Irreducibility and generic ODEs

Ronnie Nagloo

Banff International Research Station Workshop ${}^{_{{\rm in}}}$

Brooklyn NY

05 June 2020

This work is partially supported by NSF grants DMS-1700336 and DMS-1952694, and PSC-CUNY grant #63304-00 51.

Ronnie Nagloo

Irreducibility and generic ODEs

Introduction and Motivation

- Strong minimality is a central notion in model theory.
- The Key Model Theoretic Problem about DCF (D. Marker's talk): Understand the strongly minimal sets.
- This is a problem internal to Model theory/DCF (although it has been applied very successfully).

Introduction and Motivation

- Strong minimality is a central notion in model theory.
- The Key Model Theoretic Problem about DCF (D. Marker's talk): Understand the strongly minimal sets.
- This is a problem internal to Model theory/DCF (although it has been applied very successfully).
- Goal:
 - Use the slightly more general notion irreducibility to explain the relevance outside model theory.
 - Give an idea of the problem of proving that a differential equation is strongly minimal.

Irreducibility: All solutions are 'new'

Let us give the *Painlevé-Umemura definition* of a classical/known functions.

 In what follows we will identify a meromorphic function *f* on an open set U ⊂ C with its restriction f_{|V} onto an open subset V ⊂ U.

Irreducibility: All solutions are 'new'

Let us give the *Painlevé-Umemura definition* of a classical/known functions.

- In what follows we will identify a meromorphic function *f* on an open set U ⊂ C with its restriction f_{|V} onto an open subset V ⊂ U.
- S will denote certain set of meromorphic functions on a domain U ⊂ C.
- We assume that all the elements in *S* are already known functions.
- One then define the permissible operations to obtain other know functions from *S*.

- (O) Let $f \in S$. Then f' is a known function.
- (P1) Let $f_1, f_2 \in S$, then the functions $f_1 \pm f_2, f_1 \cdot f_2$ and f_1/f_2 (if $f_2 \neq 0$) are known functions.
- (P2) If *f* is a solution of an equation $X^n + a_1 X^{n-1} + \ldots + a_n = 0$, with $a_i \in S$, then *f* is a known function.

··· Functions in $\mathbb{C} \langle S \rangle^{alg}$ are known functions.

··· Functions in $\mathbb{C} \langle S \rangle^{alg}$ are known functions.

(P3) Let $f \in S$. Then $\int f dt$ is a known function.

- ··· Functions in $\mathbb{C} \langle S \rangle^{alg}$ are known functions.
- (P3) Let $f \in S$. Then $\int f dt$ is a known function.
- (P4) If *f* is a solution of linear ODE $X^{(n)} + a_1 X^{(n-1)} + \ldots + a_n X = 0$, with $a_i \in S$, then *f* is a known function.

- · · · Functions in $\mathbb{C} \langle S \rangle^{alg}$ are known functions.
- (P3) Let $f \in S$. Then $\int f dt$ is a known function.
- (P4) If *f* is a solution of linear ODE $X^{(n)} + a_1 X^{(n-1)} + \ldots + a_n X = 0$, with $a_i \in S$, then *f* is a known function.
- (P5) Let $\Gamma \subset \mathbb{C}^n$ be a lattice such that the quotient \mathbb{C}^n/Γ is an abelian variety. Let $\pi : \mathbb{C}^n \to \mathbb{C}^n/\Gamma$ be the projection. Let ϕ be a meromorphic function on \mathbb{C}^n/Γ . Then $\phi \cdot \pi \cdot (f_1, \ldots, f_n)$, where $f_1, \ldots, f_n \in S$, is a known function.

· · · Functions in $\mathbb{C} \langle S \rangle^{alg}$ are known functions.

(P3) Let $f \in S$. Then $\int f dt$ is a known function.

(P4) If *f* is a solution of linear ODE $X^{(n)} + a_1 X^{(n-1)} + ... + a_n X = 0$, with $a_i \in S$, then *f* is a known function.

(P5) Let $\Gamma \subset \mathbb{C}^n$ be a lattice such that the quotient \mathbb{C}^n/Γ is an abelian variety. Let $\pi : \mathbb{C}^n \to \mathbb{C}^n/\Gamma$ be the projection. Let ϕ be a meromorphic function on \mathbb{C}^n/Γ . Then $\phi \cdot \pi \cdot (f_1, \ldots, f_n)$, where $f_1, \ldots, f_n \in S$, is a known function.

For each $k \in \mathbb{N}_{>0}$

 (Q_k) If *f* is a solution of an ODE $G(y, y', \dots, y^{(k)}) = 0$ where *G* has coefficients from *S*. Then *f* a known function.

Definition

The equation $y^{(n)} = F(y, y', ..., y^{(n-1)})$ is PU-irreducible if, starting from the set of constant functions \mathbb{C} , one cannot express any of its solutions by a finite iteration of the permissible operations (0), (P1),..., (P5) and $(Q_1), ..., (Q_{n-1})$.

Definition

The equation $y^{(n)} = F(y, y', ..., y^{(n-1)})$ is PU-irreducible if, starting from the set of constant functions \mathbb{C} , one cannot express any of its solutions by a finite iteration of the permissible operations (0), (P1),..., (P5) and $(Q_1), ..., (Q_{n-1})$.

Fact

The equation $y^{(n)} = F(y, y', \dots, y^{(n-1)})$ is PU-irreducible if

• It has no solution solution in $\mathbb{C}(t)^{alg}$; and

Definition

The equation $y^{(n)} = F(y, y', ..., y^{(n-1)})$ is PU-irreducible if, starting from the set of constant functions \mathbb{C} , one cannot express any of its solutions by a finite iteration of the permissible operations (0), (P1),..., (P5) and $(Q_1), ..., (Q_{n-1})$.

Fact

The equation $y^{(n)} = F(y, y', \dots, y^{(n-1)})$ is PU-irreducible if

• It has no solution solution in $\mathbb{C}(t)^{alg}$; and

For any solution f and any finitely generated differential field extension K of C(t), either

 $f \in K^{alg}$ or $tr.deg(K(f, f', \dots, f^{(n-1)})/K) = n$.

Definition

The equation $y^{(n)} = F(y, y', ..., y^{(n-1)})$ is PU-irreducible if, starting from the set of constant functions \mathbb{C} , one cannot express any of its solutions by a finite iteration of the permissible operations (0), (P1),..., (P5) and $(Q_1), ..., (Q_{n-1})$.

Fact

The equation $y^{(n)} = F(y, y', \dots, y^{(n-1)})$ is PU-irreducible if

• It has no solution solution in $\mathbb{C}(t)^{alg}$; and

The set defined by the equation in a differentially closed field is strongly minimal.

• It can be quite hard to prove that an ODE is strongly minimal.

• Example:

The equation $y'' = 2y^3 + ty + \frac{1}{2}$ is not strongly minimal because of the existence of

$$y'=y^2+\frac{t}{2}.$$

• It can be quite hard to prove that an ODE is strongly minimal.

• Example:

The equation $y'' = 2y^3 + ty + \frac{1}{2}$ is not strongly minimal because of the existence of

$$y'=y^2+\frac{t}{2}.$$

The equation $y'' = 2y^3 + ty + \frac{3}{2}$ is not strongly minimal because of the existence of

• It can be quite hard to prove that an ODE is strongly minimal.

• Example:

The equation $y'' = 2y^3 + ty + \frac{1}{2}$ is not strongly minimal because of the existence of

$$y'=y^2+\frac{t}{2}.$$

The equation $y'' = 2y^3 + ty + \frac{3}{2}$ is not strongly minimal because of the existence of

$$\begin{array}{l}(y')^3 - (y^2 + \frac{t}{2})(y')^2 - (y^4 + ty^2 + 4y + \frac{t^2}{4})y' \\ + y^6 + \frac{3}{2}ty^4 + 4y^3 + \frac{3}{4}t^2y^2 + 2ty + 2 + \frac{t^3}{8} \end{array} = 0$$

• The equation $P_{II}(\alpha)$:

$$y'' = 2y^3 + ty + \alpha, \quad \alpha \in \mathbb{C}$$

is the second Painlevé equation.

Isolated by P. Painlevé as one of the equation of the form
 y'' = f(y, y') that has the Painlevé property.

• The equation $P_{II}(\alpha)$:

$$y'' = 2y^3 + ty + \alpha, \quad \alpha \in \mathbb{C}$$

is the second Painlevé equation.

- Isolated by P. Painlevé as one of the equation of the form
 y'' = f(y, y') that has the Painlevé property.
- If *w* is a solution of $P_{II}(\alpha)$, then

$$T_{+}(w) = -w - \frac{\alpha + 1/2}{w' + w^2 + t/2}$$
$$T_{-}(w) = -w + \frac{\alpha - 1/2}{w' - w^2 - t/2}$$

are solutions of $P_{II}(\alpha + 1)$ and $P_{II}(\alpha - 1)$ respectively.

• The equation $P_{II}(\alpha)$:

$$y'' = 2y^3 + ty + \alpha, \quad \alpha \in \mathbb{C}$$

is the second Painlevé equation.

- Isolated by P. Painlevé as one of the equation of the form
 y'' = f(y, y') that has the Painlevé property.
- If *w* is a solution of $P_{II}(\alpha)$, then

$$T_{+}(w) = -w - \frac{\alpha + 1/2}{w' + w^2 + t/2}$$
$$T_{-}(w) = -w + \frac{\alpha - 1/2}{w' - w^2 - t/2}$$

are solutions of $P_{II}(\alpha + 1)$ and $P_{II}(\alpha - 1)$ respectively.

Fact The degree in y' of the order 1 subvariety of $P_{II}(1/2 + n)$, $n \in \mathbb{N}$, is 3^n .

Ronnie Nagloo

Proving Strong minimality: Puiseux Series/Valuation

• Is
$$y'' = \frac{y'}{y}$$
 strongly minimal?

Proving Strong minimality: Puiseux Series/Valuation

- Is $y'' = \frac{y'}{y}$ strongly minimal? Yes by Poizat/Marker
- The calculations involved are specific to the equation and cannot be generalized.

Proving Strong minimality: Puiseux Series/Valuation

- Is $y'' = \frac{y'}{y}$ strongly minimal? Yes by Poizat/Marker
- The calculations involved are specific to the equation and cannot be generalized.

Result (Freitag-Jaoui-N)

The solution set of equation

$$y'' = y' \frac{p(y)}{q(y)} \tag{0.1}$$

where the rational function $\frac{p(y)}{q(y)} \in \mathbb{C}(y)$ has a simple pole at y = 0, is strongly minimal (and so geometrically trivial).

Proof idea for
$$y'' = \frac{y'}{y}$$
:

Proof idea for
$$y'' = \frac{y'}{v}$$
:

If not strongly minimal, there is a solution *f* and a differential field *K* such that *tr.deg*(*K*(*f*, *f'*)/*K*) = 1 and so

$$u = f' \in K(f)^{alg} \setminus K^{alg}$$

Proof idea for
$$y'' = \frac{y'}{v}$$
:

If not strongly minimal, there is a solution *f* and a differential field *K* such that *tr.deg*(*K*(*f*, *f'*)/*K*) = 1 and so

$$u = f' \in K(f)^{alg} \setminus K^{alg}$$

• We can hence take a Puiseux series expansion of f'

$$u = \sum_{i=r}^{\infty} a_i \tau^i$$

where $\tau^{e} = f$ for some $e \in \mathbb{N}_{>0}$ and $a_{i} \in K^{alg}$.

Proof idea for
$$y'' = \frac{y'}{v}$$
:

If not strongly minimal, there is a solution *f* and a differential field *K* such that *tr.deg*(*K*(*f*, *f'*)/*K*) = 1 and so

$$u = f' \in K(f)^{alg} \setminus K^{alg}$$

• We can hence take a Puiseux series expansion of f'

$$\mathbf{u} = \sum_{i=r}^{\infty} \mathbf{a}_i \tau^i$$

where $\tau^{e} = f$ for some $e \in \mathbb{N}_{>0}$ and $a_{i} \in K^{alg}$.

• Plug in the equation $(u)' = \frac{u}{f}$ and get a contradiction.

The Painlevé equation (again): $y'' = 2y^3 + ty + \alpha$

- Painlevé (1895) claimed that at least for generic values of the parameters all the Painlevé equations would be strongly minimal.
- This was proven to be true in a series of papers by K. Okamoto, K. Nishioka, M. Noumi, H. Umemura and H. Watanabe spanning over about 15 years.

The Painlevé equation (again): $y'' = 2y^3 + ty + \alpha$

- Painlevé (1895) claimed that at least for generic values of the parameters all the Painlevé equations would be strongly minimal.
- This was proven to be true in a series of papers by K. Okamoto, K. Nishioka, M. Noumi, H. Umemura and H. Watanabe spanning over about 15 years.

Fact

 $P_{II}(\alpha)$ is strongly minimal if and only if $\alpha \in \frac{1}{2} + \mathbb{Z}$

The Painlevé equation (again): $y'' = 2y^3 + ty + \alpha$

- Painlevé (1895) claimed that at least for generic values of the parameters all the Painlevé equations would be strongly minimal.
- This was proven to be true in a series of papers by K. Okamoto, K. Nishioka, M. Noumi, H. Umemura and H. Watanabe spanning over about 15 years.

Fact

 $P_{ll}(\alpha)$ is strongly minimal if and only if $\alpha \in \frac{1}{2} + \mathbb{Z}$

• Genericity matters outside model theory:

Peter J. Forrester and Nicholas S. Witte, Painlevé II in random matrix theory and related fields, Constr. Approx. 41 (2015), no. 3, 589-613.

Schwartzian triangle Equations

• The Schwartzian triangle equation $S(\alpha, \beta, \gamma)$ is given by

$$S_t(y) = \frac{1}{2} \left(\frac{1 - \beta^{-2}}{y^2} + \frac{1 - \gamma^{-2}}{(y - 1)^2} + \frac{\beta^{-2} + \gamma^{-2} - \alpha^{-2} - 1}{y(y - 1)} \right) (y')^2$$

where

$$\mathcal{S}_t(\mathbf{y}) = \left(rac{\mathbf{y}''}{\mathbf{y}'}
ight)' - rac{1}{2}\left(rac{\mathbf{y}''}{\mathbf{y}'}
ight)^2$$

• is the Schwartzian derivative and $\alpha, \beta, \gamma \in \mathbb{C}$.

- The solutions of S(α, β, γ) are conformal mapping of hyperbolic triangle to the complex upper half plane.
- The solutions of S(k, I, m) when $2 \le k \le I \le m$ (integers or ∞) and $\frac{1}{k} + \frac{1}{l} + \frac{1}{m} < 1$ are Fuchsian automorphic functions.

- The solutions of S(α, β, γ) are conformal mapping of hyperbolic triangle to the complex upper half plane.
- The solutions of S(k, l, m) when $2 \le k \le l \le m$ (integers or ∞) and $\frac{1}{k} + \frac{1}{l} + \frac{1}{m} < 1$ are Fuchsian automorphic functions.
- Painlevé (1895) claimed that S(k, l, m) is strongly minimal.

- The solutions of S(α, β, γ) are conformal mapping of hyperbolic triangle to the complex upper half plane.
- The solutions of S(k, l, m) when $2 \le k \le l \le m$ (integers or ∞) and $\frac{1}{k} + \frac{1}{l} + \frac{1}{m} < 1$ are Fuchsian automorphic functions.
- Painlevé (1895) claimed that S(k, l, m) is strongly minimal.

Result (Casale-Freitag-N and Freitag-Scanlon for $(2, 3, \infty)$)

The equation S(k, l, m), with $2 \le k \le l \le m$ (integers or ∞) and $\frac{1}{k} + \frac{1}{l} + \frac{1}{m} < 1$, is strongly minimal (and much more. . .).

• We use the above result to prove a deep functional transcendence result called the Ax-Lindemann-Weierstrass theorem with derivative for the Fuchsian automorphic functions.

Result (Blázquez Sanz-Casale-Freitag-N)

If α, β, γ are algebraically independent over \mathbb{Q} , then the equation $S(\alpha, \beta, \gamma)$ is strongly minimal (and much more...).

Result (Blázquez Sanz-Casale-Freitag-N)

If α, β, γ are algebraically independent over \mathbb{Q} , then the equation $S(\alpha, \beta, \gamma)$ is strongly minimal (and much more...).

• Key method in the proof:

Here $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{C}^n$ are algebraically independent over \mathbb{Q}

Fact

Let $\theta(x_1, x_2, ..., x_n)$ be a formula in the language $(0, 1, +, \times, D)$ such that

$$\mathcal{U} \models \theta(\alpha_1, \alpha_2, \ldots, \alpha_n).$$

Result (Blázquez Sanz-Casale-Freitag-N)

If α, β, γ are algebraically independent over \mathbb{Q} , then the equation $S(\alpha, \beta, \gamma)$ is strongly minimal (and much more...).

• Key method in the proof:

Here $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{C}^n$ are algebraically independent over \mathbb{Q}

Fact

Let $\theta(x_1, x_2, ..., x_n)$ be a formula in the language $(0, 1, +, \times, D)$ such that

$$\mathcal{U} \models \theta(\alpha_1, \alpha_2, \ldots, \alpha_n).$$

Then for all but finitely many $\hat{\alpha} \in \mathbb{C}$ we have

$$\mathcal{U} \models \theta(\hat{\boldsymbol{\alpha}}, \alpha_2, \dots, \alpha_n)$$

To prove that the generic Painlevé equations are strongly minimal, one only needed to prove that **one** (strategic) equation in each family is strongly minimal.

To prove that the generic Painlevé equations are strongly minimal, one only needed to prove that **one** (strategic) equation in each family is strongly minimal.

• Example:

Step 1: Show that $P_{II}(0) : y'' = 2y^3 + ty$ is strongly minimal.

To prove that the generic Painlevé equations are strongly minimal, one only needed to prove that **one** (strategic) equation in each family is strongly minimal.

• Example:

Step 1: Show that $P_{II}(0) : y'' = 2y^3 + ty$ is strongly minimal.

Step 2: Use Backlund transformations to deduce that $P_{II}(n)$ strongly minimal for all $n \in \mathbb{Z}$.

To prove that the generic Painlevé equations are strongly minimal, one only needed to prove that **one** (strategic) equation in each family is strongly minimal.

• Example:

Step 1: Show that $P_{II}(0) : y'' = 2y^3 + ty$ is strongly minimal.

Step 2: Use Backlund transformations to deduce that $P_{II}(n)$ strongly minimal for all $n \in \mathbb{Z}$.

Step 3: Conclude, using previous fact, that $P_{II}(\alpha)$ is strongly minimal for transcendental α .

Thank you very much for your attention.

