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The conjecture of Loxton and van der Poorten

K =
⋃

s∈NC(x1/s), K̂ =
⋃

s∈NC((x1/s)) (Puiseux power series)

σ ,τ ∈ Aut(K ): σ(x) = xp, τ(x) = xq (p,q ∈ N
multiplicatively independent), extended to K̂

Theorem (Adamczewski-Bell, 2017)

Let f ∈ K̂ satisfy the Mahler equations{
∑
n
i=0 aiσ

n−i (f ) = 0

∑
m
i=0 biτ

m−i (f ) = 0

with ai ,bi ∈ K . Then f ∈ K .

1 It follows that if ai ,bi ∈ C(x) and f ∈ C((x)) then f ∈ C(x).

2 The theorem �lives� on G = Gm,C, K = C(G̃) (universal
covering), σ ,τ ∈ End(G).
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An additive analogue

K = C(x), K̂ = C((x))

σ ,τ ∈ Aut(K ) : σ(x) = px , τ(x) = qx (p,q ∈ C×
multiplicatively independent), extended to K̂ .

Theorem (Bézivin-Boutabaa, 1992)

Let f ∈ K̂ satisfy the di�erence equations{
∑
n
i=0 aiσ

n−i (f ) = 0

∑
m
i=0 biτ

m−i (f ) = 0

with ai ,bi ∈ K . Then f ∈ K .

1 Theorem �lives� on G = Ga,C, K = C(G̃), σ ,τ ∈ End(G).
2 R.Schäfke and M.Singer (JEMS, 2019): a uniform treatment

of both theorems, as well as of other similar results.
3 Adamczewski-Dreyfus-Hardouin-Wibmer (arXiv, October

2020): a remarkable strengthening.
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An elliptic analogue

Λ⊂ C lattice, KΛ = C(℘(z ,Λ),℘′(z ,Λ)) �eld of Λ-elliptic
functions.

K =
⋃

Λ⊂Λ0
KΛ = C(G̃) where G = C/Λ0 elliptic curve,

K̂ = C((z)).

p,q ∈ Z multiplicatively independent, σ ,τ ∈ Aut(K ),
σ f (z) = f (pz), τf (z) = f (qz), extended to K̂ . Again,
σ ,τ ∈ End(G).

Theorem (dS, 2020 )

Suppose (p,q) = 1. Assume f ∈ K̂ satis�es the elliptic di�erence

equations {
∑
n
i=0 aiσ

n−i (f ) = 0

∑
m
i=0 biτ

m−i (f ) = 0

with ai ,bi ∈ K . Then f ∈ R = K [z ,z−1,ζ (z ,Λ)] where ζ (z ,Λ) (the

Weierstrass zeta function) is a primitive of ℘(z ,Λ) for some Λ⊂ Λ0.
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Remarks

1 Do not know if can relax (p,q) = 1.

2 Theorem is optimal: any f ∈ R satis�es simultaneously p- and
q- elliptic di�erence equations.

3 May ask for a �ner result: if coe�cients are in KΛ, for which
Λ′ ⊂ Λ does f ∈ RΛ′ = KΛ′ [z ,z

−1,ζ (z ,Λ′)]?

Basic di�erence I: proving that f ∈ C((x)) is in C(x) goes by
meromorphic continuation, since a function that is everywhere
meromorphic (including at the boundary points) is rational.
Proving f ∈ R , involves, besides meromorphic continuation to
C, issues of periodicity.
Basic di�erence II: f need not be in K ! This is related to the
existence of non-trivial vector bundles over G = C/Λ0 which
are invariant under pull-back by σ and τ (Atiyah's bundles,
1957). In the rational case, every vector bundle over G = Gm

or Ga is trivial.
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Γ-di�erence modules

Let K be a �eld, Γ→ Aut(K ) a group action, C = KΓ the constant
�eld.

De�nition

A Γ-di�erence module over K is a �nite dimensional vector space
M over K , equipped with a semi-linear action of Γ, i.e. ∀γ ∈ Γ a
Φγ ∈ GLC (M), s.t.

Φγ (av) = γ(a)Φγ (v) (a ∈ K , v ∈M)

Φγδ = Φγ ◦Φδ

Example

In the three examples of G = Gm, Ga, C/Λ0 we have K = C(G̃),
Γ = 〈σ ,τ〉 ' Z2 (∵ p,q multiplicatively independent) and

M = SpanK
{

σ
i
τ
j f
}
⊂ K̂ .

Simultaneous Mahler / di�erence / elliptic di�erence equations ⇔
dimK M < ∞.
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The three theorems are derived from theorems stating that
under the given assumptions M is �degenerate� in some
sense.

Key point (food for thought):

2 = rk(Γ) > tr.deg.(K/C ) = 1.

In the two rational cases �degeneracy� means M = M0⊗CK
where M0 is a C-representation of Γ (in our case, a pair of
commuting Φσ ,Φτ ∈ GL(M0)) and the action of Γ is extended
to M semi-linearly. We say that M can be descended from K
to C, or that it has an underlying C-structure.
In the elliptic case M is the elliptic (p,q)-di�erence module in
the title of the lecture, and �degeneracy� will be a more subtle
structure theorem (related to the above-mentioned Atiyah
vector bundles).

Ehud de Shalit Di�erence equations over �elds of elliptic functions



Coordinates and matrices

Let Γ = 〈σ ,τ〉 ' Z2 ⊂ Aut(K ) as in the three examples. Let M be
a Γ-di�erence module, e1, . . . ,er a basis /K .

Φσ (ej) = ∑
r
i=1 aijei , Φτ (ej) = ∑

r
i=1 bijei

Only condition: Φσ ◦Φτ = Φτ ◦Φσ ⇐⇒ σ(B)A = τ(A)B ,
A−1 = (aij), B

−1 = (bij) (Consistency condition).

Change of basis  (A′,B ′) = (σ(C )−1AC ,τ(C )−1BC ) (Gauge
equivalence).

Corollary

The classi�cation of Γ-di�erence modules over K is equivalent to

the classi�cation of consistent pairs (A,B) in GLr (K )×GLr (K ) up

to gauge equivalence. Equivalently, the non-abelian cohomology

H1(Γ,GLr (K )) (a pointed set only!).

Replacing GLr by a linear algebraic group G over K  
”Γ-di�erence modules with G -structure� (e.g. orthogonal,

symplectic, �ltrations,...). See R. Kottwitz �Isocrystals with
additional structure�, Comp.Math. 1985.
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Γ-di�erence modules over K̂

Recall either K̂ =
⋃

s∈NC((x1/s)), σ(x) = xp, τ(x) = xq (Mahler

case, G = Gm) or K̂ = C((x)), σ(x) = px , τ(x) = qx (G = Ga or
C/Λ0).

Theorem (Formal structure theorem)

Let M be a Γ-di�erence module over K̂ . Then M = M0⊗C K̂ for a

Γ-invariant C-vector space M0. Equivalently, any consistent pair

(A,B) is gauge-equivalent over K̂ to a commuting scalar pair

(A0,B0).

1 Proof based on theory of Newton polygons and slopes:
structure of modules over the twisted polynomial ring
K̂
〈
Φ,Φ−1

〉
.

2 Mahler case: (A0,B0) unique up to conjugation.

3 Similar theorems for F -isocrystals, by Manin and Dieudonné...
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Proof of the Loxton-van der Poorten conjecture

Let K =
⋃

s∈NC(x1/s),σ(x) = xp,τ(x) = xq. Theorem of
Adamczewski and Bell follows from:

Theorem

Let M be a Γ-di�erence module. Then M = M0⊗CK for a unique

Γ-invariant C-vector space M0.

Sketch of proof:

Let t0 = x , t∞ = 1/x , t1 = x−1, local parameters. For
i = 0,∞,1 let Ôi = C[[ti ]], K̂i = C((ti )). Let (A,B) be a
consistent pair over K describing M in some basis. By the
formal structure theorem, there are Ci ∈ GLr (K̂i ) such that

(σ(Ci )
−1ACi ,τ(Ci )

−1BCi ) = (Ai ,Bi ) ∈ GLr (C)×GLr (C)

(for i = 0,∞ we may have to replace x by x1/s �rst).

By weak approximation, replacing (A,B) by a
gauge-equivalent pair over K , may assume

Ci ∈ GLr (Ôi ).
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Estimates on formal Taylor expansion + local analyticity of A
⇒ Ci analytic in |ti |< ε.

Functional equation

Ci = A−1σ(Ci )Ai ,

gives meromorphic continuation of C0 to 0≤ |x |< 1, of C∞ to
1< |x | ≤ ∞, of C1 to 0< |x |< ∞. Note, for any ε > 0, the
union of σn(D(1,ε)) is P1−{0,∞}.

C01 = C−10 C1 meromorphic in 0< |x |< 1 and satis�es

A0C01 = σ(C01)A1.

This forces C01 to be scalar, since Laurent expansions on
annuli of analyticity will be supported on pnZ for any n. Thus
C1 is analytic at 0. Similar argument on C∞1 = C−1∞ C1 shows
C1 is meromorphic everywhere on P1, hence in GLr (K ). QED
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Elliptic (p,q)-di�erence modules of rank 1,2

Let K =
⋃

Λ⊂Λ0
KΛ, σ f (z) = f (z/p), τf (z) = f (z/q), p,q ∈ N

multiplicatively independent.

Proposition (dS, CMB 2020 )

For a,b ∈ C× let M1(a,b) be the module Ke where

σ(e) = a−1e, τ(e) = b−1e.

Then every rank 1 elliptic (p,q)-di�erence module M is isomorphic

to a unique M1(a,b). Equivalently, M has a unique C structure.

Equivalently, H1(Γ,C×)' H1(Γ,K×).

In rank 2 this is already false. Let

ζ (z ,Λ) =
σ ′(z ,Λ)

σ(z ,Λ)
(Weierstrass zeta function)

ζ
′(z ,Λ) =−℘(z ,Λ), ζ (z + ω,Λ) = ζ (z ,Λ) + η(ω,Λ) (ω ∈ Λ)

where η is the Legendre η-function.
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Let

gp(z ,Λ) = pζ (qz ,Λ)−ζ (pqz ,Λ), gq(z ,Λ) = qζ (pz ,Λ)−ζ (pqz ,Λ).

Then gp,gq ∈ K . The matrices

A =

(
1 gp(z ,Λ)
0 p

)
, B =

(
1 gq(z ,Λ)
0 q

)
form a consistent pair, and we let Mst

2 be the associated module:

Mst
2 = K 2, Φσ (v) = A−1σ(v), Φτ (v) = B−1τ(v).

Proposition

Every rank 2 elliptic (p,q)-di�erence module either admits a unique

C-structure or is isomorphic to Mst
2 (a,b) = Mst

2 ⊗M1(a,b) for

unique a,b ∈ C×.
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The classi�cation theorem: �rst steps

Let M be a rank r module over K , represented by the consistent
pair (A,B) in some basis.

By the formal structure theorem there exists C ∈ GLr (K̂ ) such
that (σ(C )−1AC ,τ(C )−1BC ) = (A0,B0) is a commuting pair
of scalar matrices.

Let D ∈ GLr (K ) be very close to C . Replacing (A,B) by the
gauge-equivalent (σ(D)−1AD,τ(D)−1BD) and C by D−1C
we may assume C ∈ GLr (Ô) where Ô = C[[z ]]. Then A is
analytic at 0.

Estimates on the formal Taylor expansion of C + analyticity of
A at 0 ⇒ C is analytic in D(0,ε)

Functional equation σ(C ) = ACA−10 and the fact that⋃
σn(D(0,ε)) = C ⇒ C is everywhere meromorphic on C.

Unfortunately (or fortunately...) C need not be Λ-periodic for any

Λ, as the rank 2 example above shows.
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analytic at 0.

Estimates on the formal Taylor expansion of C + analyticity of
A at 0 ⇒ C is analytic in D(0,ε)

Functional equation σ(C ) = ACA−10 and the fact that⋃
σn(D(0,ε)) = C ⇒ C is everywhere meromorphic on C.

Unfortunately (or fortunately...) C need not be Λ-periodic for any

Λ, as the rank 2 example above shows.



The classi�cation theorem: �rst steps

Let M be a rank r module over K , represented by the consistent
pair (A,B) in some basis.

By the formal structure theorem there exists C ∈ GLr (K̂ ) such
that (σ(C )−1AC ,τ(C )−1BC ) = (A0,B0) is a commuting pair
of scalar matrices.

Let D ∈ GLr (K ) be very close to C . Replacing (A,B) by the
gauge-equivalent (σ(D)−1AD,τ(D)−1BD) and C by D−1C
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The periodicity theorem

Let M be the sheaf of meromorphic functions on C (in the
classical topology), O the sheaf of holomorphic functions,

G = GLr (M ), H = GLr (O), F = G /H .

Note: (1) C ∈ Γ(C,G ) (2) F is a sheaf of cosets, its sections
are discretely supported (i.e. s ∈F (U)⇒{ξ ∈ U|sξ 6= 0ξ}
has no accumulation point in U) and (3) the stalk at each ξ ,

Fξ = GLr (C((z−ξ )))/GLr (C[[z−ξ ]])

is an a�ne Grassmanian.

We identify the stalk at ξ and the stalk at ξ + ω (w ∈ Λ) via
translation. We call s ∈ Γ(C,F ) Λ-periodic if sξ = sξ +ω for
every ξ ∈ C, ω ∈ Λ. We denote by ΓΛ(C,F ) the Λ-periodic
sections of F .

If s ∈ Γ(C,F ) we call s ′ ∈ Γ(C,F ) a modi�cation at 0 of s if
s|C−{0} = s ′|C−{0}.
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Theorem (Periodicity Theorem)

Assume (p,q) = 1. Let C ∈ Γ(C,F ) be the image of C ∈ Γ(C,G ).
Then there exists a modi�cation of C at 0, denoted s, which is

Λ-periodic, i.e. s ∈ ΓΛ(C,F ) for some Λ⊂ Λ0.

Example. r = 1, F = M×/O×
deg
= Z. Here C (z) is a global

meromorphic function such that C (pz)/C (z) and C (qz)/C (z) are
both elliptic. The theorem says that a suitable modi�cation at 0 of
the divisor of C is periodic. In this case, by Abel-Jacobi we can
infer that zmC (z) itself must be periodic for a suitable m.

Fix Λ, AΛ = ∏
′
ξ∈C/Λ K̂ξ ⊃OΛ = ∏ξ∈C/Λ Ôξ adeles of KΛ

s ∈ ΓΛ(C,F ) = GLr (AΛ)/GLr (OΛ).

C is determined by M only up to C  DC with
D ∈ GLr (KΛ)⇒ a well-de�ned

[s] ∈ Bunr ,Λ = GLr (KΛ)\GLr (AΛ)/GLr (OΛ).
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The vector bundle associated to M

Recall Bunr ,Λ classi�es isomorphism classes of vector bundles
of rank r on the elliptic curve C/Λ.

M  C  s (periodic modi�cation at 0 of C )  [s] = [EΛ]

Functoriality: If Λ′ ⊂ Λ then pr∗Λ′,Λ(EΛ)' EΛ′ . Also,
EΛ ' [p]∗(EΛ).

Atiyah (1957) classi�ed vector bundles on elliptic curves.

Theorem (Atiyah )

For each r there exists a unique vector bundle Fr on C/Λ which is

indecomposable of rank r , has degree 0 and admits non-trivial

global sections.
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Proposition

(i) Given M, there exists a unique partition

(∗) r = r1 + r2 + · · ·+ rk , r1 ≤ r2 ≤ ·· · ≤ rk

such that for all small enough Λ the vector bundle EΛ is isomorphic

to Fr1⊕·· ·⊕Frk .
(ii) The vector bundle Fr corresponds to the class [Ur ] ∈ Bunr ,Λ
where

Ur = exp(ζ (z ,Λ)Nr )

and Nr is the nilpotent matrix with 1 in the (i , i +1) entry

(1≤ i ≤ r −1) and 0 elsewhere.

Call (∗) the type of M.

M admits a C-structure ⇔ its type is (1,1, . . . ,1)

From now on assume (to simplify the presentation) that the
type of M is (r), i.e. EΛ is indecomposable.
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[s] = [Ur ] ∈ Bunr ,Λ implies that, after a gauge transformation,
we may assume

C = UrD

and D is everhwhere holomorphic (with a holomorphic
inverse), except possibly at 0.

Letting T = D(z/p)A0D(z)−1 and S = D(z/q)B0D(z)−1 the
matrices T and S are in GLr (O) and

(1) A = Ur (z/p)TUr (z)−1, B = Ur (z/q)SUr (z)−1.

Lemma (Key Lemma)

After conjugation by a scalar matrix commuting with Ur this forces

(2) T = a ·diag[1,p,p2, . . . ,pr−1], S = b ·diag [1,q,q2, . . . ,qr−1]

for some a,b ∈ C×.
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Main Theorem

Theorem (Main Structure Theorem for type (r))

If the type of M is (r) then, up to a twist by M1(a,b), M 'Mst
r

where Mst
r corresponds to the consistent pair (A,B) given by (1)

and (2).

Final remarks.

1 The Key Lemma and the Periodicity Theorem are the main
technical steps.

2 When the type is arbitrary, a more complicated structure
theorem, but still completely explicit.

3 The theorem asserting that f ∈ K̂ satisfying simultaneously
elliptic p- and q-di�erence equations lies in
R = K [z ,z−1,ζ (z ,Λ)] follows from the Main Structure
Theorem applied to

M = SpanK (σ
i
τ
j f )⊂ K̂ .
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Periodicity Theorem (r = 1)

When r (the rank of M) is 1, the a�ne Grassmanian

Fζ ' C((z−ζ ))×/C[[z−ζ ]]× ' Z

is a group, and the Periodicity Theorem follows from:

Theorem

Let s : Rd → Z be a discretely supported function. Suppose

p,q ∈ N, p,q ≥ 2, (p,q) = 1. If both sp(x) = s(px)− s(x) and

sq(x) = s(qx)− s(x) are Zd -periodic, then after modifying s at 0 it

becomes Λ-periodic for some lattice Λ⊂ Zd .

If sp is any discretely supported Zd -periodic function

s(x) =
∞

∑
i=1

sp(x/pi )

is discretely supported, and satis�es sp(x) = s(px)− s(x), but need
not be periodic.
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The proof breaks into (i) periodicity on Qd (ii) periodicity on
Rd −Qd , and uses di�erent arguments in each case.

Let S be a �nite set of primes. For x ∈ Z write
x ′S = ∏p∈S p

−ordp(x)x (the S-deprived part of x). Fix N ≥ 1
and say x ∼S y if ordp(x) = ordp(y) for all p ∈ S and also
x ′S ≡ y ′S mod N. The key to the case (i) is the following
elementary Lemma.

Lemma

Let S and T be disjoint nonempty �nite sets of primes, N ≥ 1. Let
∼ be the equivalence relation on Z generated by ∼S and ∼T . Then

if x ,y are non-zero, x ∼ y ⇔ x ≡ y mod N.



Key Lemma (r=2)

Need to study the consequences of the functional equation

A(z)U(z) = U(z/p)T (z)

where

A =

(
a(z) b(z)
c(z) d(z)

)
, U =

(
1 ζ (z)
0 1

)
, T =

(
α(z) β (z)
γ(z) δ (z)

)
a,b,c ,d Λ-elliptic, ζ (z) = ζ (pqz ,Λ), and α,β ,γ,δ everywhere
holomorphic.

(
∗

)
 c(z) = γ(z) constant (both elliptic and entire)(

∗

)
 Bootstrapping: cζ (z) +d(z) = δ (z)⇒ c = γ = 0

(take ∑z∈C/ΛResz) ⇒ d(z) = δ (z) constant.
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(
∗
)
 Rescale: δ = d = p. Now a(z) = α(z), so constant

too.

(
∗
)
 aζ (z) +b(z) = pζ (z/p) + β (z)⇒(take

∑z∈C/ΛResz) a = α = 1, but then

ζ (z)−pζ (z/p) = gp(z) = β (z)−b(z)

so β (z) is both elliptic and holomorphic, hence constant.

Conjugating all matrices by an upper unipotent matrix may
assume β = 0. Thus

T =

(
1 0
0 p

)
, A =

(
1 gp(z)
0 p

)
.

Higher r : same principles, only the algebra is more involved.
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(
∗
)
 Rescale: δ = d = p. Now a(z) = α(z), so constant

too.(
∗
)
 aζ (z) +b(z) = pζ (z/p) + β (z)⇒(take

∑z∈C/ΛResz) a = α = 1, but then

ζ (z)−pζ (z/p) = gp(z) = β (z)−b(z)

so β (z) is both elliptic and holomorphic, hence constant.

Conjugating all matrices by an upper unipotent matrix may
assume β = 0. Thus

T =

(
1 0
0 p

)
, A =

(
1 gp(z)
0 p

)
.

Higher r : same principles, only the algebra is more involved.



Thank you for your attention!

The details can be found at

arXiv : 2007.09508

Stay tuned for Hardouin's lecture on Friday!

Ehud de Shalit Di�erence equations over �elds of elliptic functions


