\mathbb{C}, \mathscr{F})$ the Λ-periodic sections of \mathscr{F}.
- Let \mathscr{M} be the sheaf of meromorphic functions on \mathbb{C} (in the classical topology), \mathscr{O} the sheaf of holomorphic functions,

$$
\mathscr{G}=G L_{r}(\mathscr{M}), \mathscr{H}=G L_{r}(\mathscr{O}), \mathscr{F}=\mathscr{G} / \mathscr{H} .
$$

- Note: $(1) C \in \Gamma(\mathbb{C}, \mathscr{G})(2) \mathscr{F}$ is a sheaf of cosets, its sections are discretely supported (i.e. $s \in \mathscr{F}(U) \Rightarrow\left\{\xi \in U \mid s_{\xi} \neq 0_{\xi}\right\}$ has no accumulation point in U) and (3) the stalk at each ξ,

$$
\mathscr{F}_{\xi}=G L_{r}(\mathbb{C}((z-\xi))) / G L_{r}(\mathbb{C}[[z-\xi]])
$$

is an affine Grassmanian.

- We identify the stalk at ξ and the stalk at $\xi+\omega(w \in \Lambda)$ via translation. We call $s \in \Gamma(\mathbb{C}, \mathscr{F}) \Lambda$-periodic if $s_{\xi}=s_{\xi+\omega}$ for every $\xi \in \mathbb{C}, \omega \in \Lambda$. We denote by $\Gamma_{\Lambda}(\mathbb{C}, \mathscr{F})$ the Λ-periodic sections of \mathscr{F}.
- If $s \in \Gamma(\mathbb{C}, \mathscr{F})$ we call $s^{\prime} \in \Gamma(\mathbb{C}, \mathscr{F})$ a modification at 0 of s if $\left.s\right|_{\mathbb{C}-\{0\}}=\left.s^{\prime}\right|_{\mathbb{C}-\{0\}}$.

Theorem (Periodicity Theorem)

Assume $(p, q)=1$. Let $\bar{C} \in \Gamma(\mathbb{C}, \mathscr{F})$ be the image of $C \in \Gamma(\mathbb{C}, \mathscr{G})$. Then there exists a modification of \bar{C} at 0 , denoted s, which is Λ-periodic, i.e. $s \in \Gamma_{\Lambda}(\mathbb{C}, \mathscr{F})$ for some $\Lambda \subset \Lambda_{0}$.

Theorem (Periodicity Theorem)

Assume $(p, q)=1$. Let $\bar{C} \in \Gamma(\mathbb{C}, \mathscr{F})$ be the image of $C \in \Gamma(\mathbb{C}, \mathscr{G})$. Then there exists a modification of \bar{C} at 0 , denoted s, which is Λ-periodic, i.e. $s \in \Gamma_{\Lambda}(\mathbb{C}, \mathscr{F})$ for some $\Lambda \subset \Lambda_{0}$.

Example. $r=1, \mathscr{F}=\mathscr{M}^{\times} / \mathscr{O}^{\times} \stackrel{\text { deg }}{=} \underline{\mathbb{Z}}$. Here $C(z)$ is a global meromorphic function such that $C(p z) / C(z)$ and $C(q z) / C(z)$ are both elliptic. The theorem says that a suitable modification at 0 of the divisor of C is periodic. In this case, by Abel-Jacobi we can infer that $z^{m} C(z)$ itself must be periodic for a suitable m.

Theorem (Periodicity Theorem)

Assume $(p, q)=1$. Let $\bar{C} \in \Gamma(\mathbb{C}, \mathscr{F})$ be the image of $C \in \Gamma(\mathbb{C}, \mathscr{G})$. Then there exists a modification of \bar{C} at 0 , denoted s, which is Λ-periodic, i.e. $s \in \Gamma_{\Lambda}(\mathbb{C}, \mathscr{F})$ for some $\Lambda \subset \Lambda_{0}$.

Example. $r=1, \mathscr{F}=\mathscr{M}^{\times} / \mathscr{O}^{\times} \stackrel{\text { deg }}{=} \underline{\mathbb{Z}}$. Here $C(z)$ is a global meromorphic function such that $C(p z) / C(z)$ and $C(q z) / C(z)$ are both elliptic. The theorem says that a suitable modification at 0 of the divisor of C is periodic. In this case, by Abel-Jacobi we can infer that $z^{m} C(z)$ itself must be periodic for a suitable m.

- Fix $\Lambda, \mathbb{A}_{\Lambda}=\prod_{\xi \in \mathbb{C} / \Lambda}^{\prime} \widehat{K}_{\xi} \supset \mathbb{O}_{\Lambda}=\prod_{\xi \in \mathbb{C} / \Lambda} \widehat{\mathscr{O}}_{\xi}$ adeles of K_{Λ}
- $s \in \Gamma_{\Lambda}(\mathbb{C}, \mathscr{F})=G L_{r}\left(\mathbb{A}_{\Lambda}\right) / G L_{r}\left(\mathbb{O}_{\Lambda}\right)$.
- C is determined by M only up to $C \rightsquigarrow D C$ with $D \in G L_{r}\left(K_{\Lambda}\right) \Rightarrow$ a well-defined

$$
[s] \in B u n_{r, \Lambda}=G L_{r}\left(K_{\Lambda}\right) \backslash G L_{r}\left(\mathbb{A}_{\Lambda}\right) / G L_{r}\left(\mathbb{O}_{\Lambda}\right)
$$

- Recall Bun r, Λ classifies isomorphism classes of vector bundles of rank r on the elliptic curve \mathbb{C} / Λ.
- $M \rightsquigarrow C \rightsquigarrow s$ (periodic modification at 0 of $\bar{C}) \rightsquigarrow[s]=\left[\mathscr{E}_{\Lambda}\right]$
- Functoriality: If $\Lambda^{\prime} \subset \Lambda$ then $p r_{\Lambda^{\prime}, \Lambda}^{*}\left(\mathscr{E}_{\Lambda}\right) \simeq \mathscr{E}_{\Lambda^{\prime}}$. Also, $\mathscr{E}_{\Lambda} \simeq[p]^{*}\left(\mathscr{E}_{\Lambda}\right)$.
- Recall Bun $r_{r, \Lambda}$ classifies isomorphism classes of vector bundles of rank r on the elliptic curve \mathbb{C} / Λ.
- $M \rightsquigarrow C \rightsquigarrow s$ (periodic modification at 0 of $\bar{C}) \rightsquigarrow[s]=\left[\mathscr{E}_{\Lambda}\right]$
- Functoriality: If $\Lambda^{\prime} \subset \Lambda$ then $p r_{\Lambda^{\prime}, \Lambda}^{*}\left(\mathscr{E}_{\Lambda}\right) \simeq \mathscr{E}_{\Lambda^{\prime}}$. Also, $\mathscr{E}_{\Lambda} \simeq[p]^{*}\left(\mathscr{E}_{\Lambda}\right)$.
Atiyah (1957) classified vector bundles on elliptic curves.

Theorem (Atiyah)

For each r there exists a unique vector bundle \mathscr{F}_{r} on \mathbb{C} / Λ which is indecomposable of rank r, has degree 0 and admits non-trivial global sections.

Proposition

(i) Given M, there exists a unique partition

$$
(*) r=r_{1}+r_{2}+\cdots+r_{k}, \quad r_{1} \leq r_{2} \leq \cdots \leq r_{k}
$$

such that for all small enough Λ the vector bundle \mathscr{E}_{Λ} is isomorphic to $\mathscr{F}_{r_{1}} \oplus \cdots \oplus \mathscr{F}_{r_{k}}$.
(ii) The vector bundle \mathscr{F}_{r} corresponds to the class $\left[U_{r}\right] \in$ Bun $_{r, \Lambda}$ where

$$
U_{r}=\exp \left(\zeta(z, \Lambda) N_{r}\right)
$$

and N_{r} is the nilpotent matrix with 1 in the $(i, i+1)$ entry $(1 \leq i \leq r-1)$ and 0 elsewhere.

Call $(*)$ the type of M.

Proposition

(i) Given M, there exists a unique partition

$$
(*) r=r_{1}+r_{2}+\cdots+r_{k}, \quad r_{1} \leq r_{2} \leq \cdots \leq r_{k}
$$

such that for all small enough Λ the vector bundle \mathscr{E}_{Λ} is isomorphic to $\mathscr{F}_{r_{1}} \oplus \cdots \oplus \mathscr{F}_{r_{k}}$.
(ii) The vector bundle \mathscr{F}_{r} corresponds to the class $\left[U_{r}\right] \in$ Bun $_{r, \Lambda}$ where

$$
U_{r}=\exp \left(\zeta(z, \Lambda) N_{r}\right)
$$

and N_{r} is the nilpotent matrix with 1 in the $(i, i+1)$ entry $(1 \leq i \leq r-1)$ and 0 elsewhere.

Call $(*)$ the type of M.

- M admits a \mathbb{C}-structure \Leftrightarrow its type is $(1,1, \ldots, 1)$
- From now on assume (to simplify the presentation) that the type of M is (r), i.e. \mathscr{E}_{Λ} is indecomposable.
- $[s]=\left[U_{r}\right] \in$ Bun $_{r, \Lambda}$ implies that, after a gauge transformation, we may assume

$$
C=U_{r} D
$$

and D is everhwhere holomorphic (with a holomorphic inverse), except possibly at 0 .

- $[s]=\left[U_{r}\right] \in$ Bun $_{r, \Lambda}$ implies that, after a gauge transformation, we may assume

$$
C=U_{r} D
$$

and D is everhwhere holomorphic (with a holomorphic inverse), except possibly at 0 .

- Letting $T=D(z / p) A_{0} D(z)^{-1}$ and $S=D(z / q) B_{0} D(z)^{-1}$ the matrices T and S are in $G L_{r}(\mathscr{O})$ and

$$
\text { (1) } A=U_{r}(z / p) T U_{r}(z)^{-1}, B=U_{r}(z / q) S U_{r}(z)^{-1} .
$$

- $[s]=\left[U_{r}\right] \in$ Bun $_{r, \Lambda}$ implies that, after a gauge transformation, we may assume

$$
C=U_{r} D
$$

and D is everhwhere holomorphic (with a holomorphic inverse), except possibly at 0 .

- Letting $T=D(z / p) A_{0} D(z)^{-1}$ and $S=D(z / q) B_{0} D(z)^{-1}$ the matrices T and S are in $G L_{r}(\mathscr{O})$ and

$$
\text { (1) } A=U_{r}(z / p) T U_{r}(z)^{-1}, B=U_{r}(z / q) S U_{r}(z)^{-1}
$$

Lemma (Key Lemma)

After conjugation by a scalar matrix commuting with U_{r} this forces
(2) $T=a \cdot \operatorname{diag}\left[1, p, p^{2}, \ldots, p^{r-1}\right], S=b \cdot \operatorname{diag}\left[1, q, q^{2}, \ldots, q^{r-1}\right]$ for some $a, b \in \mathbb{C}^{\times}$.

Theorem（Main Structure Theorem for type（ r ））

If the type of M is (r) then，up to a twist by $M_{1}(a, b), M \simeq M_{r}^{s t}$ where $M_{r}^{\text {st }}$ corresponds to the consistent pair (A, B) given by（1） and（2）．

Theorem (Main Structure Theorem for type (r))

If the type of M is (r) then, up to a twist by $M_{1}(a, b), M \simeq M_{r}^{s t}$ where $M_{r}^{\text {st }}$ corresponds to the consistent pair (A, B) given by (1) and (2).

Final remarks.

(1) The Key Lemma and the Periodicity Theorem are the main technical steps.
(2) When the type is arbitrary, a more complicated structure theorem, but still completely explicit.
(3) The theorem asserting that $f \in \widehat{K}$ satisfying simultaneously elliptic p - and q-difference equations lies in $R=K\left[z, z^{-1}, \zeta(z, \Lambda)\right]$ follows from the Main Structure Theorem applied to

$$
M=\operatorname{Span}_{K}\left(\sigma^{i} \tau^{j} f\right) \subset \widehat{K}
$$

Periodicity Theorem $(r=1)$

- When r (the rank of M) is 1 , the affine Grassmanian

$$
\mathscr{F}_{\zeta} \simeq \mathbb{C}((z-\zeta))^{\times} / \mathbb{C}[[z-\zeta]]^{\times} \simeq \mathbb{Z}
$$

is a group, and the Periodicity Theorem follows from:

Theorem

Let $s: \mathbb{R}^{d} \rightarrow \mathbb{Z}$ be a discretely supported function. Suppose $p, q \in \mathbb{N}, p, q \geq 2,(p, q)=1$. If both $s_{p}(x)=s(p x)-s(x)$ and $s_{q}(x)=s(q x)-s(x)$ are \mathbb{Z}^{d}-periodic, then after modifying s at 0 it becomes Λ-periodic for some lattice $\Lambda \subset \mathbb{Z}^{d}$.

Periodicity Theorem $(r=1)$

- When r (the rank of M) is 1 , the affine Grassmanian

$$
\mathscr{F}_{\zeta} \simeq \mathbb{C}((z-\zeta))^{\times} / \mathbb{C}[[z-\zeta]]^{\times} \simeq \mathbb{Z}
$$

is a group, and the Periodicity Theorem follows from:

Theorem

Let $s: \mathbb{R}^{d} \rightarrow \mathbb{Z}$ be a discretely supported function. Suppose $p, q \in \mathbb{N}, p, q \geq 2,(p, q)=1$. If both $s_{p}(x)=s(p x)-s(x)$ and $s_{q}(x)=s(q x)-s(x)$ are \mathbb{Z}^{d}-periodic, then after modifying s at 0 it becomes Λ-periodic for some lattice $\Lambda \subset \mathbb{Z}^{d}$.

If s_{p} is any discretely supported \mathbb{Z}^{d}-periodic function

$$
s(x)=\sum_{i=1}^{\infty} s_{p}\left(x / p^{i}\right)
$$

is discretely supported, and satisfies $s_{p}(x)=s(p x)-s(x)$, but need not be periodic.

The proof breaks into (i) periodicity on \mathbb{Q}^{d} (ii) periodicity on $\mathbb{R}^{d}-\mathbb{Q}^{d}$, and uses different arguments in each case.

- Let S be a finite set of primes. For $x \in \mathbb{Z}$ write $x_{S}^{\prime}=\prod_{p \in S} p^{-\operatorname{ord}_{p}(x)_{X}}$ (the S-deprived part of x). Fix $N \geq 1$ and say $x \sim_{S} y$ if $\operatorname{ord}_{p}(x)=\operatorname{ord}_{p}(y)$ for all $p \in S$ and also $x_{S}^{\prime} \equiv y_{S}^{\prime} \bmod N$. The key to the case (i) is the following elementary Lemma.

Lemma

Let S and T be disjoint nonempty finite sets of primes, $N \geq 1$. Let \sim be the equivalence relation on \mathbb{Z} generated by \sim_{S} and \sim_{T}. Then if x, y are non-zero, $x \sim y \Leftrightarrow x \equiv y \bmod N$.

Key Lemma ($\mathrm{r}=2$)

Need to study the consequences of the functional equation

$$
A(z) U(z)=U(z / p) T(z)
$$

where

$$
A=\left(\begin{array}{ll}
a(z) & b(z) \\
c(z) & d(z)
\end{array}\right), U=\left(\begin{array}{cc}
1 & \zeta(z) \\
0 & 1
\end{array}\right), T=\left(\begin{array}{cc}
\alpha(z) & \beta(z) \\
\gamma(z) & \delta(z)
\end{array}\right)
$$

$a, b, c, d \Lambda$-elliptic, $\zeta(z)=\zeta(p q z, \Lambda)$, and $\alpha, \beta, \gamma, \delta$ everywhere holomorphic.

Key Lemma ($\mathrm{r}=2$)

Need to study the consequences of the functional equation

$$
A(z) U(z)=U(z / p) T(z)
$$

where

$$
A=\left(\begin{array}{ll}
a(z) & b(z) \\
c(z) & d(z)
\end{array}\right), U=\left(\begin{array}{cc}
1 & \zeta(z) \\
0 & 1
\end{array}\right), T=\left(\begin{array}{cc}
\alpha(z) & \beta(z) \\
\gamma(z) & \delta(z)
\end{array}\right)
$$

$a, b, c, d \Lambda$-elliptic, $\zeta(z)=\zeta(p q z, \Lambda)$, and $\alpha, \beta, \gamma, \delta$ everywhere holomorphic.

- $\left(\begin{array}{c}*\end{array}\right) \rightsquigarrow c(z)=\gamma(z)$ constant (both elliptic and entire)

Key Lemma ($\mathrm{r}=2$)

Need to study the consequences of the functional equation

$$
A(z) U(z)=U(z / p) T(z)
$$

where

$$
A=\left(\begin{array}{ll}
a(z) & b(z) \\
c(z) & d(z)
\end{array}\right), U=\left(\begin{array}{cc}
1 & \zeta(z) \\
0 & 1
\end{array}\right), T=\left(\begin{array}{cc}
\alpha(z) & \beta(z) \\
\gamma(z) & \delta(z)
\end{array}\right)
$$

$a, b, c, d \Lambda$-elliptic, $\zeta(z)=\zeta(p q z, \Lambda)$, and $\alpha, \beta, \gamma, \delta$ everywhere holomorphic.

- $\left(\begin{array}{c}*\end{array}\right) \rightsquigarrow c(z)=\gamma(z)$ constant (both elliptic and entire)
- ($\left.\quad \begin{array}{l} \\ *\end{array}\right) \rightsquigarrow$ Bootstrapping: $c \zeta(z)+d(z)=\delta(z) \Rightarrow c=\gamma=0$ (take $\left.\sum_{z \in \mathbb{C} / \Lambda} \operatorname{Res}_{z}\right) \Rightarrow d(z)=\delta(z)$ constant.
$\bullet\left(\begin{array}{c}* \\ \end{array}\right) \rightsquigarrow$ Rescale: $\delta=d=p$. Now $a(z)=\alpha(z)$, so constant too.
- $\binom{*}{$ too. }\rightsquigarrow Rescale: $\delta=d=p$. Now $a(z)=\alpha(z)$, so constant
- $\left(\begin{array}{c}*\end{array}\right) \rightsquigarrow a \zeta(z)+b(z)=p \zeta(z / p)+\beta(z) \Rightarrow($ take
$\left.\sum_{z \in \mathbb{C} / \Lambda} \operatorname{Res}_{z}\right) a=\alpha=1$, but then

$$
\zeta(z)-p \zeta(z / p)=g_{p}(z)=\beta(z)-b(z)
$$

so $\beta(z)$ is both elliptic and holomorphic, hence constant.

- $\left(\begin{array}{c}* \\ \end{array}\right) \rightsquigarrow$ Rescale: $\delta=d=p$. Now $a(z)=\alpha(z)$, so constant too.
- $\left(\begin{array}{c}*\end{array}\right) \rightsquigarrow a \zeta(z)+b(z)=p \zeta(z / p)+\beta(z) \Rightarrow($ take $\left.\sum_{z \in \mathbb{C} / \Lambda} \operatorname{Res}_{z}\right) a=\alpha=1$, but then

$$
\zeta(z)-p \zeta(z / p)=g_{p}(z)=\beta(z)-b(z)
$$

so $\beta(z)$ is both elliptic and holomorphic, hence constant.

- Conjugating all matrices by an upper unipotent matrix may assume $\beta=0$. Thus

$$
T=\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right), A=\left(\begin{array}{cc}
1 & g_{p}(z) \\
0 & p
\end{array}\right)
$$

- $\left(\begin{array}{c}* \\ \end{array}\right) \rightsquigarrow$ Rescale: $\delta=d=p$. Now $a(z)=\alpha(z)$, so constant too.
- $\left(\begin{array}{c}*\end{array}\right) \rightsquigarrow a \zeta(z)+b(z)=p \zeta(z / p)+\beta(z) \Rightarrow($ take $\left.\sum_{z \in \mathbb{C} / \Lambda} \operatorname{Res}_{z}\right) a=\alpha=1$, but then

$$
\zeta(z)-p \zeta(z / p)=g_{p}(z)=\beta(z)-b(z)
$$

so $\beta(z)$ is both elliptic and holomorphic, hence constant.

- Conjugating all matrices by an upper unipotent matrix may assume $\beta=0$. Thus

$$
T=\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right), A=\left(\begin{array}{cc}
1 & g_{p}(z) \\
0 & p
\end{array}\right)
$$

- Higher r : same principles, only the algebra is more involved.

Thank you for your attention!

- The details can be found at

$$
\text { arXiv : } 2007.09508
$$

- Stay tuned for Hardouin's lecture on Friday!

