Model Theory, Quantifier Elimination and Differential Algebra II

David Marker

Mathematics, Statistics, and Computer Science University of Illinois at Chicago

June 3, 2020

www.math.uic.edu/~marker/Banff

Image: A mathematical states and a mathem

- A test for quantifier elimination.
- differentially closed fields (DCF)
- Quantifier Elimination for DCF and applications
- Canonical Definitions
- Further interplay between model theory and differential algebra (if time permits)

Theorem

Let T be a theory. Suppose that for all quantifier free formulas $\phi(x_1, y_1, \ldots, y_m)$, all $\mathcal{M}, \mathcal{N} \models T$, all $\mathcal{A} \subset \mathcal{M}, \mathcal{N}$ and all $a_1, \ldots, a_m \in \mathcal{A}$ (*) if $\mathcal{M} \models \exists x \ \phi(x, a_1, \ldots, a_n)$, then $\mathcal{N} \models \exists x \ \phi(x, a_1, \ldots, a_n)$. Then T has quantifier elimination

QE for Algebraically Closed Fields

Let ACF be the axioms for algebraically closed fields

Theorem (Tarski)

ACF has quantifier elimination.

Suppose K, L are algebraically closed fields and $\mathcal{A} \subset K \cap L$ is a domain.

 $\phi(v)$ is a quantifier free formula with parameters from \mathcal{A} such that there is $b \in K$ with $K \models \phi(b)$.

 $\phi(v)$ is a Boolean combination of formulas of the form p(v) = 0where $p(X) \in \mathcal{A}[X]$.

Without loss of generality $\phi(v)$ is

$$\bigwedge_{i=1}^n f_i(v) = 0 \land g(v) \neq 0$$

where $f_1, \ldots, f_n, g \in \mathcal{A}[X]$

QE for Algebraically Closed Fields

$$\bigwedge_{i=0}^n f_i(v) = 0 \land g(v) \neq 0$$

case 1 There are no nonzero f_i , in this case $\phi(v)$ is just $g(v) \neq 0$. We can find $c \in L$ such that $g(c) \neq 0$.

case 2 For some *i*, f_i is nonzero and $f_i(b) = 0$. Let K_0 be the algebraic closure of A in K. Then $b \in K_0$

There is a field embedding $\sigma : K_0 \to L$ fixing \mathcal{A} and $L \models \phi(\sigma(b))$.

- ▶ Let $ACF_0 = ACF \cup \{1 + 1 \neq 0, 1 + 1 + 1 \neq 0, ...\}$. Then ACF_0 axiomatizes $Th(\mathbb{C})$. In particular, $Th(\mathbb{C})$ is decidable.
- definable sets= quantifier free definable sets= Boolean combinations of algebraic varieties (i.e., *constructible sets*).
- (Chevalley's Theorem) The image of a constructible set under a polynomial map is constructible.

Existentially Closed Fields

We say that a field K is *existentially closed* if for any for any $f_1, \ldots, f_m \in K[X_1, \ldots, X_n]$ and $L \supseteq K$ if the system

$$f_1(\mathsf{X}) = \cdots = f_m(\mathsf{X}) = 0$$

is solvable in L, then it is already solvable in K.

Corollary

Algebraically closed fields are exactly the existentially closed fields.

Every existentially closed field is algebraically closed. Suppose $K \models ACF$ and $K \subseteq L$ and $L \models \exists x f_1(x) = \cdots = f_m(x) = 0$. By quantifier elimination there is a quantifier free formula ψ (with parameters from K) equivalent to $\exists x f_1(x) = \cdots = f_m(x) = 0$. But $K \models \psi \Leftrightarrow L \models \psi$. Thus

$$K \models \exists x \ f_1(x) = \cdots = f_m(x) = 0.$$

Differential Fields

A differential field (K, D) is a field K of characteristic 0 and a derivation $D: K \to K$.

D(x+y) = D(x) + D(y) and D(xy) = xD(y) + yD(x).

We often write x' for D(x).

The ring of *differential polynomials* $K{X_1, ..., X_n}$ is the polynomial ring

$$K[X_1,...,X_n,X'_1,...,X'_n,...,X^{(m)}_1,...,X^{(m)}_n,...]$$

where we extend the derivation so that $D(X_i^j) = X_i^{j+1}$.

Question What are the existentially closed differential fields? Can we axiomatize this class?

Theorem

(A. Robinson) The existentially closed differential fields can be axiomatized.

A differentially closed field is a differential field (K, D) where

- ► *K* is an algebraically closed field of characteristic 0;
- ▶ If $f, g \in K{X}$ are nonzero and ord(f) > ord(g), then there is $x \in K$ such that f(x) = 0 and $g(x) \neq 0$.

We can give axioms DCF for this class.

Embarrassing Question What's an example of a differentially closed field?

No known natural examples.

Lemma

If K is a differential field $f, g \in K\{X\}$ and $\operatorname{ord}(f) > \operatorname{ord}(g)$, there is a differential field $L \supset K$ and $a \in L$ such that f(a) = 0 and $g(a) \neq 0$.

Fact There is a prime differential ideal P with $f \in P$ such that if $h \in P \text{ ord}(h) \ge \text{ord}(f)$.

Let *L* be the fraction field of $K\{X\}/P$, then $K \subseteq L$. Let x = X/P, then f(x) = 0, $g(x) \neq 0$.

Corollary

If K is a differential field there is $L \supseteq K$ with L differentially closed

Theorem

(L. Blum) DCF has quantifier elimination

Let $K, L \models DCF$ and let $k \subset K \cap L$ be a differential subfield and $b \in K \setminus k$.

If b satisfies $f_1(X) = \cdots = f_m(X) = 0 \land g(X) \neq 0$ where $f_i, g \in K\{X\}$ we need to find $c \in L$ satisfying the same.

It would suffice to find a differential field embedding $\sigma: k\langle b \rangle \rightarrow L$.

Without loss of generality we may assume that *L* is "very rich", namely if Σ is a set of equations and inequation from $k\{X\}$ and every finite subset of Σ is solvable in *L* then Σ is satisfiable in *L*.

・ 同 ト ・ ヨ ト ・ ヨ ト

Quantifier Elimination for DCF

We need to find $c \in L$ such that $f(b) = 0 \Leftrightarrow f(c) = 0$ for all $f \in k\{X\}$. **case 1** b is differentially transcendental over k Let $\Sigma = \{g(X) \neq 0 : g \in k\{X\} \setminus \{0\}\}$. For any nonzero $g_1, \ldots, g_n \in k\{X\}$ there is $c \in L$ such that $\prod g_i(c) \neq 0$. Thus every finite subset of Σ is solvable in L. Thus, by richness, there is $c \in L$ differentially transcendental over k. Let $b \mapsto c$. **case 2** *b* is differentially algebraic over *k*. Let $P = \{h \in k\{X\} : h(b) = 0\}$ a differential prime ideal in $k\{X\}$.

Fact Let $f \in P$ be of minimal order and degree. Then P is the unique prime ideal over $k\{X\}$ such that $f \in P$ and no g of lower order is in P.

Let $\Sigma = \{f(X) = 0\} \cup \{g(X) \neq 0 : g \in K\{X\}, \operatorname{ord}(f) > \operatorname{ord} g\}$. Since *L* is differentially closed any finite subset is solvable in *L*, thus Σ is solvable in *L*.

Let *c* be a solution to Σ then we can let $b \mapsto c$.

Consequences of Quantifier Elimination

If K, L ⊨ DCF and K ⊨ φ, then L ⊨ φ. Find an equivalent quantifier free formula ψ then

$$\mathbf{K}\models\psi\Leftrightarrow\mathbb{Q}\models\psi\Leftrightarrow\mathbf{K}\models\psi$$

So $K \models \phi \Leftrightarrow L \models \phi$.

- Definable sets are finite Boolean combinations of differential algebraic varieties.
- ▶ Differentially closed fields are existentially closed. Suppose $K \subseteq L$, $f_1, \ldots, f_m \in K\{X_1, \ldots, X_n\}$ and $L \models \exists x \ f_1(x) = \cdots = f_m(x) = 0.$ There is a quantifier free formula ψ equivalent to $\exists x \ f_1(x) = \cdots = f_m(x) = 0.$ $L \models \psi \Rightarrow K \models \psi \Rightarrow K \models \exists x \ f_1(x) = \cdots = f_m(x) = 0.$

Corollary

Suppose $P \subset K\{X_1, ..., X_n\}$ is a differential prime ideal and $g \notin P$. There is $x \in K^n$ such that f(x) = 0 for $x \in P$ and $g(x) \neq 0$.

Fact There are $f_1, \ldots, f_m \in P$ such that

$$\bigwedge_{i=1}^m f_i(\mathsf{x}) = 0 \Rightarrow f(\mathsf{x}) = 0 \text{ for all } f \in P.$$

Let *L* be the fraction field of $K\{X\}/P$. In *L* let $a_i = X_i/P$. Then $f_1(a) = \dots f_m(a) = 0 \land g(a) \neq 0$. By existential closedness we can find $a \in K$.

Corollary

For any d, m, n there is k (depending only on d, m, n) such that in any algebraically closed field K if $f_1, \ldots, f_m \in K[X_1, \ldots, X_n]$ have degree at most d, then $f_1(X) = \cdots = f_m(X) = 0$ has a solution in K if and only if

$$1\neq \sum_{i=1}^m g_i f_i$$

where each g_i has degree at most k.

Proof of Bounds

Write down generic polynomials F_1, \ldots, F_m of degree di.e. $F_i = \sum_{|j| \le d} c_{i,j} X^j$ (j a multi-index, $c_{i,j}$ new variables) For each I there is a sentence Φ_I saying that

$$1\neq \sum_{i\neq 1}^m g_i F_i$$

where each g_i has degree at most k.

Let *T* be the theory $ACF \cup \{ \forall x \neg \bigwedge_{i=1}^{n} F_i(x) = 0 \} \cup \{ \Phi_k : k = 1, 2, \dots \}.$

T is not satisfiable. If we had a model of T, we would have a contradiction to Hilbert's Nullstellensatz.

By the Compactness Theorem. Some finite subset of \mathcal{T} is not satisfiable.

But then there is a k such that if $F_1 = \cdots = F_m = 0$ has no solution, then we can find 1 using polynomials of degree at most k.

Existence of Canonical Parameters (Elimination of Imaginaries)

Fix K a differentially closed field.

(Definable Family) Suppose $A \subseteq K^{n+m}$ is definable and $B \subseteq K^m$ is definable. For $b \in B$. We consider the family of definable sets $(A_b : b \in B)$ where

$$A_{\mathsf{b}} = \{\mathsf{a} \in K^n : \mathsf{b} \in B\}.$$

For example let A be the set of all $(x_1, x_2, y_1, \dots, y_4) \in K^6$ such that

$$y_1x_1 + y_2x_2D(x_1) = 0 \land y_2D^{(2)}(x_2) - y_4x_1x_2 = 0$$

and let $B = C^4$ where C is the subfield of constants $C = \{x : D(x) = 0\}.$

Then for constants a, b, c, d

$$A_{a,b,c,d} = ax_1 + bx_2D(x_1) = 0 \wedge cD^{(2)}(x_2) - dx_1x_2 = 0$$

Identification Problem Suppose X is in the family $(A_b : b \in B)$. Can we determine for which b is $X = A_b$?

- i) Is there a unique \overline{b} with $A_{\overline{b}} = X$? (Maybe not)
- ii) If so and we know enough elements of X can determine \overline{b} ?

Theorem (Poizat)

Suppose we have a definable family given by $A \subseteq K^{n+m}$ and $B \subseteq K^m$. Then there is a definable family given by $D \subseteq K^{n+l}$ and $E \subseteq K^l$ such that:

- i) for all $b \in B$, there is $e \in E$ such that $A_b = D_e$;
- ii) for all $e \in E$, there is $b \in B$ such that $A_b = D_e$;
- iii) for all $\mathsf{e}_1,\mathsf{e}_2\in E$ if $D_{\mathsf{e}_1}=D_{\mathsf{e}_2},$ then $\mathsf{e}_1=\mathsf{e}_2.$

If $X = D_e$, D_e a canonical definition of X and we call e a canonical parameter.

イロト イヨト イヨト イヨト 三日

Suppose D_e is a canonical definition of X.

Fact: Given sufficiently many "independent" $x_1, \ldots, x_N \in X$, we can express e is a differential rational function in x_1, \ldots, x_N .

If D is "finite dimensional", we can bound N by dim(D) + 1.

In applications often $D \subset C^m$ and m+1 works as a bound.

Recently Ovchinnikov, Pillay, Pogudin and Scanlon, informed by the model theory, investigated identifiability problems much more concretely. Providing for example, reasonable algorithms to pass from a definable family to canonical definitions.

A (1) > A (2) > A (3) >

Theorem (Blum)

The theory of DCF is ω -stable.

There are powerful theories of dimension and independence that can be applied when studying differential algebra.

(Existence and uniqueness of differential closures) For any differential field k there is a differentially closed field K ⊇ k such that if k ⊂ L is a differentially closed field there is a differential embedding of K into L fixing k. Moreover, K is unique up to isomorphism over k.

- Differential Galois theory (Poizat, Pillay)
- Differential algebraic groups (Pillay)
- Diophantine applications (Hrushovski, Casale-Freitag-Nagloo)
- Differential algebraic geometry

We say that a definable set $X \subset K^n$ is *strongly minimal* if for every definable $Y \subseteq X$ one of Y and $X \setminus Y$ is finite.

Problem Understand the strongly minimal sets.

- The constant field C, an algebraically closed field with no extra structure.
- Manin kernels-sets with only a divisible abelian group structure

Start with A a simple abelian variety and let A^{\sharp} be the closure of the torsion in the Kolchin topology.

▶ y' = y³ - y² or generic Painlevé equations-sets with no structure

(4回) (4回) (4回)

Thank You.

www.math.uic.edu/~marker/Banff

Dave Marker Model Theory I

・ロト ・日ト ・ヨト ・ヨト

æ