Structural parameter identifiability with a view towards model theory

Gleb Pogudin

LIX, CNRS, École Polytechnique,
Institut Polytechnique de Paris, France

Plan

- Intro to identifiability
- Approach via input-output equations and subtleties
- Through the lens of model theory: subtleties \rightarrow features
- Open problems

Intro to identifiability

What is identifiability: toy examples

Example

In the model described by $\dot{x}=k x$

- x can measured in an experiment and, therefore, its derivatives can be estimated,
- k is an unknown scalar parameter.

What is identifiability: toy examples

Example

In the model described by $\dot{x}=k x$

- x can measured in an experiment and, therefore, its derivatives can be estimated,
- k is an unknown scalar parameter.

$$
k=\frac{\dot{x}}{x} \quad \Longrightarrow \quad k \text { is identifiable. }
$$

What is identifiability: toy examples

Example

In the model described by $\dot{x}=k x$

- x can measured in an experiment and, therefore, its derivatives can be estimated,
- k is an unknown scalar parameter.

$$
k=\frac{\dot{x}}{x} \quad \Longrightarrow \quad k \text { is identifiable. }
$$

Example

In the model described by $\dot{x}=x+k_{1}+k_{2}$

- x can measured in an experiment and, therefore, its derivatives can be estimated,
- k_{1} and k_{2} are unknown scalar parameters.

What is identifiability: toy examples

Example

In the model described by $\dot{x}=k x$

- x can measured in an experiment and, therefore, its derivatives can be estimated,
- k is an unknown scalar parameter.

$$
k=\frac{\dot{x}}{x} \quad \Longrightarrow \quad k \text { is identifiable. }
$$

Example

In the model described by $\dot{x}=x+k_{1}+k_{2}$

- x can measured in an experiment and, therefore, its derivatives can be estimated,
- k_{1} and k_{2} are unknown scalar parameters.

Impossible to find k_{1} and $k_{2} \Longrightarrow k_{1}$ and k_{2} are non-identifiable.

Identifiability: Motivation

Common problem: more than one parameter value fits the data.

Identifiability: Motivation

Common problem: more than one parameter value fits the data.

There are different options

Cause
Noisy data

Remedy

More measurements
or better equipment

Identifiability: Motivation

Common problem: more than one parameter value fits the data.

There are different options

Cause
Noisy data
\Longrightarrow
More measurements
or better equipment
Non-identfiability \Longrightarrow Another model or new equipment

Identifiability: Motivation

Common problem: more than one parameter value fits the data.

There are different options
Cause
Noisy data
\Longrightarrow

Remedy

More measurements
or better equipment
Non-identfiability \Longrightarrow Another model or new equipment

Verifying identifiabilty allows a modeller to find the cause and choose the correct remedy.

Is this really an issue?

Identifiability of chemical reaction networks

Gheorghe Craciun • Casian Pantea

Received: 20 June 2007 / Accepted: 14 August 2007 / Published online: 21 September 2007
© Springer Science+Business Media, LLC 2007

Abstract We consider the dynamics of chemical reaction networks under the assumption of mass-action kinetics. We show that there exist reaction networks \mathcal{R} for which the reaction rate constants are not uniauelv identifiable, even if we are given

Is this really an issue?

On Identifiability of Nonlinear ODE Models and Applications in Viral Dynamics*

Hongyu Miao ${ }^{\dagger}$
Xiaohua Xia ${ }^{\ddagger}$
Alan S. Perelson ${ }^{\S}$
Hulin Wu^{\dagger}

Abstract

Ordinary differential equations (ODEs) are a powerful tool for modeling dynamic processes with wide applications in a variety of scientific fields. Over the last two decades, ODEs have also emerged as a prevailing tool in various biomedical research fields, especially in infectious disease modeling. In practice, it is important and necessary to determine unknown parameters in ODE models based on experimental data. Identifiability analysis is the first step in determining unknown parameters in ODE models and such analysis techniques for nonlinear ODE models are still under development. In this article, we review identifiability analysis methodologies for nonlinear ODE models developed in the past couple of decades, including structural identifiability analysis, practical identifiability

Is this really an issue?

Review: To be or not to be an identifiable model. Is this a relevant question in animal science modelling?

R. Muñoz-Tamayo ${ }^{1 \dagger}$, L. Puillet', J. B. Daniel ${ }^{1,2}$, D. Sauvant ${ }^{1}$, O. Martin ${ }^{1}$, M. Taghipoor ${ }^{3}$ and P. Blavy ${ }^{1}$
${ }^{1}$ UMR Modélisation Systémique Appliquée aux Ruminants, INRA, AgroParisTech, Université Paris-Saclay, 75005 Paris, France; ${ }^{2}$ Trouw Nutrition R\&D, P.O. Box 220 , 5830 AE Boxmeer, The Netherlands; ${ }^{3}$ PEGASE, AgroCampus Ouest, INRA, 35590 Saint-Gilles, France

(Received 4 May 2017; Accepted 24 September 2017; First published online 3 November 2017)

Abstract

What is a good (useful) mathematical model in animal science? For models constructed for prediction purposes, the question of model adequacy (usefulness) has been traditionally tackled by statistical analysis applied to observed experimental data relative to model-predicted variables. However, little attention has been paid to analytic tools that exploit the mathematical properties of the model equations. For example, in the context of model calibration, before attempting a numerical estimation of the model parameters, we might want to know if we have any chance of success in estimating a unique best value of the model parameters from available measurements. This question of uniqueness is referred to as structural identifiability; a mathematical property that is defined on the sole basis of the model structure within a hypothetical ideal experiment determined by a setting of model inputs (stimuli) and observable variables (measurements). Structural identifiability analysis applied to dynamic models described by

Relaxation of the problem: local identifiability

On this slide

- x can be measured in an experiment and, therefore, its derivatives can be estimated
- k_{1} and k_{2} are unknown scalar parameters

Equation	What happens	Identifiable?
$\dot{x}=x+k_{1}$	$k_{1}=\dot{x}-x$	YES
$\dot{x}=x+k_{1}^{2}$	$k_{1}= \pm \sqrt{\dot{x}-x}$	NO
$\dot{x}=x+k_{1}+k_{2}$	Infinitely many values for k_{1} and k_{2}	NO

Relaxation of the problem: local identifiability

On this slide

- x can be measured in an experiment and, therefore, its derivatives can be estimated
- k_{1} and k_{2} are unknown scalar parameters

Equation	What happens	Identifiable?
$\dot{x}=x+k_{1}$	$k_{1}=\dot{x}-x$	Globally
$\dot{x}=x+k_{1}^{2}$	$k_{1}= \pm \sqrt{\dot{x}-x}$	Locally
$\dot{x}=x+k_{1}+k_{2}$	Infinitely many values for k_{1} and k_{2}	NO

Local identifiability: state of the art

- Jacobian test: Hermann and Krener (1977)

Local identifiability: state of the art

- Jacobian test: Hermann and Krener (1977)
- Efficient software:
- ObservabilityTest (2002)
- IdentifiabilityAnalysis (2012)
- STRIKE-GOLDD (2016)

Local identifiability: state of the art

- Jacobian test: Hermann and Krener (1977)
- Efficient software:
- ObservabilityTest (2002)
- IdentifiabilityAnalysis (2012)
- STRIKE-GOLDD (2016)
- Criteria for systems of special form:
- Meshkat, Sullivant, Eisenberg (2015)
- Meshkat, Rosen, Sullivant (2016)
- Baaijens, Draisma (2016)
- Gross, Meshkat, Shiu (2018)

The importance of being globally identifiable

- Local identifiability does not guarantee the uniqieness of the parameter value.

The importance of being globally identifiable

- Local identifiability does not guarantee the uniqieness of the parameter value.
- Lack of global identifiability is hard to detect using numeric methods.

The importance of being globally identifiable

- Local identifiability does not guarantee the uniqieness of the parameter value.
- Lack of global identifiability is hard to detect using numeric methods.
- It happens!

It happens: epidemiology (SEIR model)

$$
\left\{\begin{array}{l}
S^{\prime}=-\beta \frac{S I}{N}, \\
E^{\prime}=\beta \frac{S I}{N}-\eta E, \\
I^{\prime}=\eta E-\alpha I, \\
R^{\prime}=\alpha R, \\
N=S+E+I+R,
\end{array}\right.
$$

Susceptible
\downarrow
Exposed
\downarrow
Infectious
\downarrow
Recovered

It happens: epidemiology (SEIR model)

$$
\left\{\begin{array}{l}
S^{\prime}=-\beta \frac{S I}{N} \\
E^{\prime}=\beta \frac{S I}{N}-\eta E, \\
I^{\prime}=\eta E-\alpha I, \\
N^{\prime}=0
\end{array}\right.
$$

Susceptible \downarrow
Exposed \downarrow
Infectious

Recovered

It happens: epidemiology (SEIR model)

$$
\left\{\begin{array}{l}
S^{\prime}=-\beta \frac{S I}{N}, \\
E^{\prime}=\beta \frac{S I}{N}-\eta E, \\
I^{\prime}=\eta E-\alpha I, \\
N^{\prime}=0, \\
y_{1}=N, \\
y_{2}=\kappa I .
\end{array}\right.
$$

Susceptible
\downarrow
Exposed
\downarrow
Infectious
\downarrow
Recovered

It happens: epidemiology (SEIR model)

$$
\left\{\begin{array}{l}
S^{\prime}=-\beta \frac{S I}{N}, \\
E^{\prime}=\beta \frac{S I}{N}-\eta E, \\
I^{\prime}=\eta E-\alpha I, \\
N^{\prime}=0, \\
y_{1}=N, \\
y_{2}=\kappa I .
\end{array}\right.
$$

Susceptible
\downarrow
Exposed
\downarrow
Infectious
\downarrow
Recovered

Turns out:
Only locally identifiable: α, η,
Nonidentifiable: β, κ.

It happens: epidemiology (SEIR model)

$$
\left\{\begin{array}{l}
S^{\prime}=-\beta \frac{S I}{N} \\
E^{\prime}=\beta \frac{S I}{N}-\eta E \\
I^{\prime}=\eta E-\alpha I \\
N^{\prime}=0 \\
y_{1}=N \\
y_{2}=\kappa I
\end{array}\right.
$$

Turns out:
Only locally identifiable: α, η, Nonidentifiable: β, κ.
Susceptible

Exposed \downarrow
Infectious

Recovered

Furthermore:
An unordered pair $\{\alpha, \eta\}$ is identifiable.
Will see similar in slow-fast ambiguity later.

Global identifiability: state of the art

Taylor series method

Differential elimination for parameters

Input-output equations

Prolongations +
symbolc sampling

Theory: Ponjanpalo, 1978
Software: GenSSI 2.0, 2017
Termination criterion only for special cases
Theory: Diop, Fliess, Ljung, Glad, 1993
Tackles only small examples
Theory: Ollivier, 1990
Software: DAISY, 2007; COMBOS, 2014
In a few minutes!
Theory: Hong, Ovchinnikov, P., Yap, 2019
Software: SIAN, 2019

Input-output equations

Specification: what we are after

Input

System

$$
\left\{\begin{array}{l}
\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, \mathrm{k}) \\
\mathbf{y}=\mathbf{g}(\mathbf{x}, \mathrm{k})
\end{array}\right.
$$

where

- x are unknown state variables;
- \mathbf{k} are unknown scalar parameters;
- y are outputs measured in experiment.

Specification: what we are after

Input

System

$$
\left\{\begin{array}{l}
\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, \mathrm{k}) \\
\mathbf{y}=\mathbf{g}(\mathbf{x}, \mathrm{k})
\end{array}\right.
$$

where

- x are unknown state variables;
- \mathbf{k} are unknown scalar parameters;
- y are outputs measured in experiment.

Output

Generators of the field of identifiable rational functions in \mathbf{k}.

Running example: predator-prey model

$$
\left\{\begin{array}{l}
\dot{x}_{1}=k_{1} x_{1}-k_{2} x_{1} x_{2} \\
\dot{x}_{2}=-k_{3} x_{2}+k_{4} x_{1} x_{2} \\
y=x_{1}
\end{array}\right.
$$

- x_{1} - prey
- x_{2} - predators

Running example: predator-prey model

$$
\left\{\begin{array}{l}
\dot{x}_{1}=k_{1} x_{1}-k_{2} x_{1} x_{2} \\
\dot{x}_{2}=-k_{3} x_{2}+k_{4} x_{1} x_{2} \\
y=x_{1}
\end{array}\right.
$$

- x_{1} - prey
- x_{2} - predators

Globally identifiable: k_{1}, k_{3}, k_{4}
Nonidentifiable: k_{2}
Identifiable functions: $\mathbb{C}\left(k_{1}, k_{3}, k_{4}\right)$.

Step 1: Eliminate

Whereof one cannot speak, thereof one must be silent

Step 1: Eliminate

Whereof one cannot speak, thereof one must be silent

Idea: we cannot measure $x_{2} \Longrightarrow$ let us eliminate it!

Step 1: Eliminate

Whereof one cannot speak, thereof one must be silent

Idea: we cannot measure $x_{2} \Longrightarrow$ let us eliminate it!

$$
\left\{\begin{array}{l}
\dot{x}_{1}=k_{1} x_{1}-k_{2} x_{1} x_{2}, \\
\dot{x}_{2}=-k_{3} x_{2}+k_{4} x_{1} x_{2}, \\
y=x_{1} .
\end{array} \Longrightarrow y \ddot{y}-\dot{y}^{2}-k_{4} y^{2} \dot{y}-k_{3} y \dot{y}+k_{1} k_{4} y^{3}-k_{1} k_{3} y^{2}=0\right.
$$

Step 1: Eliminate

Whereof one cannot speak, thereof one must be silent

Idea: we cannot measure $x_{2} \Longrightarrow$ let us eliminate it!

$$
\left\{\begin{array}{l}
\dot{x}_{1}=k_{1} x_{1}-k_{2} x_{1} x_{2}, \\
\dot{x}_{2}=-k_{3} x_{2}+k_{4} x_{1} x_{2}, \quad \Longrightarrow y \ddot{y}-\dot{y}^{2}-k_{4} y^{2} \dot{y}-k_{3} y \dot{y}+k_{1} k_{4} y^{3}-k_{1} k_{3} y^{2}=0 \\
y=x_{1} .
\end{array}\right.
$$

Input-output equation - the "minimal" differential equation for y with coefficients in parameter.

Step 2: Extract coefficients

Idea: evaluations of $y \Longrightarrow$ linear equations on the coefficients

$$
y \ddot{y}-\dot{y}^{2}-k_{4} y^{2} \dot{y}-k_{3} y \dot{y}+k_{1} k_{4} y^{3}-k_{1} k_{3} y^{2}=0
$$

Step 2: Extract coefficients

Idea: evaluations of $y \Longrightarrow$ linear equations on the coefficients

$$
\begin{gathered}
y \ddot{y}-\dot{y}^{2}-k_{4} y^{2} \dot{y}-k_{3} y \dot{y}+k_{1} k_{4} y^{3}-k_{1} k_{3} y^{2}=0 \\
y\left(t_{1}\right) \ddot{y}\left(t_{1}\right)-\dot{y}\left(t_{1}\right)^{2}=k_{4} y\left(t_{1}\right)^{2} \dot{y}\left(t_{1}\right)+k_{3} y\left(t_{1}\right) \dot{y}\left(t_{1}\right)-k_{1} k_{4} y\left(t_{1}\right)^{3}+k_{1} k_{3} y\left(t_{1}\right)^{2}, \\
y\left(t_{2}\right) \ddot{y}\left(t_{2}\right)-\dot{y}\left(t_{2}\right)^{2}=k_{4} y\left(t_{2}\right)^{2} \dot{y}\left(t_{2}\right)+k_{3} y\left(t_{2}\right) \dot{y}\left(t_{2}\right)-k_{1} k_{4} y\left(t_{2}\right)^{3}+k_{1} k_{3} y\left(t_{2}\right)^{2}, \\
\vdots \\
y\left(t_{N}\right) \ddot{y}\left(t_{N}\right)-\dot{y}\left(t_{N}\right)^{2}=k_{4} y\left(t_{N}\right)^{2} \dot{y}\left(t_{N}\right)+k_{3} y\left(t_{N}\right) \dot{y}\left(t_{N}\right)-k_{1} k_{4} y\left(t_{N}\right)^{3}+k_{1} k_{3} y\left(t_{N}\right)^{2} .
\end{gathered}
$$

Step 2: Extract coefficients

Idea: evaluations of $y \Longrightarrow$ linear equations on the coefficients

$$
\begin{gathered}
y \ddot{y}-\dot{y}^{2}-k_{4} y^{2} \dot{y}-k_{3} y \dot{y}+k_{1} k_{4} y^{3}-k_{1} k_{3} y^{2}=0 \\
y\left(t_{1}\right) \ddot{y}\left(t_{1}\right)-\dot{y}\left(t_{1}\right)^{2}=k_{4} y\left(t_{1}\right)^{2} \dot{y}\left(t_{1}\right)+k_{3} y\left(t_{1}\right) \dot{y}\left(t_{1}\right)-k_{1} k_{4} y\left(t_{1}\right)^{3}+k_{1} k_{3} y\left(t_{1}\right)^{2}, \\
y\left(t_{2}\right) \ddot{y}\left(t_{2}\right)-\dot{y}\left(t_{2}\right)^{2}=k_{4} y\left(t_{2}\right)^{2} \dot{y}\left(t_{2}\right)+k_{3} y\left(t_{2}\right) \dot{y}\left(t_{2}\right)-k_{1} k_{4} y\left(t_{2}\right)^{3}+k_{1} k_{3} y\left(t_{2}\right)^{2}, \\
\vdots \\
y\left(t_{N}\right) \ddot{y}\left(t_{N}\right)-\dot{y}\left(t_{N}\right)^{2}=k_{4} y\left(t_{N}\right)^{2} \dot{y}\left(t_{N}\right)+k_{3} y\left(t_{N}\right) \dot{y}\left(t_{N}\right)-k_{1} k_{4} y\left(t_{N}\right)^{3}+k_{1} k_{3} y\left(t_{N}\right)^{2} .
\end{gathered}
$$

Assume nonsingular:(identifiable \Longleftrightarrow rational in $k_{4}, k_{3}, k_{1} k_{4}, k_{1} k_{3}$)

Step 2: Extract coefficients

Idea: evaluations of $y \Longrightarrow$ linear equations on the coefficients

$$
\begin{gathered}
y \ddot{y}-\dot{y}^{2}-k_{4} y^{2} \dot{y}-k_{3} y \dot{y}+k_{1} k_{4} y^{3}-k_{1} k_{3} y^{2}=0 \\
y\left(t_{1}\right) \ddot{y}\left(t_{1}\right)-\dot{y}\left(t_{1}\right)^{2}=k_{4} y\left(t_{1}\right)^{2} \dot{y}\left(t_{1}\right)+k_{3} y\left(t_{1}\right) \dot{y}\left(t_{1}\right)-k_{1} k_{4} y\left(t_{1}\right)^{3}+k_{1} k_{3} y\left(t_{1}\right)^{2}, \\
y\left(t_{2}\right) \ddot{y}\left(t_{2}\right)-\dot{y}\left(t_{2}\right)^{2}=k_{4} y\left(t_{2}\right)^{2} \dot{y}\left(t_{2}\right)+k_{3} y\left(t_{2}\right) \dot{y}\left(t_{2}\right)-k_{1} k_{4} y\left(t_{2}\right)^{3}+k_{1} k_{3} y\left(t_{2}\right)^{2}, \\
\vdots \\
y\left(t_{N}\right) \ddot{y}\left(t_{N}\right)-\dot{y}\left(t_{N}\right)^{2}=k_{4} y\left(t_{N}\right)^{2} \dot{y}\left(t_{N}\right)+k_{3} y\left(t_{N}\right) \dot{y}\left(t_{N}\right)-k_{1} k_{4} y\left(t_{N}\right)^{3}+k_{1} k_{3} y\left(t_{N}\right)^{2} .
\end{gathered}
$$

Assume nonsingular:(identifiable \Longleftrightarrow rational in $k_{4}, k_{3}, k_{1} k_{4}, k_{1} k_{3}$) Remarks

- Assumption is not always true
- Coefficients are called canonical base in model theory language

Subtlety: the assumption does not always hold

Subtlety: the assumption does not always hold

Not yet an example (twisted harmonic oscillator)

$$
\left\{\begin{array}{l}
\dot{x}_{1}=(\omega+\alpha) x_{2} \\
\dot{x}_{2}=-\omega x_{1} \\
y=x_{2}
\end{array}\right.
$$

Subtlety: the assumption does not always hold

Not yet an example (twisted harmonic oscillator)

$$
\left\{\begin{array}{l}
\dot{x}_{1}=(\omega+\alpha) x_{2} \\
\dot{x}_{2}=-\omega x_{1} \\
y=x_{2}
\end{array}\right.
$$

$$
\Longrightarrow \ddot{y}+\omega(\omega+\alpha) y=0
$$

Subtlety: the assumption does not always hold

Not yet an example (twisted harmonic oscillator)

$$
\left\{\begin{array}{l}
\dot{x}_{1}=(\omega+\alpha) x_{2}, \\
\dot{x}_{2}=-\omega x_{1}, \\
y=x_{2}
\end{array} \quad \Longrightarrow \ddot{y}+\omega(\omega+\alpha) y=0\right.
$$

Example
Assume that α is known

$$
\left\{\begin{array}{l}
\dot{x}_{1}=\left(\omega+x_{3}\right) x_{2}, \\
\dot{x}_{2}=-\omega x_{1}, \\
\dot{x}_{3}=0, \\
y_{1}=x_{2}, y_{2}=x_{3}
\end{array}\right.
$$

Subtlety: the assumption does not always hold

Not yet an example (twisted harmonic oscillator)

$$
\left\{\begin{array}{l}
\dot{x}_{1}=(\omega+\alpha) x_{2}, \\
\dot{x}_{2}=-\omega x_{1}, \\
y=x_{2}
\end{array} \quad \Longrightarrow \ddot{y}+\omega(\omega+\alpha) y=0\right.
$$

Example

Assume that α is known

$$
\left\{\begin{array}{l}
\dot{x}_{1}=\left(\omega+x_{3}\right) x_{2}, \\
\dot{x}_{2}=-\omega x_{1}, \\
\dot{x}_{3}=0, \\
y_{1}=x_{2}, y_{2}=x_{3}
\end{array} \quad \Longrightarrow \ddot{y}_{1}+\omega^{2} y_{1}+\omega y_{1} y_{2}=0, \dot{y}_{2}=0\right.
$$

Looks like ω is identifiable, but it is NOT.

Subtlety: the assumption does not always hold

Not yet an example (twisted harmonic oscillator)

$$
\left\{\begin{array}{l}
\dot{x}_{1}=(\omega+\alpha) x_{2}, \\
\dot{x}_{2}=-\omega x_{1}, \\
y=x_{2}
\end{array} \quad \Longrightarrow \ddot{y}+\omega(\omega+\alpha) y=0\right.
$$

Example

Assume that α is known

$$
\left\{\begin{array}{l}
\dot{x}_{1}=\left(\omega+x_{3}\right) x_{2}, \\
\dot{x}_{2}=-\omega x_{1}, \\
\dot{x}_{3}=0, \\
y_{1}=x_{2}, y_{2}=x_{3}
\end{array} \quad \Longrightarrow \ddot{y}_{1}+\omega^{2} y_{1}+\omega y_{1} y_{2}=0, \dot{y}_{2}=0\right.
$$

Looks like ω is identifiable, but it is NOT.
Only $\omega(\omega+\alpha), \alpha$ known \Longrightarrow quadratic equation in ω

Why do we care about this method then?

Why do we care about this method then?

- Used in practice (software: DAISY, COMBOS)

Why do we care about this method then?

- Used in practice (software: DAISY, COMBOS)
- If the assumption is true, finds all identifiable functions

Why do we care about this method then?

- Used in practice (software: DAISY, COMBOS)
- If the assumption is true, finds all identifiable functions
- Not a bug but a feature (in a few minutes)!

Model theory

joint with A. Ovchinnikov, A. Pillay, and T. Scanlon

Setup

- Language $\mathcal{L}=\left\{0,1,+, \cdot,{ }^{\prime}\right\}$.

Setup

- Language $\mathcal{L}=\left\{0,1,+, \cdot,{ }^{\prime}\right\}$.
- Axioms, part 1 (differential field):
- axioms of fields
- $(a+b)^{\prime}=a^{\prime}+b^{\prime}$ and $(a b)^{\prime}=a^{\prime} b+a b^{\prime}$

Setup

- Language $\mathcal{L}=\left\{0,1,+, \cdot,{ }^{\prime}\right\}$.
- Axioms, part 1 (differential field):
- axioms of fields
- $(a+b)^{\prime}=a^{\prime}+b^{\prime}$ and $(a b)^{\prime}=a^{\prime} b+a b^{\prime}$
- Axioms, part 2 (differentially closed field): there could be a solution \Longrightarrow there is one

Setup

- Language $\mathcal{L}=\left\{0,1,+, \cdot,{ }^{\prime}\right\}$.
- Axioms, part 1 (differential field):
- axioms of fields
- $(a+b)^{\prime}=a^{\prime}+b^{\prime}$ and $(a b)^{\prime}=a^{\prime} b+a b^{\prime}$
- Axioms, part 2 (differentially closed field): there could be a solution \Longrightarrow there is one
- Fix such a very big field K

Dictionary: types

Type over $A \subset K$ is a satisfiable set of formulas in $\mathcal{L} \cup A$.
Realization of a type is an element of K satisfying the formulas.

Dictionary: types

Type over $A \subset K$ is a satisfiable set of formulas in $\mathcal{L} \cup A$.
Realization of a type is an element of K satisfying the formulas.

Predator-prey

Let $A=\left\{k_{1}, k_{2}, k_{3}, k_{4}\right\}$ (K is big, a lot of transendental constants over \mathbb{C})

Dictionary: types

Type over $A \subset K$ is a satisfiable set of formulas in $\mathcal{L} \cup A$.
Realization of a type is an element of K satisfying the formulas.

Predator-prey

Let $A=\left\{k_{1}, k_{2}, k_{3}, k_{4}\right\}$ (K is big, a lot of transendental constants over \mathbb{C})

$$
\text { solution } \begin{aligned}
\varphi_{1}\left(x_{1}, x_{2}, y\right) & =\left(x_{1}^{\prime}=k_{1} x_{1}-k_{2} x_{1} x_{2}\right), \\
\varphi_{2}\left(x_{1}, x_{2}, y\right) & =\left(x_{2}^{\prime}=-k_{3} x_{2}+k_{4} x_{1} x_{2}\right), \\
\varphi_{3}\left(x_{1}, x_{2}, y\right) & =\left(y=x_{1}\right) ;
\end{aligned}
$$

Dictionary: types

Type over $A \subset K$ is a satisfiable set of formulas in $\mathcal{L} \cup A$.
Realization of a type is an element of K satisfying the formulas.

Predator-prey

Let $A=\left\{k_{1}, k_{2}, k_{3}, k_{4}\right\}$ (K is big, a lot of transendental constants over \mathbb{C})

$$
\begin{aligned}
& \text { solution } \varphi_{1}\left(x_{1}, x_{2}, y\right)=\left(x_{1}^{\prime}=k_{1} x_{1}-k_{2} x_{1} x_{2}\right), \\
& \varphi_{2}\left(x_{1}, x_{2}, y\right)=\left(x_{2}^{\prime}=-k_{3} x_{2}+k_{4} x_{1} x_{2}\right), \\
& \varphi_{3}\left(x_{1}, x_{2}, y\right)=\left(y=x_{1}\right) ; \\
& \text { output } \psi(y)=\exists x_{1}, x_{2} \varphi_{1}\left(x_{1}, x_{2}, y\right) \& \varphi_{2}\left(x_{1}, x_{2}, y\right) \& \varphi_{3}\left(x_{1}, x_{2}, y\right)
\end{aligned}
$$

Dictionary: types

Type over $A \subset K$ is a satisfiable set of formulas in $\mathcal{L} \cup A$.
Realization of a type is an element of K satisfying the formulas.

Predator-prey

Let $A=\left\{k_{1}, k_{2}, k_{3}, k_{4}\right\}$ (K is big, a lot of transendental constants over \mathbb{C})

$$
\begin{aligned}
& \text { solution } \varphi_{1}\left(x_{1}, x_{2}, y\right)=\left(x_{1}^{\prime}=k_{1} x_{1}-k_{2} x_{1} x_{2}\right) \text {, } \\
& \varphi_{2}\left(x_{1}, x_{2}, y\right)=\left(x_{2}^{\prime}=-k_{3} x_{2}+k_{4} x_{1} x_{2}\right), \\
& \varphi_{3}\left(x_{1}, x_{2}, y\right)=\left(y=x_{1}\right) ; \\
& \text { output } \psi(y)=\exists x_{1}, x_{2} \varphi_{1}\left(x_{1}, x_{2}, y\right) \& \varphi_{2}\left(x_{1}, x_{2}, y\right) \& \varphi_{3}\left(x_{1}, x_{2}, y\right)
\end{aligned}
$$

generic solution solution + negations of equations that are not consequences of $\varphi_{1}, \varphi_{2}, \varphi_{3}$

Dictionary: types

Type over $A \subset K$ is a satisfiable set of formulas in $\mathcal{L} \cup A$.
Realization of a type is an element of K satisfying the formulas.

Predator-prey

Let $A=\left\{k_{1}, k_{2}, k_{3}, k_{4}\right\}$ (K is big, a lot of transendental constants over \mathbb{C})

$$
\begin{aligned}
& \text { solution } \varphi_{1}\left(x_{1}, x_{2}, y\right)=\left(x_{1}^{\prime}=k_{1} x_{1}-k_{2} x_{1} x_{2}\right) \text {, } \\
& \varphi_{2}\left(x_{1}, x_{2}, y\right)=\left(x_{2}^{\prime}=-k_{3} x_{2}+k_{4} x_{1} x_{2}\right), \\
& \varphi_{3}\left(x_{1}, x_{2}, y\right)=\left(y=x_{1}\right) ; \\
& \text { output } \psi(y)=\exists x_{1}, x_{2} \varphi_{1}\left(x_{1}, x_{2}, y\right) \& \varphi_{2}\left(x_{1}, x_{2}, y\right) \& \varphi_{3}\left(x_{1}, x_{2}, y\right)
\end{aligned}
$$

generic solution solution + negations of equations that are not consequences of $\varphi_{1}, \varphi_{2}, \varphi_{3}$
generic output output + negations of all nonconsequences

Dictionary: definability

Definition

Let $B \subset K, a \in K$.
a is definable over B iff, for every automorphism $\alpha: K \rightarrow K$:

$$
(\forall b \in B \alpha(b)=b) \Longrightarrow \alpha(a)=a .
$$

Dictionary: definability

Definition

Let $B \subset K, a \in K$.
a is definable over B iff, for every automorphism $\alpha: K \rightarrow K$:

$$
(\forall b \in B \alpha(b)=b) \Longrightarrow \alpha(a)=a .
$$

Example

Let $a \in K$ - constant, and x - generic solution of $x^{\prime}=a x$.

Dictionary: definability

Definition

Let $B \subset K, a \in K$.
a is definable over B iff, for every automorphism $\alpha: K \rightarrow K$:

$$
(\forall b \in B \alpha(b)=b) \Longrightarrow \alpha(a)=a .
$$

Example

Let $a \in K$ - constant, and x - generic solution of $x^{\prime}=a x$.

$$
\alpha(x)=x \Longrightarrow \alpha(a)=\alpha\left(\frac{x^{\prime}}{x}\right)=\frac{\alpha\left(x^{\prime}\right)}{\alpha(x)}=\frac{x^{\prime}}{x}=a
$$

Dictionary: definability

Definition

Let $B \subset K, a \in K$.
a is definable over B iff, for every automorphism $\alpha: K \rightarrow K$:

$$
(\forall b \in B \alpha(b)=b) \Longrightarrow \alpha(a)=a .
$$

Example

Let $a \in K$ - constant, and x - generic solution of $x^{\prime}=a x$.

$$
\alpha(x)=x \Longrightarrow \alpha(a)=\alpha\left(\frac{x^{\prime}}{x}\right)=\frac{\alpha\left(x^{\prime}\right)}{\alpha(x)}=\frac{x^{\prime}}{x}=a
$$

Fact
In differentially closed fields
a definable over $B \quad \Longrightarrow \quad a=f\left(B, B^{\prime}, B^{\prime \prime}, \ldots\right)$

Dictionary: canonical base

Example

Type over $A=\left\{k_{1}, k_{2}, k_{3}, k_{4}\right\}$ of generic solution of

$$
y \ddot{y}-\dot{y}^{2}-k_{4} y^{2} \dot{y}-k_{3} y \dot{y}+k_{1} k_{4} y^{3}-k_{1} k_{3} y^{2}=0
$$

Dictionary: canonical base

Example

Type over $A=\left\{k_{1}, k_{2}, k_{3}, k_{4}\right\}$ of generic solution of

$$
y \ddot{y}-\dot{y}^{2}-k_{4} y^{2} \dot{y}-k_{3} y \dot{y}+k_{1} k_{4} y^{3}-k_{1} k_{3} y^{2}=0
$$

(generic output of the predator-prey model)

Dictionary: canonical base

Example

Type over $A=\left\{k_{1}, k_{2}, k_{3}, k_{4}\right\}$ of generic solution of

$$
y \ddot{y}-\dot{y}^{2}-k_{4} y^{2} \dot{y}-k_{3} y \dot{y}+k_{1} k_{4} y^{3}-k_{1} k_{3} y^{2}=0
$$

(generic output of the predator-prey model)
A canonical base: $k_{4}, k_{3}, k_{1} k_{4}, k_{1} k_{3}$

Dictionary: canonical base

Example

Type over $A=\left\{k_{1}, k_{2}, k_{3}, k_{4}\right\}$ of generic solution of

$$
y \ddot{y}-\dot{y}^{2}-k_{4} y^{2} \dot{y}-k_{3} y \dot{y}+k_{1} k_{4} y^{3}-k_{1} k_{3} y^{2}=0
$$

(generic output of the predator-prey model)
A canonical base: $k_{4}, k_{3}, k_{1} k_{4}, k_{1} k_{3}$
Generate the same field \Longrightarrow a canonical base as well, e.g. k_{1}, k_{3}, k_{4}.

Identifiability
Model theory

Translation

Identifiability
(1) coefficients of the IO-equation

Model theory

(1) canonical base of the output

Translation

Identifiability

(1) coefficients of the IO-equation
(2) α is identifiable

Model theory

(1) canonical base of the output
(2) α is definable over output

Translation

Identifiability

(1) coefficients of the IO-equation
(2) α is identifiable
(3) α is rational in the coefficients of the IO-equation

Model theory

(1) canonical base of the output
(2) α is definable over output
(3) α is definable over the canonical base

Translation

Identifiability

(1) coefficients of the IO-equation
(2) α is identifiable
(3) α is rational in the coefficients of the IO-equation
(4) Assumption: (2) \Longleftrightarrow (3)

Model theory

(1) canonical base of the output
(2) α is definable over output
(3) α is definable over the canonical base

Translation

Identifiability

(1) coefficients of the IO-equation
(2) α is identifiable
(3) α is rational in the coefficients of the IO-equation
(4) Assumption: (2) \Longleftrightarrow (3)

Model theory

(1) canonical base of the output
(2) α is definable over output
(3) α is definable over the canonical base
(4) type of output "is" one-based

Translation

Identifiability

(1) coefficients of the IO-equation
(2) α is identifiable
(3) α is rational in the coefficients of the IO-equation
(4) Assumption: (2) \Longleftrightarrow (3)

Model theory

(1) canonical base of the output
(2) α is definable over output
(3) α is definable over the canonical base
(4) type of output "is" one-based

One?
Are there two-based, three-based, etc?

From one to many

Defintion

Type is n-based

canonical base is definable from n independent realizations

From one to many

Defintion

Type is n-based $\quad \Longleftrightarrow \quad$ canonical base is definable from n independent realizations

In other words

The coefficients of the input-output equation are identifiable from n experiments with different initial conditions.

From one to many

Defintion

Type is n-based $\quad \Longleftrightarrow$ canonical base is definable from n independent realizations

In other words

The coefficients of the input-output equation are identifiable from n experiments with different initial conditions.

Theorem

The following are equal
(1) the field generated by the coefficient of the IO-equations;
(2) the set of rational functions in parameter identifiable from sufficiently many experiments.

From one to many

Defintion

$$
\begin{array}{lll}
\text { Type is } n \text {-based } & \Longleftrightarrow \quad \begin{array}{l}
\text { canonical base is definable } \\
\text { from } n \text { independent realizations }
\end{array}
\end{array}
$$

In other words

The coefficients of the input-output equation are identifiable from n experiments with different initial conditions.

Theorem

The following are equal
(1) the field generated by the coefficient of the IO-equations;
(2) the set of rational functions in parameter identifiable from sufficiently many experiments.

Corollary

The IO-equations method solves the multiexperimental identifiability problem.

Example: Twisted harmonic oscillator

$$
\left\{\begin{array}{l}
\dot{x}_{1}=\left(\omega+x_{3}\right) x_{2} \\
\dot{x}_{2}=-\omega x_{1} \\
\dot{x}_{3}=0 \\
y_{1}=x_{2}, y_{2}=x_{3}
\end{array}\right.
$$

Example: Twisted harmonic oscillator

$$
\left\{\begin{array}{l}
\dot{x}_{1}=\left(\omega+x_{3}\right) x_{2} \\
\dot{x}_{2}=-\omega x_{1} \\
\dot{x}_{3}=0 \\
y_{1}=x_{2}, y_{2}=x_{3}
\end{array}\right.
$$

Canonical base: ω.

Example: Twisted harmonic oscillator

$$
\left\{\begin{array}{l}
\dot{x}_{1}=\left(\omega+x_{3}\right) x_{2} \\
\dot{x}_{2}=-\omega x_{1} \\
\dot{x}_{3}=0 \\
y_{1}=x_{2}, y_{2}=x_{3}
\end{array}\right.
$$

Canonical base: ω. From a single experiment, we find $c:=\omega\left(\omega+y_{2}\right)$.

Example: Twisted harmonic oscillator

$$
\left\{\begin{array}{l}
\dot{x}_{1}=\left(\omega+x_{3}\right) x_{2} \\
\dot{x}_{2}=-\omega x_{1} \\
\dot{x}_{3}=0 \\
y_{1}=x_{2}, \quad y_{2}=x_{3}
\end{array}\right.
$$

Canonical base: ω. From a single experiment, we find $c:=\omega\left(\omega+y_{2}\right)$. After two experiments:

$$
\left\{\begin{array}{l}
c_{1}=\omega\left(\omega+y_{2,1}\right) \\
c_{2}=\omega\left(\omega+y_{2,2}\right)
\end{array}\right.
$$

Example: Twisted harmonic oscillator

$$
\left\{\begin{array}{l}
\dot{x}_{1}=\left(\omega+x_{3}\right) x_{2} \\
\dot{x}_{2}=-\omega x_{1} \\
\dot{x}_{3}=0 \\
y_{1}=x_{2}, y_{2}=x_{3}
\end{array}\right.
$$

Canonical base: ω. From a single experiment, we find $c:=\omega\left(\omega+y_{2}\right)$. After two experiments:

$$
\left\{\begin{array}{l}
c_{1}=\omega\left(\omega+y_{2,1}\right), \\
c_{2}=\omega\left(\omega+y_{2,2}\right) .
\end{array}\right.
$$

We can cancel ω^{2} and get a linear equation in ω.

Example: Twisted harmonic oscillator

$$
\left\{\begin{array}{l}
\dot{x}_{1}=\left(\omega+x_{3}\right) x_{2} \\
\dot{x}_{2}=-\omega x_{1} \\
\dot{x}_{3}=0 \\
y_{1}=x_{2}, y_{2}=x_{3}
\end{array}\right.
$$

Canonical base: ω. From a single experiment, we find $c:=\omega\left(\omega+y_{2}\right)$. After two experiments:

$$
\left\{\begin{array}{l}
c_{1}=\omega\left(\omega+y_{2,1}\right), \\
c_{2}=\omega\left(\omega+y_{2,2}\right) .
\end{array}\right.
$$

We can cancel ω^{2} and get a linear equation in ω.
The type of output is two-based, ω is 2-experimental identifiable.

Example: slow-fast ambiguity

Example: slow-fast ambiguity

Chemical reaction

$$
A \xrightarrow{k_{1}} B \xrightarrow{k_{2}} C
$$

Example: slow-fast ambiguity

Chemical reaction

$$
A \xrightarrow{k_{1}} B \xrightarrow{k_{2}} C
$$

Equations

$$
\left\{\begin{array}{l}
\dot{x}_{A}=-k_{1} x_{A} \\
\dot{x}_{B}=k_{1} x_{A}-k_{2} x_{B} \\
\dot{x}_{C}=k_{2} x_{C}
\end{array}\right.
$$

Example: slow-fast ambiguity

Chemical reaction

$$
A \xrightarrow{k_{1}} B \xrightarrow{k_{2}} C
$$

Equations

$$
\left\{\begin{array}{l}
\dot{x}_{A}=-k_{1} x_{A} \\
\dot{x}_{B}=k_{1} x_{A}-k_{2} x_{B} \\
\dot{x}_{C}=k_{2} x_{C} \\
y_{1}=x_{C} \\
y_{2}=\varepsilon_{A} x_{A}+\varepsilon_{B} x_{B}+\varepsilon_{C} x_{C}
\end{array}\right.
$$

Example: slow-fast ambiguity

Chemical reaction

$$
A \xrightarrow{k_{1}} B \xrightarrow{k_{2}} C
$$

Equations

$$
\left\{\begin{array}{l}
\dot{x}_{A}=-k_{1} x_{A} \\
\dot{x}_{B}=k_{1} x_{A}-k_{2} x_{B}, \\
\dot{x}_{C}=k_{2} x_{C} \\
\dot{\varepsilon}_{A}=0 \\
y_{1}=x_{C} \\
y_{2}=\varepsilon_{A} x_{A}+\varepsilon_{B} x_{B}+\varepsilon_{C} x_{C}, \\
y_{3}=\varepsilon_{A}
\end{array}\right.
$$

Example: slow-fast ambiguity

Chemical reaction

$$
A \xrightarrow{k_{1}} B \xrightarrow{k_{2}} C
$$

- From one experiment: $k_{1}+k_{2}, k_{1} k_{2}, \varepsilon_{C}$

Equations

$$
\left\{\begin{array}{l}
\dot{x}_{A}=-k_{1} x_{A} \\
\dot{x}_{B}=k_{1} x_{A}-k_{2} x_{B}, \\
\dot{x}_{C}=k_{2} x_{C} \\
\dot{\varepsilon}_{A}=0 \\
y_{1}=x_{C} \\
y_{2}=\varepsilon_{A} x_{A}+\varepsilon_{B} x_{B}+\varepsilon_{C} x_{C} \\
y_{3}=\varepsilon_{A}
\end{array}\right.
$$

Example: slow-fast ambiguity

Chemical reaction

$$
A \xrightarrow{k_{1}} B \xrightarrow{k_{2}} C
$$

Equations

$$
\left\{\begin{array}{l}
\dot{x}_{A}=-k_{1} x_{A} \\
\dot{x}_{B}=k_{1} x_{A}-k_{2} x_{B}, \\
\dot{x}_{C}=k_{2} x_{C} \\
\dot{\varepsilon}_{A}=0 \\
y_{1}=x_{C} \\
y_{2}=\varepsilon_{A} x_{A}+\varepsilon_{B} x_{B}+\varepsilon_{C} x_{C} \\
y_{3}=\varepsilon_{A}
\end{array}\right.
$$

- From one experiment:

$$
k_{1}+k_{2}, k_{1} k_{2}, \varepsilon_{C}
$$

- Canonical base: $k_{1}, k_{2}, \varepsilon_{B}, \varepsilon_{C}$

Example: slow-fast ambiguity

Chemical reaction

$$
A \xrightarrow{k_{1}} B \xrightarrow{k_{2}} C
$$

Equations

$$
\left\{\begin{array}{l}
\dot{x}_{A}=-k_{1} x_{A} \\
\dot{x}_{B}=k_{1} x_{A}-k_{2} x_{B}, \\
\dot{x}_{C}=k_{2} x_{C} \\
\dot{\varepsilon}_{A}=0 \\
y_{1}=x_{C} \\
y_{2}=\varepsilon_{A} x_{A}+\varepsilon_{B} x_{B}+\varepsilon_{C} x_{C}, \\
y_{3}=\varepsilon_{A}
\end{array}\right.
$$

- From one experiment:

$$
k_{1}+k_{2}, k_{1} k_{2}, \varepsilon_{C}
$$

- Canonical base: $k_{1}, k_{2}, \varepsilon_{B}, \varepsilon_{C}$
- Two experiments are sufficient

Summary

- Structural identifiability: important problem Naturally connected to algebra

Summary

- Structural identifiability: important problem Naturally connected to algebra
- Computational differential algebra and algebraic geometry: algorithms to tackle this problem

Summary

- Structural identifiability: important problem Naturally connected to algebra
- Computational differential algebra and algebraic geometry: algorithms to tackle this problem
- Model theory:
understanding what these algorithms are actually doing (and design new; tell you next time)

Open problems

Role of the initial conditions

Example: why different
$\dot{x}=a x$ with \times generic $\Longrightarrow a$ is identifiable as $a=\frac{\dot{x}}{x}$.

Role of the initial conditions

Example: why different
$\dot{x}=a x$ with \times generic $\Longrightarrow a$ is identifiable as $a=\frac{\dot{x}}{x}$.
But if $x(0)=0$, then $x(t)=0 \Longrightarrow$ no information about a

Role of the initial conditions

Example: why different
$\dot{x}=a x$ with \times generic $\Longrightarrow a$ is identifiable as $a=\frac{\dot{x}}{x}$.
But if $x(0)=0$, then $x(t)=0 \Longrightarrow$ no information about a
Question
Given fixed initial conditions, is it decidable whether a parameter is identifiable?

Role of the initial conditions

Example: why different

$\dot{x}=a x$ with \times generic $\Longrightarrow a$ is identifiable as $a=\frac{\dot{x}}{x}$.
But if $x(0)=0$, then $x(t)=0 \Longrightarrow$ no information about a
Question
Given fixed initial conditions, is it decidable whether a parameter is identifiable?

Theorem (Hong, Ovchinnikov, P., Yap)
Let there are n state variables and ℓ parameters. Then
(1) parameter k is identifiable iff
(2) k is a rational function of $n+\ell+1$ derivatives of outputs at $t=0$.

Role of the initial conditions

Example: why different
$\dot{x}=a x$ with \times generic $\Longrightarrow a$ is identifiable as $a=\frac{\dot{x}}{x}$.
But if $x(0)=0$, then $x(t)=0 \Longrightarrow$ no information about a
Question
Given fixed initial conditions, is it decidable whether a parameter is identifiable?

Theorem (Hong, Ovchinnikov, P., Yap)
Let there are n state variables and ℓ parameters. Then
(1) parameter k is identifiable iff
(2) k is a rational function of $n+\ell+1$ derivatives of outputs at $t=0$.

Not true for fixed initial conditions
Let $\dot{x}=1+a x^{100}, y=x, x(0)=0$,

Role of the initial conditions

Example: why different
$\dot{x}=a x$ with \times generic $\Longrightarrow a$ is identifiable as $a=\frac{\dot{x}}{x}$.
But if $x(0)=0$, then $x(t)=0 \Longrightarrow$ no information about a
Question
Given fixed initial conditions, is it decidable whether a parameter is identifiable?

Theorem (Hong, Ovchinnikov, P., Yap)
Let there are n state variables and ℓ parameters. Then
(1) parameter k is identifiable iff
(2) k is a rational function of $n+\ell+1$ derivatives of outputs at $t=0$.

Not true for fixed initial conditions
Let $\dot{x}=1+a x^{100}, y=x, x(0)=0$,
Then $\dot{x}(0)=1, \ddot{x}(0)=\ldots=x^{(99)}(0)=0$, but $x^{(100)}(0)=100$!a.

Role of the initial conditions

Example: why different
$\dot{x}=a x$ with \times generic $\Longrightarrow a$ is identifiable as $a=\frac{\dot{x}}{x}$.
But if $x(0)=0$, then $x(t)=0 \Longrightarrow$ no information about a
Question
Given fixed initial conditions, is it decidable whether a parameter is identifiable?

Theorem (Hong, Ovchinnikov, P., Yap)
Let there are n state variables and ℓ parameters. Then
(1) parameter k is identifiable iff
(2) k is a rational function of $n+\ell+1$ derivatives of outputs at $t=0$.

Not true for fixed initial conditions
Let $\dot{x}=1+a x^{100}, y=x, x(0)=0$,
Then $\dot{x}(0)=1, \ddot{x}(0)=\ldots=x^{(99)}(0)=0$, but $x^{(100)}(0)=100$!a.
Question
Is there a bound in terms of, for example, degrees?

State-of-the-art

- To the best of my knowledge, all algorithms for global identifiability work over \mathbb{C};

\mathbb{R} vs. \mathbb{C}

State-of-the-art

- To the best of my knowledge, all algorithms for global identifiability work over \mathbb{C};
- It is not clear how to define identifiability over \mathbb{R} : might be several typical behaviours

\mathbb{R} vs. \mathbb{C}

State-of-the-art

- To the best of my knowledge, all algorithms for global identifiability work over \mathbb{C};
- It is not clear how to define identifiability over \mathbb{R} : might be several typical behaviours

Why \mathbb{C} matters?

- Identifiable over $\mathbb{C} \Longrightarrow$ "identifiable" over \mathbb{R};
- Nonidentifiability over \mathbb{C} indicates hidden symmetries;

\mathbb{R} vs. \mathbb{C}

State-of-the-art

- To the best of my knowledge, all algorithms for global identifiability work over \mathbb{C};
- It is not clear how to define identifiability over \mathbb{R} : might be several typical behaviours

Why \mathbb{C} matters?

- Identifiable over $\mathbb{C} \Longrightarrow$ "identifiable" over \mathbb{R};
- Nonidentifiability over \mathbb{C} indicates hidden symmetries;

Questions

- How to define and assess identifiability over \mathbb{R} ?
- Parameter k is nonidentifiable over $\mathbb{C} \stackrel{?}{\Rightarrow}$ nonidentifiable over \mathbb{R} on an open subset?

Reparametrization

Example: predator-prey

$$
\left\{\begin{array}{l}
\dot{x}_{1}=k_{1} x_{1}-k_{2} x_{1} x_{2}, \\
\dot{x}_{2}=-k_{3} x_{2}+k_{4} x_{1} x_{2}, \\
y=x_{1} .
\end{array}\right.
$$

Reparametrization

Example: predator-prey

$$
\left\{\begin{array}{l}
\dot{x}_{1}=k_{1} x_{1}-k_{2} x_{1} x_{2}, \\
\dot{x}_{2}=-k_{3} x_{2}+k_{4} x_{1} x_{2}, \\
y=x_{1} .
\end{array}\right.
$$

Make a change of variables: $z_{2}:=k_{2} x_{2}$, then:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=k_{1} x_{1}-x_{1} z_{2} \\
\dot{z}_{2}=-k_{3} z_{2}+k_{4} x_{1} z_{2}
\end{array}\right.
$$

Reparametrization

Example: predator-prey

$$
\left\{\begin{array}{l}
\dot{x}_{1}=k_{1} x_{1}-k_{2} x_{1} x_{2}, \\
\dot{x}_{2}=-k_{3} x_{2}+k_{4} x_{1} x_{2}, \\
y=x_{1} .
\end{array}\right.
$$

Make a change of variables: $z_{2}:=k_{2} x_{2}$, then:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=k_{1} x_{1}-x_{1} z_{2}, \\
\dot{z}_{2}=-k_{3} z_{2}+k_{4} x_{1} z_{2}
\end{array}\right.
$$

All parameters are identifiable now!

Questions

- How to search for such reparametrizations?

Reparametrization

Example: predator-prey

$$
\left\{\begin{array}{l}
\dot{x}_{1}=k_{1} x_{1}-k_{2} x_{1} x_{2} \\
\dot{x}_{2}=-k_{3} x_{2}+k_{4} x_{1} x_{2} \\
y=x_{1}
\end{array}\right.
$$

Make a change of variables: $z_{2}:=k_{2} x_{2}$, then:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=k_{1} x_{1}-x_{1} z_{2} \\
\dot{z}_{2}=-k_{3} z_{2}+k_{4} x_{1} z_{2}
\end{array}\right.
$$

All parameters are identifiable now!

Questions

- How to search for such reparametrizations?
- Can one always write a system of ODEs with coefficients being identifiable (or in canonical base) with the same input-output equations?

Support

The work was supported by

- National Science Foundation
- City University of New York
- National Security Agency

I would also like to thank the American Institute of Mathematics and M.Eisenberg and N.Meshkat for organizing workshop "Identifiability problems in systems biology ".

