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LIX, CNRS, École Polytechnique,

Institut Polytechnique de Paris, France



Plan

• Intro to identifiability

• Approach via input-output equations and subtleties

• Through the lens of model theory: subtleties → features

• Open problems
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Intro to identifiability
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What is identifiability: toy examples

Example

In the model described by ẋ = kx

• x can measured in an experiment

and, therefore, its derivatives can be estimated,

• k is an unknown scalar parameter.

k =
ẋ

x
=⇒ k is identifiable.

Example

In the model described by ẋ = x + k1 + k2

• x can measured in an experiment

and, therefore, its derivatives can be estimated,

• k1 and k2 are unknown scalar parameters.

Impossible to find k1 and k2 =⇒ k1 and k2 are non-identifiable.
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Identifiability: Motivation

Common problem: more than one parameter value

fits the data.

There are different options

Cause Remedy

Noisy data =⇒ More measurements

or better equipment

Non-identfiability =⇒ Another model or new equipment

Verifying identifiabilty allows a modeller

to find the cause and choose the correct remedy.
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Is this really an issue?
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Abstract We consider the dynamics of chemical reaction networks under the
assumption of mass-action kinetics. We show that there exist reaction networks R
for which the reaction rate constants are not uniquely identifiable, even if we are given
complete information on the dynamics of concentrations for all chemical species of
R. Also, we show that there exist reaction networks R1 �= R2 such that their dyna-
mics are identical under appropriate choices of reaction rate constants, and present
theorems that characterize the properties of R, R1, R2 that make this possible. We
use these facts to show how we can determine dynamical properties of some chemical
networks by analyzing other chemical networks.

Keywords Chemical reaction networks · Mass-action kinetics ·
Parameter identification

1 Introduction

A chemical reaction network, under the assumption of mass-action kinetics, gives rise
to a dynamical system governing the concentrations of the different chemical species
[1–11]. We are interested in studying the inverse problem, i.e., the identifiability of
the reaction network and of its reaction rate constants, given the dynamics of chemical
species concentrations.

G. Craciun (B) · C. Pantea
Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Drive, Madison,
WI 53706-1388, USA
e-mail: craciun@math.wisc.edu

G. Craciun
Department of Biomolecular Chemistry, University of Wisconsin-Madison, 1300 University Avenue,
Madison, WI 53706-1532, USA
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On Identifiability of Nonlinear
ODE Models and Applications in
Viral Dynamics∗

Hongyu Miao†

Xiaohua Xia‡
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Hulin Wu†

Abstract. Ordinary differential equations (ODEs) are a powerful tool for modeling dynamic processes
with wide applications in a variety of scientific fields. Over the last two decades, ODEs
have also emerged as a prevailing tool in various biomedical research fields, especially
in infectious disease modeling. In practice, it is important and necessary to determine
unknown parameters in ODE models based on experimental data. Identifiability analysis
is the first step in determining unknown parameters in ODE models and such analysis
techniques for nonlinear ODE models are still under development. In this article, we
review identifiability analysis methodologies for nonlinear ODE models developed in the
past couple of decades, including structural identifiability analysis, practical identifiability
analysis, and sensitivity-based identifiability analysis. Some advanced topics and ongoing
research are also briefly reviewed. Finally, some examples from modeling viral dynamics of
HIV and influenza viruses are given to illustrate how to apply these identifiability analysis
methods in practice.

Key words. ODE modeling, structural identifiability, practical identifiability, sensitivity-based iden-
tifiability, viral dynamics

AMS subject classifications. 34A30, 34A34, 34C20

DOI. 10.1137/090757009

1. Introduction. Ordinary differential equation (ODE) models have been widely
used to model physical phenomena, engineering systems, economic behavior, and
biomedical processes. In particular, ODE models have recently played a prominent
role in describing both the within host dynamics and epidemics of infectious diseases
and other complex biomedical processes (e.g., [2, 15, 59, 74, 75, 77]). Great attention

∗Received by the editors April 24, 2009; accepted for publication (in revised form) February 22,
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U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or allow others to do so, for U.S. Government purposes. Copyright is
owned by SIAM to the extent not limited by these rights.

http://www.siam.org/journals/sirev/53-1/75700.html
†Department of Biostatistics and Computational Biology, University of Rochester School of

Medicine and Dentistry, 601 Elmwood Avenue, Box 630, Rochester, NY 14642 (hongyu miao@urmc.
rochester.edu, hwu@bst.rochester.edu).

‡Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Lynn-
wood Road, Pretoria 0002, South Africa (xxia@postino.up.ac.za).

§Theoretical Biology and Biophysics Group, MS-K710, Los Alamos National Laboratory, Los
Alamos, NM 87545 (asp@lanl.gov).
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Is this really an issue?

Review: To be or not to be an identifiable model. Is this a relevant
question in animal science modelling?

R. Muñoz-Tamayo1†, L. Puillet1, J. B. Daniel1,2, D. Sauvant1, O. Martin1, M. Taghipoor3 and P. Blavy1

1UMR Modélisation Systémique Appliquée aux Ruminants, INRA, AgroParisTech, Université Paris-Saclay, 75005 Paris, France; 2Trouw Nutrition R&D, P.O. Box 220,
5830 AE Boxmeer, The Netherlands; 3PEGASE, AgroCampus Ouest, INRA, 35590 Saint-Gilles, France

(Received 4 May 2017; Accepted 24 September 2017; First published online 3 November 2017)

What is a good (useful) mathematical model in animal science? For models constructed for prediction purposes, the question of
model adequacy (usefulness) has been traditionally tackled by statistical analysis applied to observed experimental data relative to
model-predicted variables. However, little attention has been paid to analytic tools that exploit the mathematical properties of the
model equations. For example, in the context of model calibration, before attempting a numerical estimation of the model
parameters, we might want to know if we have any chance of success in estimating a unique best value of the model parameters
from available measurements. This question of uniqueness is referred to as structural identifiability; a mathematical property that is
defined on the sole basis of the model structure within a hypothetical ideal experiment determined by a setting of model inputs
(stimuli) and observable variables (measurements). Structural identifiability analysis applied to dynamic models described by
ordinary differential equations (ODEs) is a common practice in control engineering and system identification. This analysis demands
mathematical technicalities that are beyond the academic background of animal science, which might explain the lack of
pervasiveness of identifiability analysis in animal science modelling. To fill this gap, in this paper we address the analysis of
structural identifiability from a practitioner perspective by capitalizing on the use of dedicated software tools. Our objectives are
(i) to provide a comprehensive explanation of the structural identifiability notion for the community of animal science modelling,
(ii) to assess the relevance of identifiability analysis in animal science modelling and (iii) to motivate the community to use
identifiability analysis in the modelling practice (when the identifiability question is relevant). We focus our study on ODE models.
By using illustrative examples that include published mathematical models describing lactation in cattle, we show how structural
identifiability analysis can contribute to advancing mathematical modelling in animal science towards the production of useful
models and, moreover, highly informative experiments via optimal experiment design. Rather than attempting to impose a
systematic identifiability analysis to the modelling community during model developments, we wish to open a window towards the
discovery of a powerful tool for model construction and experiment design.

Keywords: dynamic modelling, identifiability, model calibration, optimal experiment design, parameter identification

Implications

Mathematical modelling has played a central role in animal
science with a plethora of developments for enhancing
understanding and guiding sustainable livestock farming.
Progress in precision farming and omics technologies will call
for model developments adapted to get the most out of the
resulting big data, including better modelling practice. Our
objective is of providing insight into a mathematical tool
called structural identifiability analysis that has been seldom
used for analysing dynamic models in animal science. We
illustrate how this tool (when relevant) can contribute to

advancing mathematical modelling towards the production
of useful models and optimal experiments.

Introduction

The development of mathematical models in animal science
has contributed to gaining insight in different central aspects
of animal physiology such as metabolism and digestion. The
potential of modelling has been discussed by different authors
(France, 1988; Baldwin, 2000; Doeschl-Wilson, 2011).
A classical modelling approach for describing the dynamics

of a system under study is to construct dynamic models con-
sisting of ordinary differential equations (ODEs). These models
comprise parameters (sometimes in large number) whose
numerical values need to be estimated from experimental data† E-mail: rafael.munoztamayo@agroparistech.fr

Animal (2018), 12:4, pp 701–712 © The Animal Consortium 2017
doi:10.1017/S1751731117002774

animal
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Relaxation of the problem: local identifiability

On this slide

• x can be measured in an experiment

and, therefore, its derivatives can be estimated

• k1 and k2 are unknown scalar parameters

Equation What happens Identifiable?

ẋ = x + k1 k1 = ẋ − x YES

ẋ = x + k1
2 k1 = ±

√
ẋ − x NO

ẋ = x + k1 + k2 Infinitely many values for k1 and k2 NO

6
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• k1 and k2 are unknown scalar parameters
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Local identifiability: state of the art

• Jacobian test: Hermann and Krener (1977)

• Efficient software:

• ObservabilityTest (2002)

• IdentifiabilityAnalysis (2012)

• STRIKE-GOLDD (2016)

• Criteria for systems of special form:

• Meshkat, Sullivant, Eisenberg (2015)

• Meshkat, Rosen, Sullivant (2016)

• Baaijens, Draisma (2016)

• Gross, Meshkat, Shiu (2018)
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The importance of being globally identifiable

• Local identifiability does not guarantee the uniqieness of

the parameter value.

• Lack of global identifiability is hard to detect using

numeric methods.

• It happens!
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It happens: epidemiology (SEIR model)



S ′ = −β SI
N ,

E ′ = β SI
N − ηE ,

I ′ = ηE − αI ,
R ′ = αR,

N = S + E + I + R,

y1 = N,

y2 = κI .

Susceptible

↓
Exposed

↓
Infectious

↓
Recovered

Turns out:

Only locally identifiable: α, η,

Nonidentifiable: β, κ.

Furthermore:
An unordered pair {α, η} is

identifiable.

Will see similar in slow-fast

ambiguity later.
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Global identifiability: state of the art

Taylor series method Theory: Ponjanpalo, 1978

Software: GenSSI 2.0, 2017

Termination criterion only for special cases

Differential elimination Theory: Diop, Fliess, Ljung, Glad, 1993

for parameters Tackles only small examples

Input-output equations Theory: Ollivier, 1990

Software: DAISY, 2007; COMBOS, 2014

In a few minutes!

Prolongations + Theory: Hong, Ovchinnikov, P., Yap, 2019

symbolc sampling Software: SIAN, 2019
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Input-output equations
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Specification: what we are after

Input

System {
ẋ = f(x, k),

y = g(x, k),

where

• x are unknown state variables;

• k are unknown scalar parameters;

• y are outputs measured in experiment.

Output

Generators of the field of identifiable rational functions in k.

12
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Running example: predator-prey model


ẋ1 = k1x1 − k2x1x2,

ẋ2 = −k3x2 + k4x1x2,

y = x1.

• x1 - prey

• x2 - predators

Globally identifiable: k1, k3, k4

Nonidentifiable: k2

Identifiable functions: C(k1, k3, k4).

13
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Step 1: Eliminate

Whereof one cannot speak, thereof one must be silent

Idea: we cannot measure x2 =⇒ let us eliminate it!


ẋ1 = k1x1 − k2x1x2,

ẋ2 = −k3x2 + k4x1x2,

y = x1.

=⇒ y ÿ−ẏ2−k4y
2ẏ−k3y ẏ+k1k4y

3−k1k3y
2 = 0

Input-output equation - the “minimal” differential equation for y with

coefficients in parameter.

14
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Step 2: Extract coefficients

Idea: evaluations of y =⇒ linear equations on the coefficients

y ÿ − ẏ2 − k4y
2ẏ − k3y ẏ + k1k4y

3 − k1k3y
2 = 0

y(t1)ÿ(t1)− ẏ(t1)2 = k4y(t1)2ẏ(t1) + k3y(t1)ẏ(t1)− k1k4y(t1)3 + k1k3y(t1)2,

y(t2)ÿ(t2)− ẏ(t2)2 = k4y(t2)2ẏ(t2) + k3y(t2)ẏ(t2)− k1k4y(t2)3 + k1k3y(t2)2,

...

y(tN)ÿ(tN)− ẏ(tN)2 = k4y(tN)2ẏ(tN) + k3y(tN)ẏ(tN)− k1k4y(tN)3 + k1k3y(tN)2.

Assume nonsingular:
(
identifiable ⇐⇒ rational in k4, k3, k1k4, k1k3

)
Remarks

• Assumption is not always true

• Coefficients are called canonical base in model theory language

15
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y ÿ − ẏ2 − k4y
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...
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Subtlety: the assumption does not always hold

Not yet an example (twisted harmonic oscillator)
ẋ1 = (ω + α)x2,

ẋ2 = −ωx1,

y = x2

=⇒ ÿ + ω(ω + α)y = 0

Example

Assume that α is known
ẋ1 = (ω + x3)x2,

ẋ2 = −ωx1,

ẋ3 = 0,

y1 = x2, y2 = x3

=⇒ ÿ1 + ω2y1 + ωy1y2 = 0, ẏ2 = 0

Looks like ω is identifiable, but it is NOT.

Only ω(ω + α), α known =⇒ quadratic equation in ω

16
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ẋ2 = −ωx1,
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ẋ3 = 0,

y1 = x2, y2 = x3

=⇒ ÿ1 + ω2y1 + ωy1y2 = 0, ẏ2 = 0
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Why do we care about this method then?

• Used in practice (software: DAISY, COMBOS)

• If the assumption is true, finds all identifiable functions

• Not a bug but a feature (in a few minutes)!
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Model theory
joint with A. Ovchinnikov, A. Pillay, and T. Scanlon
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Setup

• Language L = {0, 1,+, ·,′ }.

• Axioms, part 1 (differential field):
• axioms of fields

• (a + b)′ = a′ + b′ and (ab)′ = a′b + ab′

• Axioms, part 2 (differentially closed field):

there could be a solution =⇒ there is one

• Fix such a very big field K

19
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Dictionary: types

Type over A ⊂ K is a satisfiable set of formulas in L ∪ A.

Realization of a type is an element of K satisfying the formulas.

Predator-prey

Let A = {k1, k2, k3, k4} (K is big, a lot of transendental constants over C)

solution ϕ1(x1, x2, y) = (x ′1 = k1x1 − k2x1x2),

ϕ2(x1, x2, y) = (x ′2 = −k3x2 + k4x1x2),

ϕ3(x1, x2, y) = (y = x1);

output ψ(y) = ∃x1, x2 ϕ1(x1, x2, y) &ϕ2(x1, x2, y) &ϕ3(x1, x2, y)

generic solution solution + negations of equations that are not

consequences of ϕ1, ϕ2, ϕ3

generic output output + negations of all nonconsequences
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Dictionary: definability

Definition

Let B ⊂ K , a ∈ K .

a is definable over B iff, for every automorphism α : K → K :(
∀b ∈ B α(b) = b

)
=⇒ α(a) = a.

Example

Let a ∈ K - constant, and x - generic solution of x ′ = ax .

α(x) = x =⇒ α(a) = α

(
x ′

x

)
=
α(x ′)
α(x)

=
x ′

x
= a

Fact

In differentially closed fields

a definable over B =⇒ a = f (B,B ′,B ′′, . . .)
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Dictionary: canonical base

Example

Type over A = {k1, k2, k3, k4} of generic solution of

y ÿ − ẏ2 − k4y
2ẏ − k3y ẏ + k1k4y

3 − k1k3y
2 = 0

(generic output of the predator-prey model)

A canonical base: k4, k3, k1k4, k1k3

Generate the same field =⇒ a canonical base as well, e.g. k1, k3, k4.
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Translation

Identifiability

(1) coefficients of the IO-equation

(2) α is identifiable

(3) α is rational in the coefficients

of the IO-equation

(4) Assumption: (2) ⇐⇒ (3)

Model theory

(1) canonical base of the output

(2) α is definable over output

(3) α is definable over the

canonical base

(4) type of output “is” one-based

One?

Are there two-based, three-based, etc?
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From one to many

Defintion
Type is n-based ⇐⇒ canonical base is definable

from n independent realizations

In other words

The coefficients of the input-output equation are identifiable from n

experiments with different initial conditions.

Theorem

The following are equal

(1) the field generated by the coefficient of the IO-equations;

(2) the set of rational functions in parameter identifiable from

sufficiently many experiments.

Corollary

The IO-equations method solves the multiexperimental identifiability

problem.
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Example: Twisted harmonic oscillator


ẋ1 = (ω + x3)x2,

ẋ2 = −ωx1,

ẋ3 = 0,

y1 = x2, y2 = x3

Canonical base: ω. From a single experiment, we find c := ω(ω + y2).

After two experiments: {
c1 = ω(ω + y2,1),

c2 = ω(ω + y2,2).

We can cancel ω2 and get a linear equation in ω.

The type of output is two-based, ω is 2-experimental identifiable.
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Example: slow-fast ambiguity

Chemical reaction

A
k1−→ B

k2−→ C

Equations

ẋA = −k1xA,

ẋB = k1xA − k2xB ,

ẋC = k2xC ,

ε̇A = 0,

y1 = xC ,

y2 = εAxA + εBxB + εCxC ,

y3 = εA

• From one experiment:

k1 + k2, k1k2, εC

• Canonical base: k1, k2, εB , εC

• Two experiments are sufficient
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ẋB = k1xA − k2xB ,
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Summary

• Structural identifiability: important problem

Naturally connected to algebra

• Computational differential algebra and algebraic geometry:

algorithms to tackle this problem

• Model theory:

understanding what these algorithms are actually doing

(and design new; tell you next time)
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Open problems

28



Role of the initial conditions

Example: why different
ẋ = ax with x generic =⇒ a is identifiable as a = ẋ

x .

But if x(0) = 0, then x(t) = 0 =⇒ no information about a

Question
Given fixed initial conditions, is it decidable whether a parameter is

identifiable?

Theorem (Hong, Ovchinnikov, P., Yap)
Let there are n state variables and ` parameters. Then

(1) parameter k is identifiable iff

(2) k is a rational function of n + `+ 1 derivatives of outputs at t = 0.

Not true for fixed initial conditions
Let ẋ = 1 + ax100, y = x , x(0) = 0,

Then ẋ(0) = 1, ẍ(0) = . . . = x (99)(0) = 0, but x (100)(0) = 100!a.

Question
Is there a bound in terms of, for example, degrees?
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R vs. C

State-of-the-art

• To the best of my knowledge, all algorithms for global identifiability

work over C;

• It is not clear how to define identifiability over R: might be several

typical behaviours

Why C matters?

• Identifiable over C =⇒ “identifiable” over R;

• Nonidentifiability over C indicates hidden symmetries;

Questions

• How to define and assess identifiability over R?

• Parameter k is nonidentifiable over C ?
=⇒ nonidentifiable over R on

an open subset?
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Reparametrization

Example: predator-prey
ẋ1 = k1x1 − k2x1x2,

ẋ2 = −k3x2 + k4x1x2,

y = x1.

Make a change of variables: z2 := k2x2, then:{
ẋ1 = k1x1 − x1z2,

ż2 = −k3z2 + k4x1z2.

All parameters are identifiable now!

Questions

• How to search for such reparametrizations?

• Can one always write a system of ODEs with coefficients being

identifiable (or in canonical base) with the same input-output

equations?

31



Reparametrization

Example: predator-prey
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ẋ1 = k1x1 − x1z2,
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ẋ2 = −k3x2 + k4x1x2,

y = x1.

Make a change of variables: z2 := k2x2, then:{
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