Irreducibility and generic ODEs

Ronnie Nagloo

Bronx
 COMNUNITY

Banff International Research Station Workshop
Brooklyn NY

$$
05 \text { June } 2020
$$

This work is partially supported by NSF grants DMS-1700336 and DMS-1952694, and PSC-CUNY grant \#63304-00 51.

Introduction and Motivation

- Strong minimality is a central notion in model theory.
- The Key Model Theoretic Problem about DCF (D. Marker's talk):

Understand the strongly minimal sets.

- This is a problem internal to Model theory/DCF (although it has been applied very successfully).

Introduction and Motivation

- Strong minimality is a central notion in model theory.
- The Key Model Theoretic Problem about DCF (D. Marker's talk):

Understand the strongly minimal sets.

- This is a problem internal to Model theory/DCF (although it has been applied very successfully).
- Goal:
(1) Use the slightly more general notion irreducibility to explain the relevance outside model theory.
(2) Give an idea of the problem of proving that a differential equation is strongly minimal.

Irreducibility: All solutions are 'new'

Let us give the Painlevé-Umemura definition of a classical/known functions.

- In what follows we will identify a meromorphic function f on an open set $U \subset \mathbb{C}$ with its restriction $f_{\mid V}$ onto an open subset $V \subset U$.

Irreducibility: All solutions are 'new'

Let us give the Painlevé-Umemura definition of a classical/known functions.

- In what follows we will identify a meromorphic function f on an open set $U \subset \mathbb{C}$ with its restriction $f_{\mid V}$ onto an open subset $V \subset U$.
- S will denote certain set of meromorphic functions on a domain $U \subset \mathbb{C}$.
- We assume that all the elements in S are already known functions.
- One then define the permissible operations to obtain other know functions from S.
(O) Let $f \in S$. Then f^{\prime} is a known function.
(P1) Let $f_{1}, f_{2} \in S$, then the functions $f_{1} \pm f_{2}, f_{1} \cdot f_{2}$ and f_{1} / f_{2} (if $f_{2} \neq 0$) are known functions.
(P2) If f is a solution of an equation $X^{n}+a_{1} X^{n-1}+\ldots+a_{n}=0$, with $a_{i} \in S$, then f is a known function.

Functions in $\mathbb{C}\langle S\rangle^{\text {alg }}$ are known functions.

Functions in $\mathbb{C}\langle S\rangle^{\text {alg }}$ are known functions.
(P3) Let $f \in S$. Then $\int f d t$ is a known function.
\ldots Functions in $\mathbb{C}\langle S\rangle^{\text {alg }}$ are known functions.
(P3) Let $f \in S$. Then $\int f d t$ is a known function.
(P4) If f is a solution of linear ODE $X^{(n)}+a_{1} X^{(n-1)}+\ldots+a_{n} X=0$, with $a_{i} \in S$, then f is a known function.
... Functions in $\mathbb{C}\langle S\rangle^{\text {alg }}$ are known functions.
(P3) Let $f \in S$. Then $\int f d t$ is a known function.
(P4) If f is a solution of linear ODE $X^{(n)}+a_{1} X^{(n-1)}+\ldots+a_{n} X=0$, with $a_{i} \in S$, then f is a known function.
(P5) Let $\Gamma \subset \mathbb{C}^{n}$ be a lattice such that the quotient \mathbb{C}^{n} / Γ is an abelian variety. Let $\pi: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} / \Gamma$ be the projection. Let ϕ be a meromorphic function on \mathbb{C}^{n} / Γ. Then $\phi \cdot \pi \cdot\left(f_{1}, \ldots, f_{n}\right)$, where $f_{1}, \ldots, f_{n} \in S$, is a known function.
\ldots Functions in $\mathbb{C}\langle S\rangle^{\text {alg }}$ are known functions.
(P3) Let $f \in S$. Then $\int f d t$ is a known function.
(P4) If f is a solution of linear ODE $X^{(n)}+a_{1} X^{(n-1)}+\ldots+a_{n} X=0$, with $a_{i} \in S$, then f is a known function.
(P5) Let $\Gamma \subset \mathbb{C}^{n}$ be a lattice such that the quotient \mathbb{C}^{n} / Γ is an abelian variety. Let $\pi: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} / \Gamma$ be the projection. Let ϕ be a meromorphic function on \mathbb{C}^{n} / Γ. Then $\phi \cdot \pi \cdot\left(f_{1}, \ldots, f_{n}\right)$, where $f_{1}, \ldots, f_{n} \in S$, is a known function.

For each $k \in \mathbb{N}_{>0}$
$\left(Q_{k}\right)$ If f is a solution of an ODE $G\left(y, y^{\prime}, \ldots, y^{(k)}\right)=0$ where G has coefficients from S. Then f a known function.

Here $F \in \mathbb{C}(t)\left(X_{1}, \ldots, X_{n}\right)$ denotes a rational function and $n>1$.

Definition

The equation $y^{(n)}=F\left(y, y^{\prime}, \ldots, y^{(n-1)}\right)$ is PU-irreducible if, starting from the set of constant functions \mathbb{C}, one cannot express any of its solutions by a finite iteration of the permissible operations (0), (P1), .., (P5) and (Q_{1}),,$\left(Q_{n-1}\right)$.

Here $F \in \mathbb{C}(t)\left(X_{1}, \ldots, X_{n}\right)$ denotes a rational function and $n>1$.

Definition

The equation $y^{(n)}=F\left(y, y^{\prime}, \ldots, y^{(n-1)}\right)$ is PU-irreducible if, starting from the set of constant functions \mathbb{C}, one cannot express any of its solutions by a finite iteration of the permissible operations (0), (P1) , .., (P5) and (Q_{1}) , .., $\left(Q_{n-1}\right)$.

Fact

The equation $y^{(n)}=F\left(y, y^{\prime}, \ldots, y^{(n-1)}\right)$ is PU-irreducible if
(1) It has no solution solution in $\mathbb{C}(t)^{\text {alg }}$; and

Here $F \in \mathbb{C}(t)\left(X_{1}, \ldots, X_{n}\right)$ denotes a rational function and $n>1$.

Definition

The equation $y^{(n)}=F\left(y, y^{\prime}, \ldots, y^{(n-1)}\right)$ is PU-irreducible if, starting from the set of constant functions \mathbb{C}, one cannot express any of its solutions by a finite iteration of the permissible operations (0), (P1), .., (P5) and (Q_{1}) , .., (Q_{n-1}).

Fact

The equation $y^{(n)}=F\left(y, y^{\prime}, \ldots, y^{(n-1)}\right)$ is PU-irreducible if
(1) It has no solution solution in $\mathbb{C}(t)^{\text {alg }}$; and
(2) For any solution f and any finitely generated differential field extension K of $\mathbb{C}(t)$, either

$$
f \in K^{\text {alg }} \quad \text { or } \quad \operatorname{tr} \cdot \operatorname{deg}\left(K\left(f, f^{\prime}, \ldots, f^{(n-1)}\right) / K\right)=n .
$$

Here $F \in \mathbb{C}(t)\left(X_{1}, \ldots, X_{n}\right)$ denotes a rational function and $n>1$.

Definition

The equation $y^{(n)}=F\left(y, y^{\prime}, \ldots, y^{(n-1)}\right)$ is PU -irreducible if, starting from the set of constant functions \mathbb{C}, one cannot express any of its solutions by a finite iteration of the permissible operations $(0),(\mathrm{P} 1), \ldots$, (P5) and $\left(Q_{1}\right), \ldots,\left(Q_{n-1}\right)$.

Fact

The equation $y^{(n)}=F\left(y, y^{\prime}, \ldots, y^{(n-1)}\right)$ is PU -irreducible if

- It has no solution solution in $\mathbb{C}(t)^{\text {ald }}$; and
(2) The set defined by the equation in a differentially closed field is strongly minimal.

2. Proving Strong minimality

2. Proving Strong minimality

- It can be quite hard to prove that an ODE is strongly minimal.
- Example:

The equation $y^{\prime \prime}=2 y^{3}+t y+\frac{1}{2}$ is not strongly minimal because of the existence of

$$
y^{\prime}=y^{2}+\frac{t}{2}
$$

2. Proving Strong minimality

- It can be quite hard to prove that an ODE is strongly minimal.
- Example:

The equation $y^{\prime \prime}=2 y^{3}+t y+\frac{1}{2}$ is not strongly minimal because of the existence of

$$
y^{\prime}=y^{2}+\frac{t}{2}
$$

The equation $y^{\prime \prime}=2 y^{3}+t y+\frac{3}{2}$ is not strongly minimal because of the existence of

2. Proving Strong minimality

- It can be quite hard to prove that an ODE is strongly minimal.
- Example:

The equation $y^{\prime \prime}=2 y^{3}+t y+\frac{1}{2}$ is not strongly minimal because of the existence of

$$
y^{\prime}=y^{2}+\frac{t}{2} .
$$

The equation $y^{\prime \prime}=2 y^{3}+t y+\frac{3}{2}$ is not strongly minimal because of the existence of

$$
\begin{aligned}
& \left(y^{\prime}\right)^{3}-\left(y^{2}+\frac{t}{2}\right)\left(y^{\prime}\right)^{2}-\left(y^{4}+t y^{2}+4 y+\frac{t^{2}}{4}\right) y^{\prime} \\
& \quad+y^{6}+\frac{3}{2} t y^{4}+4 y^{3}+\frac{3}{4} t^{2} y^{2}+2 t y+2+\frac{t^{3}}{8}=0
\end{aligned}
$$

- The equation $P_{I /}(\alpha)$:

$$
y^{\prime \prime}=2 y^{3}+t y+\alpha, \quad \alpha \in \mathbb{C}
$$

is the second Painlevé equation.

- Isolated by P. Painlevé as one of the equation of the form $y^{\prime \prime}=f\left(y, y^{\prime}\right)$ that has the Painlevé property.
- The equation $P_{I /}(\alpha)$:

$$
y^{\prime \prime}=2 y^{3}+t y+\alpha, \quad \alpha \in \mathbb{C}
$$

is the second Painlevé equation.

- Isolated by P. Painlevé as one of the equation of the form $y^{\prime \prime}=f\left(y, y^{\prime}\right)$ that has the Painlevé property.
- If w is a solution of $P_{l /}(\alpha)$, then

$$
\begin{aligned}
& T_{+}(w)=-w-\frac{\alpha+1 / 2}{w^{\prime}+w^{2}+t / 2} \\
& T_{-}(w)=-w+\frac{\alpha-1 / 2}{w^{\prime}-w^{2}-t / 2}
\end{aligned}
$$

are solutions of $P_{I /}(\alpha+1)$ and $P_{I /}(\alpha-1)$ respectively.

- The equation $P_{I I}(\alpha)$:

$$
y^{\prime \prime}=2 y^{3}+t y+\alpha, \quad \alpha \in \mathbb{C}
$$

is the second Painlevé equation.

- Isolated by P. Painlevé as one of the equation of the form $y^{\prime \prime}=f\left(y, y^{\prime}\right)$ that has the Painlevé property.
- If w is a solution of $P_{l /}(\alpha)$, then

$$
\begin{aligned}
& T_{+}(w)=-w-\frac{\alpha+1 / 2}{w^{\prime}+w^{2}+t / 2} \\
& T_{-}(w)=-w+\frac{\alpha-1 / 2}{w^{\prime}-w^{2}-t / 2}
\end{aligned}
$$

are solutions of $P_{I /}(\alpha+1)$ and $P_{/ /}(\alpha-1)$ respectively.

Fact

The degree in y^{\prime} of the order 1 subvariety of $P_{I /}(1 / 2+n), n \in \mathbb{N}$, is 3^{n}.

Proving Strong minimality: Puiseux Series/Valuation

- Is $y^{\prime \prime}=\frac{y^{\prime}}{y}$ strongly minimal?

Proving Strong minimality: Puiseux Series/Valuation

- Is $y^{\prime \prime}=\frac{y^{\prime}}{y}$ strongly minimal? Yes by Poizat/Marker
- The calculations involved are specific to the equation and cannot be generalized.

Proving Strong minimality: Puiseux Series/Valuation

- Is $y^{\prime \prime}=\frac{y^{\prime}}{y}$ strongly minimal? Yes by Poizat/Marker
- The calculations involved are specific to the equation and cannot be generalized.

Result (Freitag-Jaoui-N)

The solution set of equation

$$
\begin{equation*}
y^{\prime \prime}=y^{\prime} \frac{p(y)}{q(y)} \tag{0.1}
\end{equation*}
$$

where the rational function $\frac{p(y)}{q(y)} \in \mathbb{C}(y)$ has a simple pole at $y=0$, is strongly minimal (and so geometrically trivial).

Proof idea for $y^{\prime \prime}=\frac{y^{\prime}}{y}$:

Proof idea for $y^{\prime \prime}=\frac{y^{\prime}}{y}$:

- If not strongly minimal, there is a solution f and a differential field K such that $\operatorname{tr} \cdot \operatorname{deg}\left(K\left(f, f^{\prime}\right) / K\right)=1$ and so

$$
u=f^{\prime} \in K(f)^{a l g} \backslash K^{a l g}
$$

Proof idea for $y^{\prime \prime}=\frac{y^{\prime}}{y}$:

- If not strongly minimal, there is a solution f and a differential field K such that $\operatorname{tr} . \operatorname{deg}\left(K\left(f, f^{\prime}\right) / K\right)=1$ and so

$$
u=f^{\prime} \in K(f)^{a l g} \backslash K^{a l g}
$$

- We can hence take a Puiseux series expansion of f^{\prime}

$$
u=\sum_{i=r}^{\infty} a_{i} \tau^{i}
$$

where $\tau^{e}=f$ for some $e \in \mathbb{N}_{>0}$ and $a_{i} \in K^{\text {alg }}$.

Proof idea for $y^{\prime \prime}=\frac{y^{\prime}}{y}$:

- If not strongly minimal, there is a solution f and a differential field K such that $\operatorname{tr} . \operatorname{deg}\left(K\left(f, f^{\prime}\right) / K\right)=1$ and so

$$
u=f^{\prime} \in K(f)^{a l g} \backslash K^{a l g}
$$

- We can hence take a Puiseux series expansion of f^{\prime}

$$
u=\sum_{i=r}^{\infty} a_{i} \tau^{i}
$$

where $\tau^{e}=f$ for some $e \in \mathbb{N}_{>0}$ and $a_{i} \in K^{\text {alg }}$.

- Plug in the equation $(u)^{\prime}=\frac{u}{f}$ and get a contradiction.

The Painlevé equation (again): $y^{\prime \prime}=2 y^{3}+t y+\alpha$

- Painlevé (1895) claimed that at least for generic values of the parameters all the Painlevé equations would be strongly minimal.
- This was proven to be true in a series of papers by K. Okamoto, K. Nishioka, M. Noumi, H. Umemura and H. Watanabe spanning over about 15 years.

The Painlevé equation (again): $y^{\prime \prime}=2 y^{3}+t y+\alpha$

- Painlevé (1895) claimed that at least for generic values of the parameters all the Painlevé equations would be strongly minimal.
- This was proven to be true in a series of papers by K. Okamoto, K. Nishioka, M. Noumi, H. Umemura and H. Watanabe spanning over about 15 years.

Fact

$P_{l /}(\alpha)$ is strongly minimal if and only if $\alpha \in \frac{1}{2}+\mathbb{Z}$

The Painlevé equation (again): $y^{\prime \prime}=2 y^{3}+t y+\alpha$

- Painlevé (1895) claimed that at least for generic values of the parameters all the Painlevé equations would be strongly minimal.
- This was proven to be true in a series of papers by K. Okamoto, K. Nishioka, M. Noumi, H. Umemura and H. Watanabe spanning over about 15 years.

Fact

$P_{l /}(\alpha)$ is strongly minimal if and only if $\alpha \in \frac{1}{2}+\mathbb{Z}$

- Genericity matters outside model theory:

Peter J. Forrester and Nicholas S. Witte, Painlevé II in random matrix theory and related fields, Constr. Approx. 41 (2015), no. 3, 589-613.

Schwartzian triangle Equations

- The Schwartzian triangle equation $\mathcal{S}(\alpha, \beta, \gamma)$ is given by

$$
S_{t}(y)=\frac{1}{2}\left(\frac{1-\beta^{-2}}{y^{2}}+\frac{1-\gamma^{-2}}{(y-1)^{2}}+\frac{\beta^{-2}+\gamma^{-2}-\alpha^{-2}-1}{y(y-1)}\right)\left(y^{\prime}\right)^{2}
$$

- where

$$
S_{t}(y)=\left(\frac{y^{\prime \prime}}{y^{\prime}}\right)^{\prime}-\frac{1}{2}\left(\frac{y^{\prime \prime}}{y^{\prime}}\right)^{2}
$$

- is the Schwartzian derivative and $\alpha, \beta, \gamma \in \mathbb{C}$.
- The solutions of $\mathcal{S}(\alpha, \beta, \gamma)$ are conformal mapping of hyperbolic triangle to the complex upper half plane.
- The solutions of $\mathcal{S}(k, I, m)$ when $2 \leq k \leq I \leq m$ (integers or ∞) and $\frac{1}{k}+\frac{1}{l}+\frac{1}{m}<1$ are Fuchsian automorphic functions.
- The solutions of $\mathcal{S}(\alpha, \beta, \gamma)$ are conformal mapping of hyperbolic triangle to the complex upper half plane.
- The solutions of $\mathcal{S}(k, I, m)$ when $2 \leq k \leq I \leq m$ (integers or ∞) and $\frac{1}{k}+\frac{1}{l}+\frac{1}{m}<1$ are Fuchsian automorphic functions.
- Painlevé (1895) claimed that $\mathcal{S}(k, l, m)$ is strongly minimal.
- The solutions of $\mathcal{S}(\alpha, \beta, \gamma)$ are conformal mapping of hyperbolic triangle to the complex upper half plane.
- The solutions of $\mathcal{S}(k, I, m)$ when $2 \leq k \leq I \leq m$ (integers or ∞) and $\frac{1}{k}+\frac{1}{l}+\frac{1}{m}<1$ are Fuchsian automorphic functions.
- Painlevé (1895) claimed that $\mathcal{S}(k, I, m)$ is strongly minimal.

Result (Casale-Freitag-N and Freitag-Scanlon for (2, 3, ∞))

The equation $\mathcal{S}(k, I, m)$, with $2 \leq k \leq I \leq m$ (integers or ∞) and $\frac{1}{k}+\frac{1}{7}+\frac{1}{m}<1$, is strongly minimal (and much more. . .).

- We use the above result to prove a deep functional transcendence result called the Ax-Lindemann-Weierstrass theorem with derivative for the Fuchsian automorphic functions.

Result (Blázquez Sanz-Casale-Freitag-N)

If α, β, γ are algebraically independent over \mathbb{Q}, then the equation $\mathcal{S}(\alpha, \beta, \gamma)$ is strongly minimal (and much more. ..).

Result (Blázquez Sanz-Casale-Freitag-N)

If α, β, γ are algebraically independent over \mathbb{Q}, then the equation $\mathcal{S}(\alpha, \beta, \gamma)$ is strongly minimal (and much more. . .).

- Key method in the proof:

Here $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{C}^{n}$ are algebraically independent over \mathbb{Q}

Fact

Let $\theta\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a formula in the language $(0,1,+, \times, D)$ such that

$$
\mathcal{U} \models \theta\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) .
$$

Result (Blázquez Sanz-Casale-Freitag-N)

If α, β, γ are algebraically independent over \mathbb{Q}, then the equation $\mathcal{S}(\alpha, \beta, \gamma)$ is strongly minimal (and much more. . .).

- Key method in the proof:

Here $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{C}^{n}$ are algebraically independent over \mathbb{Q}

Fact

Let $\theta\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a formula in the language $(0,1,+, \times, D)$ such that

$$
\mathcal{U} \models \theta\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) .
$$

Then for all but finitely many $\hat{\alpha} \in \mathbb{C}$ we have

$$
\mathcal{U} \models \theta\left(\hat{\alpha}, \alpha_{2}, \ldots, \alpha_{n}\right)
$$

Fun Strategy

Strategy

To prove that the generic Painlevé equations are strongly minimal, one only needed to prove that one (strategic) equation in each family is strongly minimal.

Fun Strategy

Strategy

To prove that the generic Painlevé equations are strongly minimal, one only needed to prove that one (strategic) equation in each family is strongly minimal.

- Example:

Step 1: Show that $P_{/ /}(0): y^{\prime \prime}=2 y^{3}+t y$ is strongly minimal.

Fun Strategy

Strategy

To prove that the generic Painlevé equations are strongly minimal, one only needed to prove that one (strategic) equation in each family is strongly minimal.

- Example:

Step 1: Show that $P_{I /}(0): y^{\prime \prime}=2 y^{3}+t y$ is strongly minimal.
Step 2: Use Backlund transformations to deduce that $P_{/ /}(n)$ strongly minimal for all $n \in \mathbb{Z}$.

Fun Strategy

Strategy

To prove that the generic Painlevé equations are strongly minimal, one only needed to prove that one (strategic) equation in each family is strongly minimal.

- Example:

Step 1: Show that $P_{I /}(0): y^{\prime \prime}=2 y^{3}+t y$ is strongly minimal.
Step 2: Use Backlund transformations to deduce that $P_{l /}(n)$ strongly minimal for all $n \in \mathbb{Z}$.

Step 3: Conclude, using previous fact, that $P_{/ /}(\alpha)$ is strongly minimal for transcendental α.

Thank you very much for your attention.

