Ask not what algebra can do for biology – ask what biology can do for algebra

Workshop on

Model Theory of Differential Equations, Algebraic Geometry, and their Applications to Modeling

BIRS

June 5, 2020

Reinhard Laubenbacher Laboratory for Systems Medicine Department of Medicine University of Florida

reinhard.laubenbacher@medicine.ufl.edu

"Nature (likely) has Structure. And many models in natural sciences inherit a part of it. Therefore, understanding and exploiting the structure of a model at hand might be crucial to make the model useful. Algebra and logic offer a variety of tools to work with structures and greatly benefit from new types of structures and structural questions coming from other areas." 'Modularity is a widespread property in biological systems.'

Concepts in Boolean network modeling : What do they all mean?

https://www.sciencedirect.com/science/article/pii/S200103701930460X

Definition

A polynomial dynamical system (PDS) over a finite field k is a function

$$f = (f_1, \ldots, f_n) : k^n \longrightarrow k^n,$$

with the coordinate functions $f_i: k^n \longrightarrow k$ in the polynomial ring $k[x_1, \ldots, x_n]$.

Iteration of f results in a time discrete dynamical system over the space k^n .

Note: Any function $k^n \longrightarrow k$ can be expressed as a polynomial.

Bulletin of Mathematical Biology (2010) DOI 10.1007/s11538-010-9501-z

ORIGINAL ARTICLE

The Dynamics of Conjunctive and Disjunctive Boolean Network Models

Abdul Salam Jarrah^{a,b,*}, Reinhard Laubenbacher^a, Alan Veliz-Cuba^a

^a Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061-0477, USA
 ^b Present address: Department of Mathematics and Statistics, American University of Sharjah, Sharjah, UAE

The number of periodic points

Theorem 3 Let f be a conjunctive Boolean network whose dependency graph is strongly connected and has loop number c. If c = 1, then f has the two fixed points (0, 0, ..., 0) and (1, 1, ..., 1) and no other limit cycles of any length. If c > 1 and m is a divisor of c, then the number of periodic states of period m is

$$|A(m)| = \sum_{i_1=0}^{1} \cdots \sum_{i_r=0}^{1} (-1)^{i_1+i_2+\dots+i_r} 2^{p_1^{k_1-i_1} p_2^{k_2-i_2} \dots p_r^{k_r-i_r}},$$

where $m = \prod_{i=1}^{r} p_i^{k_i}$ is the prime factorization of m, that is p_1, \ldots, p_r are distinct primes and $k_i \ge 1$ for all i.

Automatica 99 (2019) 167-174

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Dynamics of semilattice networks with strongly connected dependency graph*

Alan Veliz-Cuba^{a,*}, Reinhard Laubenbacher^{b,c}

^a University of Dayton, Dayton, OH, USA

^b Center for Quantitative Medicine, University of Connecticut Health Center, USA

^c Jackson Laboratory for Genomic Medicine, USA

Theorem 6.2. Consider the function

$$\mathcal{L}(z_1,\ldots,z_t) := \sum_{\mathcal{J}\subseteq\Omega} (-1)^{|\mathcal{J}|+1} \prod_{j\in\bigcap_{J\in\mathcal{J}}J} z_i.$$

Then for any conjunctive Boolean network f with subnetworks h_1, \ldots, h_t and Ω its set of maximal antichains in the poset of f, we have

$$\mathcal{L}\big(\mathcal{C}(h_1),\ldots,\mathcal{C}(h_t)\big) \le \mathcal{C}(f).$$
(9)

Here, the function \mathcal{L} is evaluated using the "multiplication" described in Corollary 3.5. This inequality provides a sharp lower bound on the number of limit cycles of f of a given length.

Modularity for dynamic biological systems/models

- Given a model, compute its modules, their attractor structure, and information about the attractor structure of the model itself.
- Characterize the "degrees of freedom" to combine simple models.

A "Hölder Program" for BNs

- Identify a class of "decomposable" BNs.
- Identify a class of decomposable BNs that are "simple" and sufficiently "rich."
- Define a notion of "quotient" of a BN by a subnetwork.
- Show that each decomposable BN has a filtration by subnetworks so that each successive quotient is a simple network.
- Classify the different ways in which decomposable BNs can be built as extensions of two BNs that are simpler.
- Rigorous definition of "dynamic equivalence" of BNs.
- Develop a category-theoretic foundation for this program.

Available online at www.sciencedirect.com

Physica D 233 (2007) 167-174

PHYSICA D

www.elsevier.com/locate/physd

Nested canalyzing, unate cascade, and polynomial functions[☆]

Abdul Salam Jarrah^{a,*}, Blessilda Raposa^b, Reinhard Laubenbacher^a

^a Virginia Bioinformatics Institute (0477), Virginia Tech, Blacksburg, VA 24061, USA ^b Mathematics Department, De La Salle University, 2401 Taft Avenue, Manila, Philippines

$$f(x_1, x_2, ..., x_n)$$

= $(x_1 - a_1)[(x_2 - a_2)[...[(x_{n-1} - a_{n-1})](x_n - a_n) + (b_n - b_{n-1})] + (b_{n-1} - b_{n-2})]...]$
+ $(b_2 - b_1)] + b_1$

or, equivalently,

$$f(x_1, x_2, \dots, x_n) = \prod_{i=1}^n (x_i - a_i) + \sum_{j=1}^{n-1} \left[(b_{n-j+1} - b_{n-j}) \prod_{i=1}^{n-j} (x_i - a_i) \right] + b_1.$$

Prevalence of canalization

Nested canalizing functions (and therefore? canalizing functions) are overrepresented in GRNs.

Advances in Applied Mathematics 30 (2003) 655-678

ADVANCES IN Applied Mathematics

www.elsevier.com/locate/yaama

Decomposition and simulation of sequential dynamical systems

Reinhard Laubenbacher^{a,*} and Bodo Pareigis^b

^a Virginia Bioinformatics Institute, Blacksburg, VA 24061, USA
 ^b Mathematisches Institut, Universität München, Theresienstr. 39, D-80333 München, Germany

Future work

- Find a version of the classification of monomial networks in the language of computational algebra.
- Study the properties of nested canalizing polynomials.
- Carry out the Hölder Program for larger classes of networks, for instance, AND-NOT networks.

Research supported by:

NIH 1R011AI135128-01 NIH 1U01EB024501-01 NIH 1R21AI101619-01 NSF CBET-1750183 NSF DMS 1460967 NSF CMMI-0908201 U.S. Dept. Defense W911NF-14-1-0486