Convex Hulls of Trajectories

Nidhi Kaihnsa
joint with Daniel Ciripoi, Andreas Löhne, and Bernd Sturmfels

Brown University
June 2, 2020

Attainable Region Theory

[^0]Chemical Reaction Networks (CRN)

Chemical Reaction Networks (CRN)

Species - X_{i} for $i \in\{1, \ldots, 5\}$.

Chemical Reaction Networks (CRN)

Species - X_{i} for $i \in\{1, \ldots, 5\}$.
Complexes - $\left\{X_{1}+X_{3}, X_{4}, X_{2}+2 X_{5}\right\}$.

Chemical Reaction Networks (CRN)

Species - X_{i} for $i \in\{1, \ldots, 5\}$.
Complexes - $\left\{X_{1}+X_{3}, X_{4}, X_{2}+2 X_{5}\right\}$.
Reaction Rates $-\kappa_{i}$ for $i \in\{1, \ldots, 5\}$.

Chemical Reaction Networks (CRN)

Species - X_{i} for $i \in\{1, \ldots, 5\}$.
Complexes - $\left\{X_{1}+X_{3}, X_{4}, X_{2}+2 X_{5}\right\}$.
Reaction Rates $-\kappa_{i}$ for $i \in\{1, \ldots, 5\}$.
Definition (Chemical Reaction Networks)
A chemical reaction network (CRN) is a graph whose vertices are chemical complexes and edges are the chemical reactions weighted by their reaction rates.

$$
\dot{x}=\frac{d x}{d t}=\Psi(x) \cdot A_{\kappa} \cdot Y
$$

$$
\begin{aligned}
& \Psi(x)=\left[\begin{array}{lll}
x_{1} x_{3} & x_{4} & x_{2} x_{5}^{2}
\end{array}\right] \\
& A_{\kappa}=\left[\begin{array}{ccc}
-\kappa_{1}-\kappa_{5} & \kappa_{1} & \kappa_{5} \\
\kappa_{2} & -\kappa_{2}-\kappa_{4} & \kappa_{4} \\
0 & \kappa_{3} & -\kappa_{3}
\end{array}\right]
\end{aligned}
$$

$$
Y=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right]
$$

$$
\dot{x}=\frac{d x}{d t}=\Psi(x) \cdot A_{\kappa} \cdot Y
$$

$$
\begin{aligned}
& \dot{x_{1}}=\frac{d x_{1}}{d t}=-\kappa_{1} x_{1} x_{3}-\kappa_{5} x_{1} x_{3}+\kappa_{2} x_{4} \\
& \dot{x_{2}}=\frac{d x_{2}}{d t}=\kappa_{5} x_{1} x_{3}+\kappa_{4} x_{4}-\kappa_{3} x_{2} x_{5}^{2} \\
& \dot{x_{3}}=\frac{d x_{3}}{d t}=\left(-\kappa_{1}-\kappa_{5}\right) x_{1} x_{3}+\kappa_{2} x_{4} \\
& \dot{x_{4}}=\frac{d x_{4}}{d t}=\kappa_{1} x_{1} x_{3}+\left(-\kappa_{2}-\kappa_{4}\right) x_{4}+\kappa_{3} x_{2} x_{5}^{2} \\
& \dot{x_{5}}=\frac{d x_{5}}{d t}=2\left(\kappa_{5} x_{1} x_{3}+\kappa_{4} x_{4}-\kappa_{3} x_{2} x_{5}^{2}\right) .
\end{aligned}
$$

Attainable Region

Definition (Forward Closed)
A subset $S \subset \mathbb{R}^{n}$ is forward closed if the initial condition $x_{0} \in S$ holds for the dynamical system then $x(t) \in S$ for all $t>0$.

Attainable Region

Definition (Forward Closed)
A subset $S \subset \mathbb{R}^{n}$ is forward closed if the initial condition $x_{0} \in S$ holds for the dynamical system then $x(t) \in S$ for all $t>0$.

Definition (Attainable Region)
For a given reaction network and starting point x_{0} in \mathbb{R}^{n}, the attainable region, $\mathcal{A}\left(x_{0}\right)$, is the smallest subset of \mathbb{R}^{n} that contains x_{0} and is both convex and forward closed.

Linear Chemical Reaction Networks

Definition (Spectrahedral Shadow)

$$
S=\left\{\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in \mathbb{R}^{m} \mid \exists\left(y_{1}, y_{2}, \ldots, y_{p}\right) \in \mathbb{R}^{p}: A_{0}+\sum_{i} x_{i} A_{i}+\sum_{j} y_{j} B_{j} \succcurlyeq 0\right\}
$$

where A_{0}, A_{i} and B_{j} are real symmetric matrices. We use the symbol $A \succcurlyeq 0$ to denote that the matrix A is positive semidefinite.

Linear Chemical Reaction Networks

A chemical reaction network is linear if all the complexes are single unit species.

$$
\dot{x}=\frac{d x}{d t}=\Psi(x) \cdot A_{\kappa} \cdot Y
$$

Linear Chemical Reaction Networks

A chemical reaction network is linear if all the complexes are single unit species.

Proposition (K.)
The convex hull of the trajectory of a linear chemical reaction network whose Laplacian has eigenvalues in rational ratio is a spectrahedral shadow.

Theorem (K.)
The attainable region of linear chemical reaction networks whose Laplacian has eigenvalues in rational ratio is spectrahedral shadow.

$$
\infty
$$

$$
\infty
$$

$$
\dot{x}=\frac{d x}{d t}=f(x)
$$

Using Bensolve

Using Bensolve

Computing Convex Hulls

The main idea involves computing the polytope given the points on the trajectories. More the points, the closer it is to actual convex hull.

Computing Convex Hulls

The main idea involves computing the polytope given the points on the trajectories. More the points, the closer it is to actual convex hull.

Computing Convex Hulls

The main idea involves computing the polytope given the points on the trajectories. More the points, the closer it is to actual convex hull.

We use this to develop a theory on limiting faces of the polyhedral approximations.

Computing Convex Hulls

Definition (ε-Approximation)
An ε-approximation of a given curve \mathcal{C} is a finite subset $\mathcal{A}_{\varepsilon} \subset \mathcal{C}$ such that

$$
\forall y \in \mathcal{C} \exists x \in \mathcal{A}_{\varepsilon}:\|y-x\| \leq \varepsilon
$$

Let $A_{\varepsilon}=\operatorname{conv}\left(\mathcal{A}_{\varepsilon}\right)$.

Computing Convex Hulls

Definition (ε-Approximation)
An ε-approximation of a given curve \mathcal{C} is a finite subset $\mathcal{A}_{\varepsilon} \subset \mathcal{C}$ such that

$$
\forall y \in \mathcal{C} \exists x \in \mathcal{A}_{\varepsilon}:\|y-x\| \leq \varepsilon
$$

Let $A_{\varepsilon}=\operatorname{conv}\left(\mathcal{A}_{\varepsilon}\right)$.

Definition (Hausdorff Distance)
The Hausdorff distance of two compact sets B_{1} and B_{2} in \mathbb{R}^{n} is defined as

$$
d\left(B_{1}, B_{2}\right)=\max \left\{\max _{x \in B_{1}} \min _{y \in B_{2}}\|x-y\|, \max _{y \in B_{2}} \min _{x \in B_{1}}\|x-y\|\right\} .
$$

Limiting Faces

Theorem (Ciripoi, K., Löhne, Sturmfels)
With some genericity assumptions, let $\left\{F_{\varepsilon}\right\}_{\varepsilon \backslash 0}$ be a Hausdorff convergent sequence of proper faces F_{ε} of A_{ε}. Then its limit F is a proper face of $\operatorname{conv}(\mathcal{C})$.

Limiting Faces

Theorem (Ciripoi, K., Löhne, Sturmfels)
With some genericity assumptions, let $\left\{F_{\varepsilon}\right\}_{\varepsilon \backslash 0}$ be a Hausdorff convergent sequence of proper faces F_{ε} of A_{ε}. Then its limit F is a proper face of $\operatorname{conv}(\mathcal{C})$.

Theorem (Ciripoi, K., Löhne, Sturmfels)
Let every point on the curve \mathcal{C} that is in the boundary of $\operatorname{conv}(\mathcal{C})$ is an extremal point of $\operatorname{conv}(\mathcal{C})$. If F is a simplex which is a uniquely exposed face of $\operatorname{conv}(\mathcal{C})$, then F is the Hausdorff limit of a sequence $\left\{F_{\varepsilon}\right\}_{\varepsilon \searrow 0}$ of facets of A_{ε}.

Patches

Patches

- The figure has four regions of 1-dimensional family of 1-dimensional faces.

Patches

- The figure has four regions of 1-dimensional family of 1-dimensional faces.
- There are two 2-dimensional faces.

Patches

- The figure has four regions of 1-dimensional family of 1-dimensional faces.
- There are two 2-dimensional faces.

We call these family of faces as patches.

Patches

- The figure has four regions of 1-dimensional family of 1-dimensional faces.
- There are two 2-dimensional faces.

We call these family of faces as patches. How do we define them?

Patches

Let C be a convex set and C^{\vee} be its dual. Let $\mathcal{E} \subseteq \partial C^{\vee}$ be the set of exposed points of C^{\vee}. We define Normal Cycle as follows.

Patches

Let C be a convex set and C^{\vee} be its dual. Let $\mathcal{E} \subseteq \partial C^{\vee}$ be the set of exposed points of C^{\vee}. We define Normal Cycle as follows.

$$
N(C)=\left\{(u, v) \in \partial C \times \partial C^{\vee}: v \cdot\left(u-u^{\prime}\right) \geq 0 \text { for all } u^{\prime} \in C\right\} .
$$

Patches

Let C be a convex set and C^{\vee} be its dual. Let $\mathcal{E} \subseteq \partial C^{\vee}$ be the set of exposed points of C^{\vee}. We define Normal Cycle as follows.

$$
N(C)=\left\{(u, v) \in \partial C \times \partial C^{\vee}: v \cdot\left(u-u^{\prime}\right) \geq 0 \text { for all } u^{\prime} \in C\right\}
$$

Let π_{1} and π_{2} be the projection on ∂C and ∂C^{\vee} respectively. A subset ψ of $N(C)$ is a patch if

Patches

Let C be a convex set and C^{\vee} be its dual. Let $\mathcal{E} \subseteq \partial C^{\vee}$ be the set of exposed points of C^{\vee}. We define Normal Cycle as follows.

$$
N(C)=\left\{(u, v) \in \partial C \times \partial C^{\vee}: v \cdot\left(u-u^{\prime}\right) \geq 0 \text { for all } u^{\prime} \in C\right\}
$$

Let π_{1} and π_{2} be the projection on ∂C and ∂C^{\vee} respectively. A subset ψ of $N(C)$ is a patch if

- ψ is a connected differentiable manifold

Patches

Let C be a convex set and C^{\vee} be its dual. Let $\mathcal{E} \subseteq \partial C^{\vee}$ be the set of exposed points of C^{\vee}. We define Normal Cycle as follows.

$$
N(C)=\left\{(u, v) \in \partial C \times \partial C^{\vee}: v \cdot\left(u-u^{\prime}\right) \geq 0 \text { for all } u^{\prime} \in C\right\}
$$

Let π_{1} and π_{2} be the projection on ∂C and ∂C^{\vee} respectively. A subset ψ of $N(C)$ is a patch if

- ψ is a connected differentiable manifold
- $\pi_{2}(\psi) \subset \mathcal{E}$ and the fibers of π_{2} vary continuously in the Hausdorff metric.

Patches

Let C be a convex set and C^{\vee} be its dual. Let $\mathcal{E} \subseteq \partial C^{\vee}$ be the set of exposed points of C^{\vee}. We define Normal Cycle as follows.

$$
N(C)=\left\{(u, v) \in \partial C \times \partial C^{\vee}: v \cdot\left(u-u^{\prime}\right) \geq 0 \text { for all } u^{\prime} \in C\right\}
$$

Let π_{1} and π_{2} be the projection on ∂C and ∂C^{\vee} respectively. A subset ψ of $N(C)$ is a patch if

- ψ is a connected differentiable manifold
- $\pi_{2}(\psi) \subset \mathcal{E}$ and the fibers of π_{2} vary continuously in the Hausdorff metric.
- $\operatorname{dim}\left(\pi_{1}(\psi)\right)=n-1$

Patches

Let C be a convex set and C^{\vee} be its dual. Let $\mathcal{E} \subseteq \partial C^{\vee}$ be the set of exposed points of C^{\vee}. We define Normal Cycle as follows.

$$
N(C)=\left\{(u, v) \in \partial C \times \partial C^{\vee}: v \cdot\left(u-u^{\prime}\right) \geq 0 \text { for all } u^{\prime} \in C\right\}
$$

Let π_{1} and π_{2} be the projection on ∂C and ∂C^{\vee} respectively. A subset ψ of $N(C)$ is a patch if

- ψ is a connected differentiable manifold
- $\pi_{2}(\psi) \subset \mathcal{E}$ and the fibers of π_{2} vary continuously in the Hausdorff metric.
- $\operatorname{dim}\left(\pi_{1}(\psi)\right)=n-1$
- ψ is maximal with these properties.

Boundary of Planar Convex Hulls

Algorithm

(Detection of edges and arcs for $n=2$)
input : A list \mathcal{A} of points on a curve \mathcal{C} in \mathbb{R}^{2}; a threshold value $\delta>0$

Boundary of Planar Convex Hulls

Algorithm
(Detection of edges and arcs for $n=2$)
input : A list \mathcal{A} of points on a curve \mathcal{C} in \mathbb{R}^{2}; a threshold value $\delta>0$
1 Compute the vertices \mathcal{V} and edges \mathcal{H} of $A=\operatorname{conv}(\mathcal{A})$

Boundary of Planar Convex Hulls

Algorithm
(Detection of edges and arcs for $n=2$)
input : A list \mathcal{A} of points on a curve \mathcal{C} in \mathbb{R}^{2}; a threshold value $\delta>0$
1 Compute the vertices \mathcal{V} and edges \mathcal{H} of $A=\operatorname{conv}(\mathcal{A})$
2 Build a graph G with node set \mathcal{H} such that two distinct edges H_{1}, H_{2} of A form an edge of G if $H_{1} \cap H_{2} \neq \emptyset$ and both H_{1} and H_{2} have length $\leq \delta$.

Boundary of Planar Convex Hulls

Algorithm

(Detection of edges and arcs for $n=2$)
input : A list \mathcal{A} of points on a curve \mathcal{C} in \mathbb{R}^{2}; a threshold value $\delta>0$
1 Compute the vertices \mathcal{V} and edges \mathcal{H} of $A=\operatorname{conv}(\mathcal{A})$
2 Build a graph G with node set \mathcal{H} such that two distinct edges H_{1}, H_{2} of A form an edge of G if $H_{1} \cap H_{2} \neq \emptyset$ and both H_{1} and H_{2} have length $\leq \delta$.
3 Output the number $\#_{1}$ of isolated nodes of G and the number $\#_{0}$ of remaining connected components G_{i}.

Boundary of Planar Convex Hulls

Algorithm

(Detection of edges and arcs for $n=2$)
input : A list \mathcal{A} of points on a curve \mathcal{C} in \mathbb{R}^{2}; a threshold value $\delta>0$

1
2
Build a graph G with node set \mathcal{H} such that two distinct edges H_{1}, H_{2} of A form an edge of G if $H_{1} \cap H_{2} \neq \emptyset$ and both H_{1} and H_{2} have length $\leq \delta$.
3 Output the number $\#_{1}$ of isolated nodes of G and the number $\#_{0}$ of remaining connected components G_{i}.
4 foreach nonsingleton connected component G_{i} do
Output a list of curve points that are endpoints of those edges of A, that belong to G_{i}. This represents the ith arc of ∂C.
6 end

Boundary of Planar Convex Hulls

Algorithm

(Detection of edges and arcs for $n=2$)
input : A list \mathcal{A} of points on a curve \mathcal{C} in \mathbb{R}^{2}; a threshold value $\delta>0$
1 Compute the vertices \mathcal{V} and edges \mathcal{H} of $A=\operatorname{conv}(\mathcal{A})$
2 Build a graph G with node set \mathcal{H} such that two distinct edges H_{1}, H_{2} of A form an edge of G if $H_{1} \cap H_{2} \neq \emptyset$ and both H_{1} and H_{2} have length $\leq \delta$.
3 Output the number $\#_{1}$ of isolated nodes of G and the number $\#_{0}$ of remaining connected components G_{i}.
4 foreach nonsingleton connected component G_{i} do
5 Output a list of curve points that are endpoints of those edges of A, that belong to G_{i}. This represents the ith arc of ∂C.
6 end
7 The edges H_{j} of A that correspond to isolated nodes of G represent edges of C.

Boundary of Planar Convex Hulls

Algorithm

(Detection of edges and arcs for $n=2$)
input : A list \mathcal{A} of points on a curve \mathcal{C} in \mathbb{R}^{2}; a threshold value $\delta>0$
1 Compute the vertices \mathcal{V} and edges \mathcal{H} of $A=\operatorname{conv}(\mathcal{A})$
2 Build a graph G with node set \mathcal{H} such that two distinct edges H_{1}, H_{2} of A form an edge of G if $H_{1} \cap H_{2} \neq \emptyset$ and both H_{1} and H_{2} have length $\leq \delta$.
3 Output the number $\#_{1}$ of isolated nodes of G and the number $\#_{0}$ of remaining connected components G_{i}.
4 foreach nonsingleton connected component G_{i} do
5
Output a list of curve points that are endpoints of those edges of A, that belong to G_{i}. This represents the ith arc of ∂C.
6 end
7 The edges H_{j} of A that correspond to isolated nodes of G represent edges of C. output: The numbers $\#_{0}$ and $\#_{1}$ of arcs and edges of $C=\operatorname{conv}(\mathcal{C})$

For each i : list of curve points that represent the ith arc of ∂C.
List of line segments that represent the edges of C.

degree 2d	6	8	10	12	14	16	18	20	22	24	26
max $\#_{2}$	6	9	13	16	20	21	24	26	28	30	30
tritangents	8	80	280	672	1320	2288	3640	5440	7752	10640	14168
max $\#_{1}$	10	14	20	25	30	32	35	37	41	42	43
edge surface	30	70	126	198	286	390	510	646	798	966	1150

Table: Census of random trigonometric curves in 3-space

Theorem (Ranestad, Sturmfels)

Let \mathcal{C} be a general smooth compact curve of degree d and genus g in \mathbb{R}^{3}. The algebraic boundary ∂C of its convex hull C is the union of the edge surface and the tritangent planes. The edge surface is irreducible of degree $2(d-3)(d+g-1)$, and the number of complex tritangent planes equals $8\binom{d+g-1}{3}-8(d+g-4)(d+2 g-2)+8 g-8$.

degree 2d	6	8	10	12	14	16	18	20	22	24	26
max $\#_{2}$	6	9	13	16	20	21	24	26	28	30	30
tritangents	8	80	280	672	1320	2288	3640	5440	7752	10640	14168
max $\#_{1}$	10	14	20	25	30	32	35	37	41	42	43
edge surface	30	70	126	198	286	390	510	646	798	966	1150

Table: Census of random trigonometric curves in 3 -space

All implementations are available at http://tools.bensolve.org/trajectories.

Thank You.

[^0]: Attainable Region (AR) theory is a branch of chemical reaction engineering that incorporates elements of geometry and mathematical optimization to understand how chemical reactor networks - termed reactor structures - can be designed and improved.

 AR theory is unique in that it is geometric in nature, and is particularly useful for understanding complex reactions (involving many competing reactions and species).

