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The big picture
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A reaction network

Two-component system (used by bacteria to transfer cellular signal)

HK −−→ HKp

HKp + RR −−⇀↽−− HK + RRp

RRp −−→ RR

HK = histidine kinase; RR = response regulator

HK RR

The evolution of the concentrations in time is modelled using a system of ordinary
differential equations:

ẋ1 = −κ1x1 + κ2x2x3 − κ3x1x4

ẋ2 = κ1x1 − κ2x2x3 + κ3x1x4

ẋ3 = −κ2x2x3 + κ3x1x4 + κ4x4

ẋ4 = κ2x2x3 − κ3x1x4 − κ4x4

where
x1 = [HK], x2 = [HKp],
x3 = [RR], x4 = [RRp].

Here κ1, κ2, κ3, κ4 are parameters (generally unknown).
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Two approaches

• Quantitative: find approximate values for the parameters, and then study
the resulting system in detail.

Numerical simulations are often part of this approach.

• Qualitative: study the system for all parameter values, focusing on questions
of the type

• Does there exist a choice of parameters such that the system displays . . .?

• Where in the parameter space does the system display . . .?

• Why do specific parameters display . . .?

Strategies:

• Sample parameters and decide upon the property (often numerically).

• Theoretical study, often symbolical.
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Mathematical framework
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Reaction networks

A reaction network over a set of species X =
{X1, . . . ,Xn} consists of a finite set of reactions
of the form

rj :
n∑

i=1

bijXi →
n∑

i=1

cijXi , bij , cij ∈ Z≥0

X1
κ1−−→ X2

2X2
κ2−−→ 2X1

X1 + X2
κ3−−→ 2X2

Dynamical system:
(xi= concentration of species Xi )

ẋ = N vκ(x).

[
ẋ1

ẋ2

]
=

[
−1 2 −1

1 −2 1

][ κ1x1

κ2x
2
2

κ3x1x2

]

• N is the stoichiometric matrix, where entry (i , j) is the net production of
species i in reaction j : Nij = (cij − bij).

• Mass-action: vκ,j(x) = κjx
b1j

1 · . . . · x
bnj
n . κj > 0, reaction rate constants.

• Rn
>0 and Rn

≥0 are forward invariant.
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Stoichiometric compatibility classes

[1 1]

[
ẋ1

ẋ2

]
= [1 1]

[
−1 2 −1

1 −2 1

][ κ1x1

κ2x
2
2

κ3x1x2

]
= 0

We obtain

ẋ1 + ẋ2 = 0 ⇒ x1 + x2 constant along trajectories.

Trajectories are confined to linear subspaces x1 + x2 = c with c depending on the
initial condition.

W : matrix whose rows form a basis of the left kernel of N, ker(NT ) = Im(N)⊥

Stoichiometric compatibility classes:

Wx = c , x ∈ Rn
≥0

with c vector of total amounts.

Every trajectory is confined to one of these classes, depending on the initial
condition.
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Steady states

The steady states or equilibrium points of the ODE system are given as the
solutions to

Nvκ(x) = 0.

In particular: we are concerned with positive solutions in each stoichiometric
compatibility class:

x ∈ Rn
>0 such that Nvκ(x) = 0 and Wx = c

Two types of parameters, κ, c , treated as unknown.

Cκ,c = {x ∈ Rn
>0| Nvκ(x) = 0, Wx = c}.
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Steady states and stoichiometric compatibility classes

In the example,

Cκ,c =

x ∈ R2
>0

∣∣∣∣∣∣∣∣
−κ1x1 + 2κ2x

2
2 − κ3x1x2 = 0,

κ1x1 − 2κ2x
2
2 + κ3x1x2 = 0

κ1x1 − 2κ2x
2
2 + κ3x1x2 = 0

x1 + x2 = c

 .

These sets are parameterised by κ = (κ1, . . . , κm) and c = (c1, . . . , cd).

Expected: each of these sets contains a finite
number of points.

The number of elements might depend on the
parameters.
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Qualitative properties of interest

Cκ,c = {x ∈ Rn
>0| Nvκ(x) = 0, Wx = c}.

We are interested in the existence, where and why for:

(Multistationarity) Presence of two positive steady states

#Cκ,c ≥ 2 ? (existence essentially solved)

(Bistability) Presence of two asymptotically stable positive steady states

(Oscillations) Presence of periodic solutions
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Question
(answer using this link (click on it): http://etc.ch/XwNY)

The following figures show the family of steady state curves (red, solid) for
varying κ, together with the invariant linear subspaces (blue, dashed) for varying
c , for two different networks.

(1) (2)

According to the figures, which network(s) display(s) multistationarity?

(A) Network (1) (B) Network (2) (C) Both networks
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Parametrizations

A positive parametrization of the (positive) steady states is an injective function

φ : Rd
>0 → Rn

>0 ξ 7→ φ(ξ)

such that the image is exactly the set of positive steady states (solutions to
N vκ(x) = 0).

For the two-component system:

φ(x2, x4) =
(
κ4

κ1
x4, x2,

(κ1+κ3x4)κ4x4

κ1κ2x2
, x4

) X1
κ1−−→ X2

X2 + X3
κ2−−→ X1 + X4

X1 + X4
κ3−−→ X2 + X3

X4
κ4−−→ X3
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Multistationarity

Understand for what κ, c , the system

Nvκ(x) = 0, Wx = c

has at least two positive solutions.

Generic tools like Cylindrical Algebraic Decomposition can theoretically answer
this question, but are impractical.

The number of variables and parameters is typically too large for these approaches

There are many methods to decide whether multistationarity exists
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Parameter regions for multistationarity

Goal:

find a full or partial description of the
parameter that give multistationarity,
or a given number of steady states.

Figure by Amirhosein Sadeghimanesh

• Can we find computationally feasible approaches by using the specific
structure of systems arising from reaction networks?
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Some approaches to understand parameter regions

• Classical: reduction to one polynomial and analysis of the polynomial
(Descartes’ rule of signs, Sturm sequences...).

Recently (2016-20):

• Real triangularization, cylindrical algebraic decomposition and sampling with
small number of parameters (England, Errami, Grigoriev, Radulescu, Sturm, Weber &

more...).

• Numerical algebraic geometry: homotopy continuation methods (with very
few parameters).

• Kac-Rice formula: computation of the expected
number of steady states in a box. Works with
larger number of parameters (Sadeghimanesh, Feliu).
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The answer might be too complex...

HK00
κ1−→ HKp0

κ2−→ HK0p
κ3−→ HKpp

HK0p + RR
κ4−→ HK00 + RRp

HKpp + RR
κ5−→ HKp0 + RRp

RRp
κ6−→ RR

The network has three positive steady states if and only if

a2 > 0 9a0a3 + a1a2 < 0

27a2
0a

2
3 + 18a0a1a2a3 − 4a0a

3
2 + 4a3

1a3 − a2
1a

2
2 < 0 −6a0a2 + 2a2

1 > 0,

where

a0 = (κ1 + κ2)κ4κ5κ6 > 0

a1 = (κ1(c1κ2κ4 + κ2κ6 + κ3κ6)− c2(κ1 + κ2)κ4κ6)κ5

a2 = (κ1κ2κ3(c1κ5 + κ6)− c2κ1(κ2 + κ3)κ5κ6)

a3 = −c2κ1κ2κ3κ6 < 0.

Kothamanchu, Feliu, Cardelli, Soyer (2015)
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Partial answer

We say a reaction rate constant κ enables multistationarity
if can we find a vector of total amounts c such that there
are at least two positive steady states.

What values of κ enable multistationarity?
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Theorem. Consider a network such that . . . (some technical conditions).

Fix κ. There exists a (computable) polynomial p(x) such that

(A) Uniqueness. If

sign(p(x)) = + for all positive x ,

then there is exactly one positive steady state in each class.

(B) Multistationarity. If

sign(p(x∗)) = − for some positive x∗,

then there are at least two positive steady states in the class of x∗.

Extra info: The result is based on Brouwer degree theory. The polynomial p(x) is the

determinant of the Jacobian of the system of equations evaluated at a parameterisation of the

steady state variety. The technical conditions are no boundary steady states and dissipativity.

Conradi C, Feliu E, Mincheva M, Wiuf C (2017) Identifying parameter

regions for multistationarity. PloS Computational Biology.
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Example: Hybrid two-component system

If sign(p(x)) = + for all positive
x , one steady state in each class.

If sign(p(x∗)) = − for one positive x∗, then
there is multistationarity in the class of x∗.

HK00
κ1−→ HKp0

κ2−→ HK0p
κ3−→ HKpp

HK0p + RR
κ4−→ HK00 + RRp

HKpp + RR
κ5−→ HKp0 + RRp

RRp
κ6−→ RR

pκ(x) = κ1κ2κ3κ6 + (κ1 + κ2)κ4κ5κ6x
2
5

+ κ2κ4κ
2
5

(
κ1

κ3
− 1

)
x4x

2
5 + 2κ1κ2κ4κ5x4x5

+ (κ2 + κ3)κ1κ5κ6x5 + κ1κ2κ3κ5x4

• If κ1 ≥ κ3: sign= + for all x4, x5 > 0. There exists a unique positive steady
state in each class.

• If κ1 < κ3, let xi = T and T be arbitrarily large. Then sign= −. There is
multistationarity.

κ enables multistationarity ⇔ κ1 < κ3
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Original problem of multistationarity: Understand for what κ, c , the system

Nvκ(x) = 0, Wx = c

has at least two positive solutions.

New problem: For which κ does it hold

pκ(x∗) < 0, for some positive x∗?

We deal now with the question of deciding whether a polynomial is non-negative
over the positive orthant.

Techniques from sum-of-squares optimization (SOS), or sums of non-negative
circuits (SONC), might be employed. Still, pκ(x) has parametric coefficients.

Other partial answers (employing polyhedral geometry techniques):

• Partial parameter regions involving total amounts and some κ (Bihan, Dickenstein,

Giaroli).

• Partial parameter regions on only total amounts for systems where
Nvκ(x) = 0 in Rn

>0 is cut out by binomials (Conradi, Iosif, Kahle).
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Bistability and oscillations
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Exponential stability and Hopf bifurcations

Consider a system of ordinary differential equations

ẋ = f (x)

and x∗ a steady state. Let Jf (x∗) be the Jacobian of f at x∗.

• The steady state x∗ is exponentially stable if all eigenvalues of Jf (x∗) have
negative real part. Exponential stability implies asymptotic stability.

• If at least one eigenvalue has positive real part, then x∗ is unstable.

• Assume the system is parametric in µ: ẋ = fµ(x). Given a non-singular
steady state x∗ for µ0, there exists a curve of steady states x∗(µ) around µ0.

A Hopf bifurcation arises at µ0 if a pair of eigenvalues of Jf (x∗(µ)) crosses
the imaginary axis, and x∗(µ) goes from stable to unstable at µ0.

In this case a periodic solution arises for systems with µ > µ0.

Goal: Study the sign of the real part of the eigenvalues of Jfκ(x∗) for x∗ a steady
state of ẋ = Nvκ(x).
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Hurwitz matrix

Given a real polynomial

p(z) = α0z
n + α1z

n−1 + · · ·+ αn−1z + αn, α0 > 0,

How many roots have positive real part and how many have negative real part?

Does it have a pair of imaginary roots?

H =


α1 α3 α5 . . . . . . 0
α0 α2 α4 α6 . . . 0
0 α1 α3 α5 . . . 0
0 α0 α2 α4 . . .
...

...
...

...
... αn

 Hi = i-th leading principal minor.

(note Hn−1 = αnHn−1.)
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Hurwitz matrix

H =


α1 α3 α5 . . . . . . 0
α0 α2 α4 α6 . . . 0
0 α1 α3 α5 . . . 0
0 α0 α2 α4 . . .
...

...
...

...
... αn

 Hi = i-th leading principal minor

Criterion 1 (Routh-Hurwitz): Negative real part

• If Hi > 0 for all i , then all roots of p(z) have negative real part.

• If not, if none is zero, then the number of roots with positive real part can be
determined (and there is at least one).

Criterion 2 (Liu): Imaginary roots

• p(z) has a simple pair of imaginary roots and the rest of the roots have
negative real part, if and only if

H1 > 0, . . . ,Hn−2 > 0, Hn−1 = 0, αn > 0.
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For reaction networks

We apply these criteria to the characteristic polynomial of the Jacobian of Nvκ(x)
evaluated at a parametrisation of the steady states, after removing
d = n − Rank(N) zero roots:

chκ(λ) = λd
(
a0(κ)λs + a1(κ)λs−1 + · · ·+ as−1(κ)λ+ as(κ)

)
The questions on stability and Hopf bifurcation reduce to decide (determine
when) the following semi-algebraic sets are non-empty:

κ1, . . . , κm > 0

H1(κ) > 0, . . . ,Hs−1(κ) > 0, as(κ) > 0 (for stability)

H1(κ) > 0, . . . ,Hs−2(κ) > 0, Hs−1(κ) = 0, as(κ) > 0 (for Hopf bifurcations)
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Example: enzymatic transfer of calcium ions

X1 = cytosolic calcium Ca++,
X2 = Ca++ in the endoplasmic reticulum,

X3 = enzyme catalyzing the transport

0
κ1−−⇀↽−−
κ2

X1

X1 + X2
κ3−−→ 2X1

X1 + X3
κ4−−⇀↽−−
κ5

X4
κ6−−→ X2 + X3

The set of steady states is parametrized by x4

x1 = κ1

κ2
, x2 = κ2κ6x4

κ1κ3
, x3 = κ2(κ5+κ6)x4

κ1κ4

Gatermann, Eiswirth, Sensse, ’05
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Question
(answer using this link: http://etc.ch/XwNY)

κ1, . . . , κm > 0

H1(κ) > 0, . . . ,Hs−1(κ) > 0, as(κ) > 0 (for stability)

H1(κ) > 0, . . . ,Hs−2(κ) > 0, Hs−1(κ) = 0, as(κ) > 0 (for Hopf bifurcations)

Here s = 3. The Hurwitz determinants of the characteristic polynomial of the Jacobian
of the system evaluated at this parametrization are (b1(κ), . . . , b5(κ) > 0)

H1 = b1(κ)(κ2
2κ5x4 + κ2

1κ3 + κ2
1κ4 + κ1κ

2
2 + κ1κ2κ5 + κ1κ2κ6)

H2 = b2(κ)(κ4
2κ5(κ3κ5 + κ3κ6 − κ4κ6)x2

4 + b5(κ)x4 + b3(κ))

a3 = b4(κ)(κ1κ3(κ1κ4 + κ2κ5 + κ2κ6))

This network has exactly one positive steady state in each stoichiometric compatibility
class. Which of the following statements is true (only one)?

(1) For all κ, the steady state in each class is asymptotically stable.

(2) For all κ, the network admits Hopf bifurcations.

(3) For some κ the steady state in all classes is asymptotically stable, and for other κ,
there is a Hopf bifurcation in some class.
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0
κ1−−⇀↽−−
κ2

X1

X1 + X2
κ3−−→ 2X1

X1 + X3
κ4−−⇀↽−−
κ5

X4
κ6−−→ X2 + X3

X1 = cytosolic calcium Ca++,

X2 = Ca++ in the endoplasmic reticulum

X3 = enzyme catalyzing the transport

The Hurwitz determinants of the characteristic polynomial of the Jacobian of the system
evaluated at this parametrization are (b1(κ), . . . , b5(κ) > 0)

H1 = b1(κ)(κ2
2κ5x4 + κ2

1κ3 + κ2
1κ4 + κ1κ

2
2 + κ1κ2κ5 + κ1κ2κ6)

H2 = b2(κ)(κ4
2κ5(κ3κ5 + κ3κ6 − κ4κ6)x2

4 + b5(κ)x4 + b3(κ))

a3 = b4(κ)(κ1κ3(κ1κ4 + κ2κ5 + κ2κ6))

H2 = 0 for some steady state x4, and hence there is a pair of imaginary eigen-
values if and only if (κ3κ5 + κ3κ6 − κ4κ6) < 0, or equivalently

κ3 <
κ6κ4

κ5+κ6
.

With T = x3 + x4 as bifurcation parameter, there is a Hopf bifurcation for
almost all parameter values (extra condition is satisfied).
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Challenges

• High computational complexity: The polynomials are HUGE (millions of
terms). Often not computable.

• If the polynomials have both positive and negative terms, how do we decide
the signs they attain?

• The use of convex coordinates simplifies slightly the computational cost.
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Model reduction
Results relating qualitative properties of two networks F and G :

(Provided . . . ) if F has property X for some choice of parameter values,
then so does G .

Property X can be:

X1 Having at least ` positive/asymptoticaly stable/unstable (...) steady states.

X2 Having a periodic solution.

Many such operations are known

(At least: Craciun, Feinberg, Conradi et al., Joshi, Shiu, Feliu, Cappelletti, Wiuf, Banaji, Pantea...)

• Make a reaction reversible

F : S + E −−→ S∗ + E G : S + E −−⇀↽−− S∗ + E

Joshi, Shiu (for X1), Banaji (for X2)

• Add intermediates

F : S + E −−→ S∗ + E G : S + E −−⇀↽−− X −−→ S∗ + E

Feliu, Wiuf (for X1)
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Example

This network admits 3 positive steady states

HK00
κ1−→ HKp0

κ2−→ HK0p
κ3−→ HKpp

HK0p + RR
κ4−→ HK00 + RRp

HKpp + RR
κ5−→ HKp0 + RRp

RRp
κ6−→ RR

and from here we conclude that this more realistic network also does:

HK00
κ1−→ HKp0

κ2−→ HK0p
κ3−→ HKpp

HK0p + RR
κ4−−⇀↽−−
κ7

Y1
κ8−−→ HK00 + RRp

HKpp + RR
κ5−−⇀↽−−
κ9

Y2
κ10−−→ HKp0 + RRp

RRp
κ6−→ RR
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If p(x) has a negative coefficient, is p(x) negative for some x > 0?

x2 − 2xy + y2 = (x − y)2 ≥ 0

Multivariate polynomial f (x) =
∑
v∈Nn

αvx
v ,

where xv = xv1
1 · · · xvnn and αv ∈ R, for which only a finite number are non-zero.

The Newton polytope of f (x), N (f ), is the convex hull of the exponents v ∈ Nn

for which αv 6= 0.

Proposition: For every vertex v of N (f ), there exists x∗ ∈ Rn
>0 such that

sign(f (x∗)) = sign(αv ).

For non-vertices: the coefficient plays a role:

x2 − 2xy + y2 = (x − y)2 ≥ 0

but
x2 − 3xy + y2 = (x − y)2 − xy < 0, whenever x = y
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Signs and the Newton polytope

p(x) = κ1κ2κ3κ6 + (κ1 + κ2)κ4κ5κ6x
2
5 + κ2κ4κ

2
5

(
κ1

κ3
− 1

)
x4x

2
5

+ 2κ1κ2κ4κ5x4x5 + (κ2 + κ3)κ1κ5κ6x5 + κ1κ2κ3κ5x4

x4

x5

(0, 0)
(1, 0)

(1, 2)(0, 2)

(1, 1)(0, 1)

Good news: the computation of the vertices of the Newton polytope can be
“easily” carried on even for huge polynomials.
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Conclusion

A recurrent problem in the study of biochemical models is to determine the
parameter regions where

a semi-algebraic set has a certain number of points.

The specific structure of the systems of interest (quadratic system, linearity in the
parameters) has been proven useful to give an answer, even when generic tools fail.
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Some methods for precluding and asserting
multistationarity
• Injectivity: Nvκ is injective on all stoichiometric compatibility classes for all κ

implies no multistationarity.
(At least: Craciun, Feinberg, Baigent, Banaji, Conradi, Dickenstein, Donnell, Feliu, Joshi, Müller, Pantea, Pérez-Millán,

Regensburger, Shinar, Shiu, Wiuf, ...)

Easy to implement determinant-based criterion and sign-based criterion. Can
also be used to assert multistationarity.

• Sign vectors: toric steady states, generalised complex balancing, sign pattern
analysis (related to injectivity). (At least: Conradi, Dickenstein, Müller, Pérez-Millán, Regensburger, Shiu ...)

• Deficiency based results (including complex-balancing). Partly based on sign
compatibility and solving systems of linear inequalities. (mostly Feinberg’s group)

• Case-by-case approaches. Fx. reduce the problem to find the positive
solutions to a polynomial in one variable, and then apply Descartes’ rule of
sign, Sturm sequences, adhoc results...

• User-friendly interfaces: CRNT toolbox, Windows interface, closed-source
(http://www.crnt.osu.edu/CRNTWin), CoNtRol. Web interface, open-source
(http://reaction-networks.net/control/)

(... and more)
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Selected references for further reading
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Thank you all for
your attention

(I hope to meet you all in the non-virtual Banff one day)
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