Automorphisms of projective surfaces: finite orbits of large groups

Based on a joint work with Romain Dujardin

Dynamics on a real K3 surface (C.T. McMullen, V. Pit)

Automorphisms of surfaces:

Examples

Surfaces and automorphisms

- X = smooth complex projective surface (real dimension 4)
- Aut(X) = group of holomorphic diffeomorphisms
 = group of (regular, algebraic) automorphisms
 = a complex Lie group.
- **Example 1.–** $E = C/\Lambda$, an elliptic curve.

$$\begin{split} X &= E \times E = \mathbf{C}^2 / (\Lambda \times \Lambda). \\ X &= \text{translations} \subset \text{Aut}(X). \\ \text{GL}_2(\mathbf{Z}) \subset \text{Aut}(X). \end{split}$$

• **Example 2.**– $\eta(x, y) = (-x, -y)$ on $X = E \times E$.

 η commutes to the action of $GL_2(\mathbf{Z})$.

$$Y = \widehat{X/\eta}$$
 is a Kummer surface.

Deformations of (some) Kummer surfaces

• **Example 3.–** $X \subset \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$, smooth, degree (2,2,2):

 $x^{2}y^{2}z^{2} + (x^{2}y^{2} + y^{2}z^{2} + z^{2}x^{2})/200 + x^{2} + y^{2} + z^{2} + xy + z - y = 6.$

$- \parallel -$

Cohomology: Minkowski space and types of automorphisms.

◆□ > <□ > < Ξ > < Ξ > < Ξ > < Ξ < の < ○</p>

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ● ● ● ●

• Intersection form.-

 $\langle C|D \rangle =$ intersection number, with multiplicities;

- $\langle \cdot | \cdot \rangle$ = bilinear form on divisors.
- Néron-Severi group.- Numerical classes of divisors.

 $\mathrm{NS}(X; \mathbf{Z}) = H^2(X; \mathbf{Z}) \cap H^{1,1}(X, \mathbf{R}).$

- **Picard number.** $\rho(X) = \dim_{\mathbf{R}} \operatorname{NS}(X, \mathbf{R})$.
- Hodge index Theorem.– On $NS(X; \mathbf{R})$, the intersection form is non-degenerate, of signature $(1, \rho(X) 1)$.

Three types of isometries

elliptic f^* has finite order,

parabolic is virtually unipotent,

loxodromic or $\lambda(f) > 1$.

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• If f elliptic, then some positive iterate f^k is in $Aut(X)^0$.

• Gizatullin's Theorem.-

If f^* is parabolic, then f preserves a genus 1 fibration $\pi: X \to B$, and induces a finite order automorphism of B if X is not an abelian surface.

Examples.– Mordell-Weil groups of a genus 1 fibration $\pi: X \to B$: translations from one section of π to another one.

- Break for Questions -

and Banff International Research Station Thank You !

<□> <□> <□> <=> <=> <=> <=> <=> <</p>

— III —

The invariant measure μ_f :

stable manifolds, periodic points, equidistribution

Loxodromic automorphisms

• Two invariant isotropic lines

 $\mathbf{R} \theta_{f}^{+}$ and $\mathbf{R} \theta_{f}^{-}$, with $\langle \theta_{f}^{+} | \theta_{f}^{-} \rangle = 1$.

•
$$f^*\theta_f^+ = \lambda(f)\theta_f^+.$$

- $\theta_f^+, \theta_f^- \in \overline{\text{Ample cone}}.$
- θ_f^+ is represented by a closed positive current T_f^+ with $f^*T_f^+ = \lambda(f)T_f^{\pm}$.

• Fact.- The current T_f^{\pm} is unique and has hölder continous potentials. The measure

$$\mu_f = T_f^+ \wedge T_f^-$$

is an invariant probability measure.

Theorem (Bedford, Lyubich, Smille; C.; Dujardin).–
 The periodic points of f of period N become equidistributed with respect to μ_f as N goes to +∞:

$$\frac{1}{|\operatorname{Per}_f(N)|}\sum_{x\in\operatorname{Per}_f(N)}\delta_x\longrightarrow \mu_f.$$

Moreover, $|Per_f(N)| \simeq \lambda(f)^N$.

 Theorem (C., Dupont; see also Filip and Tosatti).–
 If the measure μ_f is smooth, or absolutely continous with respect to the Lebesgue measure on X, then (X, f) is a Kummer example.

Kummer examples: general definition

- Kummer groups.– $\Gamma \subset Aut(X)$ is a Kummer group if there exists
 - an abelian surface A; a subgroup $\Gamma_A \subset \operatorname{Aut}(A)$;
 - a finite, normal subgroup G of Γ_A ;
 - a birational morphism $q_X : X \to A/G$;
 - homomorphisms τ_X: Γ → Aut(A/G) and τ_A: Γ_A → Aut(A/G);

such that q_X and the quotient map $q_A: A \to A/G$ are naturally equivariant and define the same groups:

- $q_X \circ f = \tau(f) \circ q_X$ for every $f \in \Gamma$;
- $q_A \circ g = \tau(f) \circ q_A$ for every $g \in \Gamma_A$;
- $\tau_A(\Gamma_A) = \tau_X(\Gamma_X).$

-IV -

Periodic orbits for large groups

• Theorem A (C., Dujardin).-

- $\mathbf{k} = number field.$
- X =smooth projective surface defined over **k**.
- Γ = subgroup of Aut(X_k) containing parabolic elements with distinct invariant fibrations.

If Γ has a Zariski dense set of periodic points, then (X, Γ) is a Kummer group.

• Remarks.-

- Works also over the field ${\bm C}$ if we assume that ${\bm \Gamma}$ has no periodic curve.
- Related question: classify pairs of loxodromic elements with $\mu_f = \mu_g$. (see the work of Dujardin and Favre for Hénon automorphisms)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

- $\mathbf{k} = \text{number field}, \ \overline{\mathbf{k}} \simeq \overline{\mathbf{Q}}.$
- X and Γ defined over **k**.
- $\operatorname{Pic}(X; \mathbf{R}) = \operatorname{Pic}(X_{\overline{\mathbf{k}}}) \otimes_{\mathbf{Z}} \mathbf{R}$ (Picard group)

= Néron-Severi group $NS(X; \mathbf{R})$ if $Pic^0(X_{\overline{\mathbf{k}}}) \neq 0$.

• Definition (A. Baragar).- A canonical vector height is a function

 $h: \operatorname{Pic}(X; \mathbf{R}) \times X(\overline{\mathbf{k}}) \to \mathbf{R}$

such that

- (a) for $D \in \text{Pic}(X; \mathbf{R})$, $h(D, \cdot)$ is a Weil height w.r.t. D on $X(\overline{\mathbf{k}})$;
- (b) h(D,x) is linear in D: $h(aD + bE, \cdot) = ah(D, \cdot) + bh(E, \cdot)$;
- (c) h is equivariant: $h(f^*D, x) = h(D, f(x))$ for all $f \in \Gamma$.

Canonical vector height

- **Example.** The Néron-Tate height, for automorphisms fixing the neutral element.
- **Example.** When $\rho(X) = 2$, and Γ is generated by a loxodromic element (Baragar, after a construction of Silverman).
- **Example.** Kawaguchi found examples of Wehler surfaces with **no** such height functions.
- Theorem B (C., Dujardin).- $\Gamma \subset Aut(X_k)$ as in Theorem A. If there exists a canonical vector height for Γ , then
 - X is an abelian surface,
 - Γ has a periodic point y,
 - and h is derived from the Néron-Tate height:

 $h(D, x + y) = h_{NT}(D, x) + \langle [E] | [D] \rangle \varphi(x).$

-v-

Proof Strategy

• 1.A- Kawaguchi's stationary height

• $\nu = \text{probability measure on } \Gamma$, with finite support

•
$$\sum_{f} \nu(f) f^*(D) = \alpha(\nu) D$$
, for some $\alpha(\nu) > 1$, and some D ample

Then there is a Weil height $\hat{h}_D \colon X(\overline{f k}) o {f R}_+$,

$$\sum_{f}
u(f)\hat{h}_D(f(x)) = lpha(
u)\hat{h}_D(x), \quad orall x \in X(\overline{\mathbf{k}}),$$

with a decomposition as a sum of continuous local heights. Finite orbits correspond to points of height 0 for \hat{h}_D .

• 1.B- Yuan's equidistribution theorem, for a sequence of periodic points x_i:

$$\frac{1}{|\Gamma(x_i)|} \sum_{y \in \Gamma(x_i)} \frac{1}{|\operatorname{Gal}(\overline{\mathbf{k}} : \mathbf{k})(y)|} \sum_{\sigma} \delta_{\sigma(y)} \longrightarrow \mu$$

where μ is a Γ -invariant probability measure.

▲□▶▲□▶▲■▶▲■▶ ■ 釣�?

• 2.– The limit μ does not depend on ν

$$\nu_n \to \frac{1}{2}\delta_f + \frac{1}{2}\delta_{f^{-1}}$$

The measure μ coincides with μ_f , for every loxodromic $f \in \Gamma$.

• 3.- Compose parabolic elements with distinct invariant fibrations

The measure μ has full support.

<□> <□> <□> <=> <=> <=> <=> <=> <=> <</p>

• 4.– The measure μ is smooth

 5.- Every loxodromic element is a Kummer example. Then (X, Γ) is a Kummer group.

What more ?

▲□▶ 4□▶ 4 Ξ ▶ 4 Ξ ▶ 3 ④