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Strongly minimal sets in a differentially closed field

Definition

A strongly minimal set D is an infinite definable set such that every definable
subset of D (with parameters) is either finite or cofinite.

Examples:
Any differential equation of the form

y ′ = f (y) with f (X ) ∈ C(X )

as the set of initial conditions itself is one dimensional.
Certain higher-dimensional differential equations for example of the form

(E) :

{
x ′ = f (x , y)

y ′ = g(x , y)
with f , g ∈ C[x , y ]

although the space of initial conditions is 2-dimensional.

A concrete consequence: If (E) is strongly minimal there are no rational
change of coordinates u = φ(x , y), v = ψ(x , y) such that{

x ′ = f (x , y)

y ′ = g(x , y)
−→

{
F (u, v , v ′) = 0
G(u, u′) = 0
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Zilber’s trichotomy in differentially closed fields

We fix once for all a rich differentially closed field U and we identify a
differential equation (E) with the associated definable set D.

(1) The internal cover of the constants: algebraic differential equations (E)
which (after reduction by the rational integrals) admit a differential Galois
theory in the sense of Kolchin.

Example

Linear (possibly inhomogeneous) differential equations, Ricatti equations,
elliptic differential equations and higher dimensional variants.

In that case, the definable set D is part of a principal definable homogeneous
space for an algebraic group G over the field of constants.

(2) Purely locally modular strongly minimal sets: They are principal
homogeneous spaces for the action of a strongly minimal modular group.

The strongly minimal modular groups of DCF0 are called Manin Kernels.
They have been entirely classified in the 90’s by Hriushovski and Pillay.

The simplest examples are 2-dimensional non autonomous differential
equations (part of a 3-dimensional autonomous equation).
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Zilber’s trichotomy in differentially closed fields II

(3) Disintegrated strongly minimal set. constituted of strongly minimal sets D
with the most degenerated structures (for instance, D do not interpret an
infinite definable group).

Example: The first Painlevé equation y ′′ = 6y2 + t.
We will think about the solutions of such equation as “highly transcendental”
(or new transcendental) functions (terminology justified later).

Theorem (Semi-minimal analysis of algebraic differential equations)

Let (E) be any algebraic differential equation over (K , δ) and U a rich
differentially closed field.
There exists a sequence a0, . . . , an of tuples from U such that for every i < n

(o) either ai+1 is a constant;

(i) or ai+1 satisfy a differential equation over K(a0, . . . , ai )
alg which admit a

Galois theory in the sense of Kolchin;

(ii) or ai+1 is a solution of a principal homogeneous space for a Manin Kernel
over K(a0, . . . , ai )

alg ;

(iii) or ai+1 satisfies a minimal disintegrated differential equation over
K(a0, . . . ai )

alg .

and (E) admits a generic solution in K(a0, . . . , an)alg .
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An example: Hamiltonian systems with one degree of freedom

We consider a Hamiltonian system in symplectic coordinates (p, q) of the form:

H(p, q) =
1
2
p2 + V (q) with V (q) ∈ C[q]

Since the Hamiltonian H is always a rational integral, we are led to study
a first-order differential equation after adding a new constant c /∈ C,

H(p, q) =
1
2

(
dq

dt
)2 + V (q) = c.

Using separation of variables, we obtain the following integral formulation:

(∗) : t =

∫
dq√

2c − 2V (q)

Classical question: With a change of variables, can one reduce the
computation of (∗) to a rational or an elliptic integral?

if yes, then the Hamiltonian equation is solvable with operations (o) and (i)
only. This is always the case when deg(V ) ≤ 5.
if no, then the Hamiltonian equation is solvable with the operations (o) and
(iii). This is generically the case as soon as deg(V ) > 5.
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Higher-dimensional Hamiltonian systems

Question

Is it possible to describe effectively the semi-minimal analysis of higher
dimensional Hamiltonian systems appearing in classical mechanics?

An idea of my PhD: the geodesic differential equation of a compact
Riemannian surface with negative curvature is a good test problem:

It is a non-completely integrable Hamiltionian system with two degrees of
freedom, like many other interesting systems of classical mechanics.

As shown by Anosov (’69), the dynamic of the vector field satisfies global
hyperbolic properties. It makes it easier to study than other non-integrable
Hamiltonian system which are closer to completely integrable ones.

To study the semi-minimal analysis, we need to work with algebraically
presented Riemannian manifold and to complexify the differential equation.

Setting: We start with (X , g) a pseudo-Riemannian algebraic variety over R
that is a smooth algebraic variety endowed with a non degenerate symmetric
2-form over R such that:

X (R) 6= 0 (⇒ Zariski-dense in X ).

(X (R), gR)an is a real-analytic Riemannian manifold (of dimension two)
with negative (but in general variable) curvature.
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Geodesic differential equations

Let (M, g) be a compact Riemaniann manifold of dimension 2.

The geodesic differential equations of (M, g) is the Hamiltonian system on
TM associated with the “free” Hamiltonian:

H(x , y) =
1
2
gx(y , y)

We obtain a vector field vH on TM such that the Hamiltonian defines a
first integral:

H : TM → A1.

Definition

The (unitary) geodesic differential equation of (M, g) is the differential
equation of dimension three such that:

The underlying manifold is the sphere bundle SM ⊂ TM of M.

It is given by the restriction to SM of the vector field vH on TM.
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Geodesic differential equations in negative curvature (Anosov)

We now assume that (M, g) has everywhere negative (but in general non
constant) curvature.

Global hyperbolic structure: there is a decomposition

TSM = Es ⊕ E0 ⊕ Eu

into (dφt)t∈R-invariant continuous line bundles such that E0 is the
direction of the vector field, (dφt)t∈R is exponentially contracting on Es

and exponentially expanding Eu.

Periodic orbits: Periodic points of (φt)t∈R are dense in SM.

Ergodic and mixing properties The dynamic of (SM, (φt))t∈R is
topologically (weakly) mixing that is:

(SM, (φt)t∈R) and (SM × SM, (φt × φt)t∈R) both admit a dense orbit.

This implies that for all n ≥ 3, (SMn, (φt × . . .× φt)t∈R) admits a dense orbit
too.
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A local picture of an Anosov flow of dimension three

We will compute in the frame given by (Es(x),E0(x),Eu(x)).
Even when the inital data is real analytic or algebraic, in general, Es(x) and
Eu(x) only depends continuously on x .
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Main Theorem

Theorem

Let (X , g) be a pseudo-Riemannian variety over R such that the
real-analytification (X (R), gR)an is a compact (non-empty) connected
Riemannian surface with negative curvature.
Consider the geodesic differential equation (SX , v) of (X , g) and denote by D
the associated definable set.

(1) The generic type of D is minimal and disintegrated.

(2) In other words, the generic solution of (SX , v) does not lie in a differential
field of the form

(C(t),
d

dt
) = (K0, δ0) ⊂ (K1, δ1) ⊂ . . . ⊂ (Kn, δn).

where each elementary step (Ki , δi ) ⊂ (Ki+1, δi+1) is either an algebraic
extension or obtained by one of the operations (o), (i), (ii) and:

(iii)3: solving a strongly minimal disintegrated equation
living in dimension < 3.
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Comments on the non-generic behavior

It is a generic statement. It is possible to show that the non generic
behavior is concentrated on a subset Z1 ⊂ SX which is an (at most)
countable union of proper closed invariant subvarieties of SX .

The geodesic flow on a compact Riemannian is far for being uniquely
ergodic: there are many non-trivial subflows (for instance at least all the
periodic orbits).

To study the non-generic behavior, we are led to:
Question: Can a compact algebraically presented Riemannian manifold of
negative curvature contain infinitely many algebraic geodesics?

Disintegration property: For generic solutions of (SX , v)

pairwise algebraic indepedence⇒ algebraic independence

To describe pairwise independence, we are led to:
Question: Can a compact algebraically presented Riemannian manifold of
negative curvature admit a finite non trivial (resp. infinite) group of algebraic
isometries?
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Case of other compact surfaces

Geodesics on smooth quadrics: Let E = X (R) be an Euclidean ellipsoid.
The geodesic flow is a completely integrable Hamiltonian system so we
have a second (non-trivial) rational integral

H2 : (SX , v)→ A1

The generic fibre of H2 can be realized as a an invariant subvariety of an
Abelian variety endowed with a translation invariant vector field (Jacobi,
Moser).

In particular, the geodesic equation on a smooth quadric is always analyzable in
the constants.

Geodesics on surfaces of revolution It is also a completely integrable
Hamiltonian system, so p is not minimal.

In some cases, p is analyzable in the constants, in others, one needs to solve a
disintegrated differential equation of order one f (y , y ′) = 0.

Geodesics on an almost sphere X (R) = S2 and g = g0 + εg1 a small
non-integrable perturbation of the Euclidean metric on the sphere.

One expects a similar description than in negative curvature.
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Minimality, invariant foliations and invariant webs

Theorem

Let p be a prime number. Assume that (X , v) is a differential equation of
dimension p satisfying:

(i) The generic type of (X , v) is orthogonal to the constants.

(ii) Every foliation F on X of rank r ∈ {1, . . . , p − 1} which is invariant under
the vector field v has a Zariski-dense leaf.

(iii) Every p-web W of foliations by curves on X which is invariant under the
vector field v has a Zariski-dense leaf.

Then the conclusion of the main theorem holds.

In (ii), a foliation F of rank r on X is a saturated coherent subsheaf of
rank r of the locally-free sheaf ΘX/k stable under Lie bracket. It is called
invariant under v if

[v ,F ] ⊂ F

In (iii), a (generically smooth) r -web W of foliations by curves on X is a
closed subvariety W ⊂ P(TX ) such that all irreducible components of W
dominate X and π|W : W → X is generically finite.
The vector field v has a first projective prolongation P(v) to P(TX ) from
which derives the notion of invariance for webs.
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Thank you for your attention!

Rémi Jaoui
A model-theoretic analysis of geodesic equations in negative curvature


