$$
\text { Q1) } 1 \text { = least comfortable }
$$

Mass-action systems:

From linear to non-linear inequalities

$$
3=\text { sen comfort table }
$$

Polly Y. Mu
(Joint work with Gheorghe Craciun, Jiaxin Jin)
Department of Mathematics
University of Wisconsin-Madison

Model Theory of Differential Equations,
Algebraic Geometry, and their Applications to Modeling June 2, 2020

Possible dynamics of mass-action systems

Reaction networks to polynomials

- Reaction network $G=(V, E)$

Reaction networks to polynomials

- Reaction network $G=(V, E)$

$$
\begin{aligned}
& \boldsymbol{y}_{1}=(2,0,0)^{\top} \quad \kappa_{12} \quad y_{2}=(1,1,0)^{\top} \\
& 2 X \underset{\kappa_{21}}{\stackrel{\kappa_{12}}{\rightleftharpoons}} X+Y \\
& Z_{\boldsymbol{y}_{3}=(0,0,1)^{\top}}^{\kappa_{23}} \\
& \kappa_{i j}=\text { rate constants } \\
& y_{i} \in \mathbb{Z}_{\geq 0}^{n} \text {, determine } \\
& \text { monomials }
\end{aligned}
$$

- Mass-action system (G, κ) and associated ODE on $\mathbb{R}_{>0}^{n}$

Reaction networks to polynomials

- Reaction network $G=(V, E)$

- Mass-action system $(G, \boldsymbol{\kappa})$ and associated ODE on $\mathbb{R}_{>0}^{n}$

$$
\frac{d x}{d t}=\sum_{(i, j) \in E} \underbrace{\kappa_{i j} \boldsymbol{x}^{y_{i}}\left(\boldsymbol{y}_{j}-\boldsymbol{y}_{i}\right)}_{k_{23} x y\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right)}
$$

Reaction networks: a geometric view

- Reaction graph $G=(V, E)$:

Complex-balanced systems

Complex-balanced steady states

- Steady state $\boldsymbol{x}^{*}>\mathbf{0}$ is complex-balanced if at each vertex \boldsymbol{v}

$$
(\text { flux into } \boldsymbol{v})=(\text { flux out of } \boldsymbol{v})
$$

Complex-balanced steady states

- Steady state $\boldsymbol{x}^{*}>\mathbf{0}$ is complex-balanced if at each vertex \boldsymbol{v}

$$
(\text { flux into } \boldsymbol{v})=(\text { flux out of } \boldsymbol{v})
$$

- E.g. $\kappa_{2} x y+\kappa_{4} z$

Complex-balanced steady states

- Steady state $\boldsymbol{x}^{*}>\mathbf{0}$ is complex-balanced if at each vertex \boldsymbol{v}

$$
(\text { flux into } \boldsymbol{v})=(\text { flux out of } \boldsymbol{v})
$$

- E.g. $\kappa_{2} x y+\kappa_{4} z=\kappa_{1} x^{2}$

Complex-balanced steady states

- Steady state $\boldsymbol{x}^{*}>\mathbf{0}$ is complex-balanced if at each vertex \boldsymbol{v}

$$
(\text { flux into } \boldsymbol{v})=(\text { flux out of } \boldsymbol{v})
$$

- E.g. $\kappa_{2} x y+\kappa_{4} z=\kappa_{1} x^{2}$

$$
\begin{aligned}
& \kappa_{3} x y=\kappa_{4} z \\
& \kappa_{1} x^{2}=\kappa_{2} x y+\kappa_{3} x y
\end{aligned}
$$

Complex-balancing is amazing

- If there is one CB steady state, then every positive steady state is $C B$
- monomial parametrization ${ }^{\text {a }}$

- Lyapunov function around CB \boldsymbol{x}^{*}
- Global Attractor Conjecture

[^0]

Algebraic conditions on κ

- CB $\Longleftrightarrow \kappa_{i}$ satisfy some polynomial equations
- Number of equations \approx deficiency δ

$$
\delta=|V|-\ell-\operatorname{dim} S
$$

Algebraic conditions on κ

$\checkmark \mathrm{CB} \quad \Longleftrightarrow \quad \kappa_{i}$ satisfy some polynomial equations

- Number of equations \approx deficiency δ

$$
\delta=|V|-\ell-\operatorname{dim} S
$$

Poll!! What is $\delta=$??

Algebraic conditions on κ

$\checkmark \mathrm{CB} \quad \Longleftrightarrow \quad \kappa_{i}$ satisfy some polynomial equations

- Number of equations \approx deficiency δ

$$
\delta=|V|-\ell-\operatorname{dim} S
$$

Poll!! What is $\delta=$??

Dynamical Equivalence

Dynamical Equivalence

$$
\delta=4-1-2=1
$$

$$
0 \xrightarrow{k_{2}} X+Y \underset{\downarrow^{k_{1}}}{\stackrel{\kappa_{3}}{\longleftrightarrow}} 2 X
$$

Dynamical Equivalence

$$
\delta=4-1-2=1
$$

$$
\frac{d x}{d t}=\cdots+\kappa_{1} x y\binom{0}{-1}
$$

Dynamical Equivalence

$$
\delta=4-1-2=1
$$

$$
\frac{d x}{d t}=\cdots+\kappa_{1} x y\binom{0}{-1}
$$

$$
\delta=3-1-2=0=\cdots+\frac{\kappa_{1}}{2} \times y\binom{-1}{-1}+\frac{\kappa_{1}}{2} \times y\binom{1}{-1}
$$

Dynamical equivalence

- MAS (G, κ) and $\left(G^{\prime}, \kappa^{\prime}\right)$ are dynamically equivalent (DE) if they generate same ODE

$$
\sum_{(i, j) \in G} \kappa_{i j} x^{y_{i}}\left(y_{j}-y_{i}\right)=\sum_{(i, j) \in G^{\prime}} \kappa_{i j}^{\prime} x^{y_{i}}\left(y_{j}-y_{i}\right)
$$

$\Longleftrightarrow \quad$ for each monomial $\boldsymbol{x}^{y_{i}}\left(\boldsymbol{y}_{i} \in V \cup V^{\prime}\right)$,

$$
\sum_{(i, j) \in G} \kappa_{i j}\left(y_{j}-\boldsymbol{y}_{i}\right)=\sum_{(i, j) \in G^{\prime}} \kappa_{i j}^{\prime}\left(y_{j}-\boldsymbol{y}_{i}\right)
$$

Some allowed operations

- Combining vectors:

- Breaking up a vector:

- Creating new complex:

Dynamically equivalence to complex-balancing?

Single-target network

- Poll: One of these is not a single-target network:
(a)

(b)

(d)

Single-target network

- Poll: One of these is not a single-target network:

Theorem (2020):

No pos. steady state for any $\kappa>0$

No pos. steady state for any $\kappa>0$

Theorem (2020):

Thm: Only need nodes from monomials

DE to CB for any $\kappa>0$

Q: What about 2 targets inside Newton polytope?

- Example in 1D: (with $J_{i}=\kappa_{i} x^{y_{i}}$ and $\left.Q_{i j}=\kappa_{i j}^{\prime} x^{y}\right)$

Steady state equation:

DE condition:

$J_{1}=2 Q_{12}+3 Q_{13}+5 Q_{14}$

CB condition:
$Q_{12}+Q_{13}+Q_{14}=Q_{21}+Q_{31}+Q_{41}$

Q: What about 2 targets inside Newton polytope?

- Example in 1D: (with $J_{i}=\kappa_{i} x^{y_{i}}$ and $Q_{i j}=\kappa_{i j}^{\prime} x^{y_{i}}$)

Steady state equation:

$$
\kappa_{i j}^{\prime} \geq 0
$$

CB condition:

$Q_{12}+Q_{13}+Q_{14}=Q_{21}+Q_{31}+Q_{41}$

Q: What about 2 targets inside Newton polytope?

- Example in 1D: (with $J_{i}=\kappa_{i} x^{y_{i}}$ and $Q_{i j}=\kappa_{i j}^{\prime} x^{y_{i}}$)

- Steady state equation:

$$
J_{1}+J_{3}=J_{2}+J_{4}
$$

- DE condition:

$$
J_{1}=2 Q_{12}+3 Q_{13}+5 Q_{14}, \ldots+3 \text { more eqs }
$$

complete graph
$\kappa_{i j}^{\prime} \geq 0$

- CB condition:

$$
Q_{12}+Q_{13}+Q_{14}=Q_{21}+Q_{31}+Q_{41}, \ldots+3 \text { more eqs }
$$

Q: What about 2 targets inside Newton polytope?

- Linear in $J_{i}>0$ and $Q_{i j} \geq 0$:

$$
\begin{align*}
J_{1}+J_{3} & =J_{2}+J_{4} \tag{ss}\\
J_{1} & =2 Q_{12}+3 Q_{13}+5 Q_{14} \tag{DE1}\\
-J_{2} & =-2 Q_{21}+Q_{23}+3 Q_{24} \tag{DE2}\\
J_{3} & =-3 Q_{31}-Q_{32}+2 Q_{34} \tag{DE3}\\
-J_{4} & =-5 Q_{41}-3 Q_{42}-2 Q_{43} \tag{DE4}
\end{align*}
$$

$$
\begin{align*}
& Q_{12}+Q_{13}+Q_{14}=Q_{21}+Q_{31}+Q_{41} \tag{CB1}\\
& Q_{21}+Q_{23}+Q_{24}=Q_{12}+Q_{32}+Q_{42} \tag{CB2}\\
& Q_{31}+Q_{32}+Q_{34}=Q_{13}+Q_{23}+Q_{43} \tag{CB3}
\end{align*}
$$

Q: What about 2 targets inside Newton polytope?

- $\mathrm{DE}+\mathrm{CB}$ (slide above)

$$
\Longrightarrow \quad J_{1} \geq J_{2} \text { and } J_{4} \geq J_{3}
$$

can show:

Q: What about 2 targets inside Newton polytope?

- $\mathrm{DE}+\mathrm{CB}$ (slide above)

$$
\begin{aligned}
& \Longrightarrow \quad J_{1} \geq J_{2} \text { and } J_{4} \geq J_{3} \\
& \Longrightarrow \quad J_{1} J_{4} \geq J_{2} J_{3}, \text { i.e., } \\
& \quad J_{1} J_{4}-J_{2} J_{3}=x^{5}\left(\kappa_{1} \kappa_{4}-\kappa_{2} \kappa_{3}\right)>0
\end{aligned}
$$

- can show:

$$
\text { DE to } \mathrm{CB} \quad \Longleftrightarrow \quad \kappa_{1} \kappa_{4}-\kappa_{2} \kappa_{3}>0
$$

- brute force calculation

Another example (2D)

-DE to $\mathrm{CB} \Longleftrightarrow$
$\frac{1}{25} \leq \frac{\kappa_{2} \kappa_{4}}{\kappa_{1} \kappa_{3}} \leq 25$

$$
\frac{1}{25} \leq \frac{\kappa_{2} \kappa_{4}}{\kappa_{1} \kappa_{3}} \leq 25
$$

- Possible with

Another example (2D)

$$
\begin{aligned}
& \square D E \text { to } C B \Longleftrightarrow \\
& \frac{1}{25} \leq \frac{\kappa_{2} \kappa_{4}}{\kappa_{1} \kappa_{3}} \leq 25
\end{aligned}
$$

Summary

- Linear feasibility problem \rightarrow

$$
\text { Linear inequalities } J_{i}>0, Q_{i j} \geq 0
$$

- Eliminate \boldsymbol{x} from $J_{i}=\kappa_{i} \boldsymbol{x}^{\boldsymbol{y}_{i}}$ for non-linear inequalities on $\kappa_{i j}$?

Real quantifier elimination??

Related talk: Fri Jun 5 at 9:40 (MT)
Miruna-Stefana Sorea:
Disguised toric dynamical systems

References

- G. Craciun, A. Dickenstein, A. Shiu, B. Sturmfels Toric Dynamical Systems. 2009.
- G. Craciun, J. Jin and P.Y. Yu, An efficient characterization of complex-balanced, detailed-balanced, and weakly reversible systems. 2020.
- G. Craciun, J. Jin and P.Y. Yu, Single-target networks. On arXiv soon.

Thanks!

Additional slides

Monomial parametrization for complex-balancing

- Complex-balanced set

$$
\begin{aligned}
Z_{\kappa} & =\{\boldsymbol{x}>\mathbf{0} \mid \underbrace{\log \boldsymbol{x}-\log x^{*} \in S^{\perp}}\} \\
& \log \left(\frac{\boldsymbol{x}}{\boldsymbol{x}^{*}}\right) \in S^{\perp} \\
& \Longleftrightarrow \frac{\boldsymbol{x}}{\boldsymbol{x}^{*}} \in \exp S^{\perp} \\
& \Longleftrightarrow \quad x \in \boldsymbol{x}^{*} \circ \exp S^{\perp}
\end{aligned}
$$

- E.g. $S^{\perp}=\operatorname{span}(1,1,2)$

$$
E_{\kappa}=\left\{\left(a_{1} t, a_{2} t, a_{3} t^{2}\right) \mid t>0\right\}
$$

Toricity in complex-balancing

$-\underline{\mathbf{A}}_{\kappa}^{\top}=$ Laplacian matrix of G
 \swarrow

Matrix-Tree Theorem

$$
\begin{aligned}
& \left(K_{2},-K_{1}, 0,0,0,0,0\right)^{\top} \\
& \left(0, K_{3},-K_{2}, 0,0,0,0\right)^{\top} \\
& \left(0,0,0, K_{5},-K_{4}, 0,0\right)^{\top} \\
& \left(0,0,0,0, K_{6},-K_{5}, 0\right)^{\top} \\
& \left(0,0,0,0,0, K_{7},-K_{6}\right)^{\top}
\end{aligned}
$$

$\Longleftrightarrow \quad\left\{\begin{array}{c}K_{2} x^{y_{1}}-K_{1} x^{y_{2}}=0 \\ \vdots \\ K_{7} x^{y_{6}}-K_{6} x^{\boldsymbol{y}_{7}}=0\end{array}\right.$

Dynamical equivalence: Test your understanding

- For which $\left(G^{\prime}, \kappa^{\prime}\right), \quad \forall \kappa_{j}>0 \exists \kappa_{j}^{\prime} \geq 0:(G, \kappa)$ and $\left(G^{\prime}, \kappa^{\prime}\right)$ are DE?

(b)

Dynamical equivalence: Test your understanding

- For which $\left(G^{\prime}, \kappa^{\prime}\right), \quad \forall \kappa_{j}>0 \exists \kappa_{j}^{\prime} \geq 0:(G, \kappa)$ and $\left(G^{\prime}, \kappa^{\prime}\right)$ are DE?

(b)

Basically can be embed cone generated by vector into those of G^{\prime}

[^0]: ${ }^{a}$ Additional slide

