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Algebraic Dynamics and Model Theory

A model-theoretic approach to algebraic dynamics goes
through a first-order theory of difference fields (ACFA).

This approach was fruitful: results of Chatzidakis/Hrushovski,
Medvedev/Scanlon, and others.

Difference fields (inversive ones) are the same as actions of
the group Z by field automorphisms.

In this talk, we discuss the model theory of actions of arbitrary
groups on fields.

This is joint work with

Özlem Beyarslan: virtually free groups and torsion groups;
Daniel Hoffmann: finite groups.
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G -fields as first-order structures

We fix a group G . By a G -field, we mean a field together with
a G -action by field automorphisms. Similarly, we have the
notions of G -field extensions, G -rings, etc.

A G -field is a first-order structure in the following way:

K = (K ,+,−, ·, 0, 1, g)g∈G .

Note that any g above denotes three things at the same time:
an element of G ,
a function from K to K ,
a formal function symbol.

It is often convenient to consider the language where only a
set of generators of G is specified. For example, difference
fields have the first order structure: (K ,+,−, ·, 0, 1, σ), where
σ may be understood as a chosen generator of Z.
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Existentially closed G -fields: definition

Let us fix a G -field K .

Systems of difference G -polynomial equations

Let x = (x1, . . . , xn) be a tuple of variables and ϕ(x) be a system
of difference G -polynomial equations over K :

ϕ(x) : F1(g1(x1), . . . , gn(xn)) = 0, . . . ,Fn(g1(x1), . . . , gn(xn)) = 0

for some g1, . . . , gn ∈ G and F1, . . . ,Fn ∈ K [X1, . . . ,Xn].

Existentially closed G -fields

The G -field K is existentially closed (e.c.), if any system ϕ(x) of
difference G -polynomial equations over K which is solvable in a
G -extension of K is already solvable in K .
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Existentially closed G -fields: first properties

Any G -field has an e.c. G -field extension (a general property
of inductive theories).

For G = {1}, the class of e.c. G -fields coincides with the class
of algebraically closed fields (Hilbert’s Nullstellensatz).

For G = Z, the class of e.c. G -fields coincides with the class
of transformally (or difference) closed fields (models of ACFA).

Any model of ACFA is algebraically closed. However, an e.c.
G -field is usually not algebraically closed.

The complex field C with the complex conjugation is not an
e.c. C2-field. (Cn denotes the cyclic group of order n.)
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PAC fields and existentially closed G -fields

For a G -field K , we usually denote by C its subfield of
invariants KG .

If G is finitely generated, then C is a definable subfield of K ,
but in general there is no reason for that (it is merely
type-definable).

A field F is pseudo algebraically closed (PAC), if any
absolutely irreducible variety over F has an F -rational point.

If K is an e.c. G -field, then K is perfect PAC. If moreover G
is finitely generated, then C is perfect PAC as well.
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The theory G -TCF

Definition

If there is a first-order theory whose models are exactly e. c.
G -fields, then we call this theory G -TCF and we say that G -TCF
exists (G -TCF is a model companion of the theory of G -fields).

Example

For G = {1}, we get G -TCF = ACF.

For G = Fm (free group), we get G -TCF = ACFAm.

If G is finite, then G -TCF exists (Sjögren, independently
Hoffmann-K.)

(Z×Z)-TCF does not exist (Hrushovski).
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Axioms for ACFA

Let (K , σ) be a difference field.

By a variety, we mean an affine K -variety of finite type which
is K -irreducible and K -reduced (i.e. a prime ideal in K [X̄ ]).

For any variety V , we also have the variety σV and the
bijection (not a morphism!)

σV : V (K )→ σV (K ).

Geometric axioms for ACFA (Chatzidakis-Hrushovski)

(K , σ) is e.c. if and only if for any pair of varieties (V ,W ), if
W ⊆ V × σV and the projections W → V ,W → σV are
dominant, then there is a ∈ V (K ) such that (a, σV (a)) ∈W (K ).
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Axioms for ACFA and fields C ,K

If (K , σ) is e.c., then C and K are perfect PAC.

It can be also shown that in such a case K is algebraically
closed and C is pseudofinite (Gal(C ) ∼= Ẑ).

However, these two items above are not enough to imply that
a difference field is e.c. (a model of ACFA).

For example, there is σ ∈ Aut(Qalg) such that the difference
field (Qalg, σ) satisfies these two items, but it is not a model
of ACFA.

In other words, ACFA is not “axiomatized by Galois axioms”
(this phrase will be formally defined later).
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Geometric axioms for G -TCF, G finite

Assume that G = {g1, . . . , ge} is a finite group and K is a G -field.

Geometric axioms for G -TCF (Hoffmann-K.)

K is e.c. if and only if for any pair of varieties (V ,W ): IF

W ⊆ g1V × . . .× geV ,

all projections W → giV are dominant,

Iterativity Condition: for any i , we have giW = πi (W ), where

πi : g1V × . . .× geV → gig1V × . . .× gigeV

is the appropriate coordinate permutation;

THEN there is a ∈ V (K ) such that

((g1)V (a), . . . , (ge)V (a)) ∈W (K ).
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Galois axioms for G -TCF, G finite

If K is an e.c. G -field for a finite G , then we have the following.

The fields K and C perfect PAC.

The G -field K is strict that is the action of G on K is faithful.

The restriction map:

res : Gal(C ) −→ Gal(K/C ) = G

is a (universal) Frattini cover that is: if G0 is a proper closed
subgroup of the profinite group Gal(C ), then res(G0) 6= G .

Theorem (Galois axioms; Sjögren, independently Hoffmann-K.)

Any G -field satisfying the conditions above is e.c.
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Model-theoretic properties for G -TCF (G finite)

Simplicity of the theory ACFA was crucial for the
model-theoretic analysis and applications.

Any G -field K is bi-interpretable with the pure field C = KG .

If K is an e.c. G -field, then C is supersimple of SU-rank 1.

G -TCF is supersimple of SU-rank e(= |G |).

G -TCF and Th(C ) have elimination of imaginaries in their
languages with finitely many extra constants.
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Our strategy

Find a generalization of the known results about the model
theory of actions of free groups/finite groups on fields.

There is a natural class of groups for such a generalization:
virtually free groups, that is groups having a finite index
subgroup which is free.

Our axiomatization here is in a way “doubly geometric”:

the axioms are geometric themselves,
the axioms use the geometry underlying a given virtually free
group (to be explained soon).
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Bass-Serre theory

Theorem (Karrass, Pietrowski, and Solitar)

Let H be a finitely generated group. Then TFAE:

H is virtually free;

H is isomorphic to the fundamental group of a finite graph of
finite groups.

Fundamental group of graph of groups

The above fundamental group can be obtained by successively
performing the following operations applied to finite groups:

finitely many free products with amalgamation;

finitely many HNN extensions.
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Main Theorem (axioms given by graph of finite groups)

Theorem (Beyarslan-K.)

If G is finitely generated and virtually free, then G -TCF exists.

Example (gluing the axioms along a graph of finite groups)

We consider the simplest example of

G = C2 ∗ C2 = 〈σ, τ〉(∼= D∞ = Zo C2).

G -fields are exactly fields with two involutive automorphisms.

Such (K ;σ, τ) is e.c. iff for any pair of varieties (V ,W ) s.t.

W ⊆ V × σV × τV ,
the Zariski closure of the projection of W on V × σV satisfies
the “C2-axioms” and similarly with the projection on V × τV ;

there is a ∈ V (K ) such that (a, σV (a), τV (a)) ∈W (K ).
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Absolute Galois group and simplicity

For a group H, let Ĥ be the profinite completion.

For a profinite H, let H̃ → H be the universal Frattini cover.

A profinite group is small, if it has finitely many closed
subgroups of a given finite index.

Theorem (Beyarslan-K.)

Let G be infinite, finitely generated, virtually free, and not free.

Then, the profinite group ker(
˜̂
G → Ĝ ) is not small.

Results by Chatzidakis together with the theorem above imply that
the “new theories” are not simple.

Theorem (Beyarslan-K.)

The theory G -TCF is simple if and only if G is finite or G is free.
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NSOP1 and conjectures

Nick Ramsey suggested an argument to show that G -TCF is
NSOP1 (“not simple but still quite nice”).

This argument depends on a Galois-theoretic description of
e.c. G -fields, which needs to be proven.

Besides, we conjectured that for a finitely generated group G ,
G -TCF exists if and only if G is virtually free.

It should be possible to show that if Z×Z embeds in G , then
G -TCF does not exist.

If Z×Z embeds in G , then G is not virtually free; but the
opposite implication does not hold (Tarski monster, infinite
Burnside groups).
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When G is not finitely generated

If G is not finitely generated, then a geometric axiomatization
becomes problematic, since it is hard to control the full action
of G in a first-order way.

One way to deal with this problem is to hope that the
following general theorem is applicable (good logical
asymptotic behaviour).

Theorem

Let T1 ⊆ T2 ⊆ . . . be a chain of theories whose model
companions, denoted T ∗n , form a chain T ∗1 ⊂ T ∗2 ⊆ . . . as well.
Then T ∗ :=

⋃
n>0 T

∗
n is a model companion of T :=

⋃
n>0 Tn
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Direct limit and logical limit

Let us assume that G =
⋃
Gn (for simplicity, an increasing

union) and that each theory Gn-TCF exists.

If (Gn-TCF)n is an increasing chain, then we are done.

Example (explanations, time permitting, on last slide)

These assumptions are satisfied for Q =
⋃ 1

n!Z (Medvedev)
yielding the theory QACFA(=Q-TCF).

These assumptions are satisfied for the Prüfer p-group
Cp∞ =

⋃
n Cpn yielding the theory’s Cp∞-TCF.

C 2
p -TCF * C 2

p2-TCF and C 2
p∞-TCF does not exist.

C2-TCF * C6-TCF but CP-TCF exists! (CP := C2⊕C3⊕ . . .)
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Torsion groups: main theorem

Theorem (Beyarslan-K.)

Let A =
⋃
Ai be a commutative torsion group (Ai : finite).

A− TCF exists if and only if for each prime p, the p-primary
part of A is either finite or isomorphic with the Prüfer p-group.

If the theory A− TCF exists, then it is strictly simple.

A-TCF is axiomatised by Galois axioms saying about an A-field K :
1 the action of A on K is faithful;
2 K is a perfect field;
3 for each i , KAi is PAC;
4 for each i , we have:

Gal
(
KAi

)
∼= Gi ,

where (Gi )i is a fixed collection of small profinite groups.
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Explanations about reducts

For languages L ⊆ L′, L-theory T , and L′-theory T ′:
T ⊆ T ′ if and only if for all M ′ |= T ′, we have M ′|L |= T .

If G is finite and K |= G − TCF, then Gal(KG ) ∼= G̃ .

If K |= Cp2 − TCF, then

Gal
(
KCp2

)
= C̃p2 = Zp = C̃p;

Gal
(
KCp

)
= pZp

∼= Zp.

If K |= C 2
p2 − TCF, then

Gal
(
KCp2

)
= C̃ 2

p2 = F̂2(p) = C̃ 2
p .

However, no proper closed subgroup of F̂2(p) of finite index is
isomorphic to F̂2(p) (profinite Nielsen-Schreier formula).
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