Finding and breaking Lie symmetries: implications for structural identifiability and observability of dynamic models

Gemma Massonis and Alejandro F. Villaverde

```
afvillaverde@iim.csic.es
```

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS

BIRS Workshop "Model Theory of Differential Equations, Algebraic Geometry, and their Applications to Modeling" 1-5 June, 2020

Overview

Motivation: identifiability and observability in dynamic modelling Observability Structural Identifiability as Observability (SIO) Importance for modelling

Lie Symmetries
Lie Symmetries and SIO Finding Lie symmetries

Examples

Discussion and open questions

Bibliography

Lie symmetries:

- Bluman, G.; Anco, S. Symmetry and integration methods for differential equations; Vol. 154, Springer Science \& Business Media, 2008.
- Arrigo, D.J. Symmetry analysis of differential equations: an introduction; John Wiley \& Sons, 2015.

SIO:

- Villaverde, A.F. "Observability and Structural Identifiability of Nonlinear Biological Systems" . Complexity Vol. 2019, Article ID 8497093, https://doi.org/10.1155/2019/8497093.

MOTIVATION AND BACKGROUND

Observability and Structural Identifiability: the concepts

We consider the following type of dynamic models of ODEs:

$$
M_{N L}:= \begin{cases}\dot{x}(t) & =f(x(t), \theta, u(t), w(t)), \\ y(t) & =g(x(t), \theta, u(t), w(t)) \\ x\left(t_{0}\right) & =x^{0}(\theta)\end{cases}
$$

with states $x(t) \in \mathbb{R}^{m}$, parameters $\theta \in \mathbb{R}^{q}$, outputs $y(t) \in \mathbb{R}^{n}$, known inputs $u(t) \in \mathbb{R}^{m_{u}}$, unknown inputs $w(t) \in \mathbb{R}^{m_{\mathrm{w}}}, f$ and g vectors of analytical functions.

Observability and Structural Identifiability: the concepts

We consider the following type of dynamic models of ODEs:

$$
M_{N L}:= \begin{cases}\dot{x}(t) & =f(x(t), \theta, u(t), w(t)) \\ y(t) & =g(x(t), \theta, u(t), w(t)) \\ x\left(t_{0}\right) & =x^{0}(\theta)\end{cases}
$$

with states $x(t) \in \mathbb{R}^{m}$, parameters $\theta \in \mathbb{R}^{q}$, outputs $y(t) \in \mathbb{R}^{n}$, known inputs $u(t) \in \mathbb{R}^{m_{u}}$, unknown inputs $w(t) \in \mathbb{R}^{m_{\mathrm{w}}}, f$ and g vectors of analytical functions.

Observability

A model is observable if it is theoretically possible to infer its states, $x(t)$, by observing its outputs, $\mathrm{y}(\mathrm{t})$

Observability and Structural Identifiability: the concepts

We consider the following type of dynamic models of ODEs:

$$
M_{N L}:= \begin{cases}\dot{x}(t) & =f(x(t), \theta, u(t), w(t)) \\ y(t) & =g(x(t), \theta, u(t), w(t)) \\ x\left(t_{0}\right) & =x^{0}(\theta)\end{cases}
$$

with states $x(t) \in \mathbb{R}^{m}$, parameters $\theta \in \mathbb{R}^{q}$, outputs $y(t) \in \mathbb{R}^{n}$, known inputs $u(t) \in \mathbb{R}^{m_{u}}$, unknown inputs $w(t) \in \mathbb{R}^{m_{w}}, f$ and g vectors of analytical functions.

Observability

A model is observable if it is theoretically possible to infer its states, $x(t)$, by observing its outputs, $\mathrm{y}(\mathrm{t})$

Structural Identifiability

A model is structurally identifiable if it is theoretically possible to infer its parameters, θ, by observing its outputs, $\mathrm{y}(\mathrm{t})$

Structural Identifiability and Observability (SIO)

Structural Local Identifiability as Observability

Extend the state vector as:

$$
\widetilde{x}(t)=\left[\begin{array}{c}
x(t) \\
\theta
\end{array}\right], \dot{\tilde{x}}(t)=\left[\begin{array}{c}
f(\widetilde{x}(t), u(t)) \\
0
\end{array}\right] \Rightarrow M_{N L}:=\left\{\begin{array}{l}
\dot{\tilde{x}}=\tilde{f}(\widetilde{x}, u) \\
y=g(\widetilde{x}, u)
\end{array}\right.
$$

Structural Identifiability and Observability (SIO)

Structural Local Identifiability as Observability

Extend the state vector as:

$$
\widetilde{x}(t)=\left[\begin{array}{c}
x(t) \\
\theta
\end{array}\right], \dot{\widetilde{x}}(t)=\left[\begin{array}{c}
f(\widetilde{x}(t), u(t)) \\
0
\end{array}\right] \Rightarrow M_{N L}:=\left\{\begin{array}{l}
\dot{\tilde{x}}=\widetilde{f}(\widetilde{x}, u) \\
y=g(\widetilde{x}, u)
\end{array}\right.
$$

Structurally locally Identifiable or Observable (SIO)

A variable (state or parameter) \widetilde{x}_{i} is structurally locally identifiable or observable (SIO) if there is a neighbourhood $V\left(\widetilde{x}_{i}^{*}\right)$ s.t.

$$
\hat{\tilde{x}}_{i} \in V\left(\widetilde{x}_{i}^{*}\right) \text { and } y\left(\hat{\tilde{x}}_{i}\right)=y\left(\widetilde{x}_{i}^{*}\right) \Rightarrow \hat{\tilde{x}}_{i}=\widetilde{x}_{i}^{*}
$$

Otherwise it is Structurally Unidentifiable or Unobservable (SU).

Why it matters: SU models provide wrong insights

$$
\begin{aligned}
& \dot{G}=\mathrm{u}(0)+\mathrm{u}-\left(\mathrm{c}+s_{i} \cdot I\right) \cdot G \\
& \dot{\beta}=\beta \cdot\left(\frac{1.4583 \cdot\left(0^{-5}\right.}{1+\left(\frac{8.4}{\mathrm{~T}}\right)^{1 .}}-\frac{1.7361 \cdot 10^{-5}}{1+\left(\frac{G}{8.4}\right)^{8.5}}\right) \\
& i=\mathrm{p} \cdot \beta \cdot \frac{G^{2}}{\alpha^{2}+G^{2}}-\gamma \cdot I
\end{aligned}
$$

Model of the glucose-insulin system
If $y(t)=[\beta, G] \Rightarrow\left[p, s_{i}\right]$ are SU and I is unobservable.
c, α, γ, and the product $p \cdot s_{i}$ are SLI.

LIE SYMMETRIES

Assessing SIO with Lie Symmetries

- Existence of Lie symmetries \Rightarrow existence of similarity transformations ${ }^{1} \Rightarrow$ existence of transformations of \widetilde{x} that leave y unchanged: non-observability (SU).
- Similarity transformations are one-parameter Lie group morphisms that map solutions of a differential equation onto themselves.
- Algorithm for finding Lie symmetries using Ansatz polynomials ${ }^{2}+$ some modifications ${ }^{3}$.

[^0]
Methodology

Theoretical framework

One-parameter Lie group of transformations:

$$
x^{*}=X(x ; \varepsilon),
$$

We say that:

- $\eta(x)=\left.\frac{\partial X(x ; \varepsilon)}{\partial \varepsilon}\right|_{\varepsilon=0}$ is an infinitesimal
- X is the infinitesimal generator, $X=X(x)=\sum_{i=1}^{n} \eta_{i}(x) \frac{\partial}{\partial x_{i}}$
- $x+\varepsilon \eta(x)$ is the infinitesimal transformation of the Lie group of transformations.

Methodology

Creation of infinitesimal generators

First, augment the state vector x :

$$
x:= \begin{cases}\dot{x}_{i}(t)=f_{i}(x(t), u(t)), & i=1, \ldots, m \\ x_{i}(t)=\theta, & i=m+1, \ldots, m+q \\ x_{i}(t)=w_{i}(t), & i=m+q+1, \ldots, n^{*}=m+q+m_{w}\end{cases}
$$

Then, consider different types of polynomial Ansatz for the infinitesimals (univariate, partially variate, and multivariate).

Univariate:

$$
\eta_{i}(\mathbf{x})=\sum_{d=0}^{d_{\max }} r_{i, d} x_{i}^{d}, \quad i=1, \ldots, n^{*}
$$

Methodology

Creation of infinitesimal generators

Partially variate:

$$
\begin{aligned}
& \eta_{i}(\mathbf{x})=\sum_{d_{i}, d_{m+1}, \ldots, d_{m+q}=0}^{|d|=d_{\max }} r_{i, d} x_{i}^{d_{i}} x_{m+1}^{d_{m+1}} \cdots x_{m+q}^{d_{m+q}}, \quad i=1, \ldots, m \\
& \eta_{i}(\mathbf{x})=\sum_{d_{m+1}, \ldots, d_{m+q}=0}^{|d|=d_{\max }} r_{i, d} x_{m+1}^{d_{m+1}} \cdots x_{m+q}^{d_{m+q}}, \quad i=m+1, \ldots, m+q \\
& \eta_{i}(\mathbf{x})=\sum_{d_{i}, d_{m+1}, \ldots, d_{m+q}=0}^{|d|=d_{\max }} r_{i, d} x_{i}^{d_{i}} x_{m+1}^{d_{m+1}} \cdots x_{m+q}^{d_{m+q}}, \quad i=m+q+1, \ldots, n^{*} .
\end{aligned}
$$

Multivariate:

$$
\begin{aligned}
& \eta_{i}(\mathbf{x})=\sum_{d_{1}, \ldots, d_{m+q}=0}^{|d|=d_{\max }} r_{i, d} x_{1}^{d_{1}} \cdots x_{m+q}^{d_{m+q}}, \quad i=1, \ldots, m \\
& \eta_{i}(\mathbf{x})=\sum_{d_{m+1}, \ldots, d_{m+q}=0}^{|d|=d_{\max }} r_{i, d} x_{m+1}^{d_{m+1}} \cdots x_{m+q}^{d_{m+q}}, \quad i=m+1, \ldots, m+q \\
& \eta_{i}(\mathbf{x})=\sum_{d_{1}, \ldots, d_{n^{*}=0}}^{|d|=d_{\max }} r_{i, d} x_{1}^{d_{1}} \cdots x_{n^{*}}^{d_{n^{*}}}, \quad i=1, \ldots, n^{*}
\end{aligned}
$$

Methodology

Criterion for admittance of a Lie group of transformations

Theorem

The system $M_{N L}:=\left\{\begin{aligned} \dot{x}(t) & =f(x(t), \theta, u(t)), \\ y(t) & =g(x(t), \theta, u(t))\end{aligned}\right.$ admits a one-parameter Lie group of transformations defined by $X \Longleftrightarrow$:

$$
\begin{aligned}
\mathbf{X}^{\prime} \cdot\left(\dot{x}_{k}-f_{k}(x)\right) & =0, \quad k=1, \ldots, m \\
\mathbf{X} \cdot\left(y_{l}-g_{l}(x)\right) & =0, \quad I=1, \ldots, n .
\end{aligned}
$$

where X^{\prime} is the derivative of infinitesimal generators:

$$
X^{\prime}=\sum_{i=1}^{n^{*}} \eta_{i}(x) \frac{\partial}{\partial x_{i}}+\sum_{i=1}^{n^{*}} \eta_{i}^{\prime}(x) \frac{\partial}{\partial \dot{x}_{i}}, \text { where } \quad \eta_{i}^{\prime}(x)=\sum_{j=1}^{n^{*}} \dot{x}_{j} \frac{\partial \eta_{i}}{\partial x_{j}}
$$

Methodology

Criterion for admittance of a Lie group of transformations

The previous theorem leads to:

$$
\begin{aligned}
\sum_{j=1}^{n^{*}} \dot{x}_{j} \frac{\partial \eta_{k}}{\partial x_{j}}(\mathbf{x})- & \sum_{i=1}^{n^{*}} \eta_{i}(\mathbf{x}) \frac{\partial f_{k}}{\partial x_{i}}(\mathbf{x})=0, \quad k=1, \ldots, m \\
& \sum_{i=1}^{n^{*}} \eta_{i}(\mathbf{x}) \frac{\partial g_{I}}{\partial x_{i}}(\mathbf{x})=0, \quad l=1, \ldots, n
\end{aligned}
$$

The above system of PDEs can be converted to a system of ODEs if we assume rational functions...

$$
\begin{aligned}
& \dot{x}_{k}=f_{k}(\mathbf{x})=\frac{P^{k}(\mathbf{x})}{Q^{k}(\mathbf{x})}, \quad k=1, \ldots, m \\
& y_{l}=g_{l}(\mathbf{x})=\frac{R^{\prime}(\mathbf{x})}{S^{\prime}(\mathbf{x})}, \quad l=1, \ldots, n
\end{aligned}
$$

Methodology

Computing polynomials

... leading to:

- Univariate + Partially variate:

$$
\begin{aligned}
P^{k} Q^{k} \frac{\partial \eta_{k}}{\partial x_{k}}- & \sum_{i=1}^{n^{*}} \eta_{i}\left[P_{x_{i}}^{k} Q^{k}-P^{k} Q_{x_{i}}^{k}\right]
\end{aligned}=0, \quad k=1, \ldots, m, ~=~ \sum_{i=1}^{n^{*}} \eta_{i}\left[R_{x_{i}}^{\prime} S^{\prime}-R^{\prime} Q_{x_{i}}^{\prime}\right]=0, \quad I=1, \ldots, n .
$$

- Multivariate:

$$
\begin{aligned}
& \sum_{j=1}^{m} P^{j} Q^{k}\left(\prod_{b \neq j} Q^{b}\right) \frac{\partial \eta_{k}}{\partial x_{j}}-\sum_{i=1}^{n^{*}} \eta_{i}\left(\prod_{b \neq k} Q^{b}\right)\left[P_{x_{i}}^{k} Q^{k}-P^{k} Q_{x_{i}}^{k}\right]=0, \\
& \sum_{i=1}^{n^{*}} \eta_{i}\left[R_{x_{i}}^{\prime} S^{\prime}-R^{\prime} Q_{x_{i}}^{\prime}\right]=0 .
\end{aligned}
$$

Methodology

Taking initial conditions into account

If the model contains specific initial conditions, they should be included in the equations.

$$
\begin{equation*}
\mathbf{X} \cdot\left(x_{k}-\mathbf{p}_{i n i}\right)_{\mid x=p_{i n i}}=0, \quad k=1, \ldots, m \tag{1}
\end{equation*}
$$

Thus, following the same procedure as before:

$$
\begin{equation*}
\sum_{i=1}^{n^{*}} \eta_{i}\left(\mathbf{p}_{i n i}\right)-\sum_{i=1}^{n^{*}} \eta_{i} \frac{V_{x_{i}}^{k} W^{k}-V^{k} W_{x_{i}}^{k}}{\left(W^{k}\right)^{2}}=0, \quad k=1, \ldots, m . \tag{2}
\end{equation*}
$$

Methodology

Obtaining transformations

1. Consider the vector $\mathbf{r}=\left(r_{1,0}, r_{1,1}, \ldots, r_{n^{*}, d_{\text {max }}}\right)$,

$$
\sum_{i_{1}, \ldots, i_{n}} c_{i_{1}, \ldots, i_{n}}(\mathbf{r}) x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}=0 \Longrightarrow \mathbf{C} \cdot \mathbf{r}=0
$$

(Coefficients $c_{i_{1}, \ldots, i_{n}}$ are linear in \mathbf{r}).
2. To find symmetries, solve the linear system by computing the
kernel of $\mathbf{C}=\left(\begin{array}{cccc}\ldots & \ldots & \ldots & \ldots \\ \vdots & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ \ldots & \ldots & \ldots & \ldots\end{array}\right)$.
3. Take the vectors $\mathbf{r}:(\vdots),(\vdots), \ldots$ and replace them in
η_{i} to obtain the infinitesimal generators $\mathbf{X}=\sum_{i=1}^{n} \eta_{i}(\mathbf{x}) \frac{\partial}{\partial x_{i}}$

Methodology

Obtaining transformations

- Build the expression of x^{*} with the infinitesimal generators \mathbf{X}
- When the infinitesimal transformation is given by powers of one variable \rightarrow "elementary" transformation. Examples:

$$
\begin{aligned}
x_{i}^{*}=x_{i}+\varepsilon, & \mathbf{X}=\frac{\partial}{\partial x_{i}} \text { (translation), } \\
x_{i}^{*}=\exp (\varepsilon) x_{i}, & \mathbf{X}=x_{i} \frac{\partial}{\partial x_{i}} \text { (scaling), } \\
x_{i}^{*}=\frac{x_{i}}{1-\varepsilon x_{i}}, & \mathbf{X}=x_{i}^{2} \frac{\partial}{\partial x_{i}} \text { (Mobius), } \\
x_{i}^{*}=\frac{x_{i}}{\left[1-(p-1) \varepsilon x_{i}^{p-1}\right]^{\frac{1}{p-1}}}, & \mathbf{X}=x_{i}^{p} \frac{\partial}{\partial x_{i}} \text { (higher order). }
\end{aligned}
$$

The most common ones are translation and scaling.

Summary

1. Choose the type of polynomial Ansatz (uni-, partial, multi-) and the maximum degree.
2. Create infinitesimal polynomials, η_{i}
3. Build the expressions for states, outputs, (\& ICs)
4. Cast as $\mathbf{C} \cdot \mathbf{r}=0$ and find \mathbf{r} by kernel($\mathbf{C})$
5. Replace \mathbf{r} in η_{i} to obtain transformations \mathbf{X}

Implementations

- MinimalOutputSets (Mathematica) ${ }^{4}$
- SADE (Maple) ${ }^{5}$
- symmetryDetection (Python) ${ }^{6}$
- LieSymmetries (Matlab) ${ }^{7}$
- Maximizes number of elementary transformations.
- Computes non-elementary transformations.
- Choose the states for which initial conditions are considered.

[^1]
EXAMPLES

Simple chemical reaction

(1) Model diagram:

(3) Two infinitesimal generators:

$$
\begin{gathered}
\mathbf{X}=\mathrm{A} \frac{\partial}{\partial \mathrm{~A}}-k \frac{\partial}{\partial k}-s_{1} \frac{\partial}{\partial s_{1}}-s_{2} \frac{\partial}{\partial s_{2}} . \\
\mathbf{X}=\mathrm{A}^{2} \frac{\partial}{\partial \mathrm{~A}}+\frac{\partial}{\partial s_{2}} .
\end{gathered}
$$

(2) Model equations:

$$
\begin{aligned}
\dot{\mathrm{A}} & =-2 k A^{2}, \\
\mathrm{~A}^{\mathrm{obs}} & =s_{1} \frac{\mathrm{~A}}{1+s_{2} \mathrm{~A}} .
\end{aligned}
$$

(4) New variables (all transformations are elementary):

$$
\begin{gathered}
\mathrm{A}^{*}=e^{\varepsilon} \mathrm{A}, k^{*}=e^{-\varepsilon} k, \\
s_{1}^{*}=e^{-\varepsilon} s_{1}, s_{2}^{*}=e^{-\varepsilon} s_{2} . \\
\mathrm{A}^{*}=\frac{\mathrm{A}}{1-\varepsilon \mathrm{A}}, s_{2}^{*}=s_{2}+\varepsilon .
\end{gathered}
$$

Simple chemical reaction

MATLAB output

```
>> Lie_Symmetry
Ansatz --> OK
Derivatives Ansatz --> OK
Numerator and denominator --> OK
Derivatives numerator and denominator --> OK
States Polynomial --> OK
Observation Polynomial --> OK
System --> OK
Kernel --> OK
```

>>> Exist Symmetry

>>> Generators
[x1, -k, -s1, -s2]
$\left[\begin{array}{lll}\mathrm{x} 1^{\wedge} 2, & 0, & 0, \\ 1]\end{array}\right.$
>>> New Variables
[x1*exp(epsilon), k*exp(-epsilon), s1*exp(-epsilon), s2*exp(-epsilon)]
[-x1/(epsilon*x1 - 1), k, s1, epsilon + s2]
Elapsed time is 5.325316 seconds.

Pharmacokinetic model

(1) Model diagram:

(2) Model equations:

$$
\begin{aligned}
\dot{x_{1}} & =u-\left(k_{1}+k_{2}\right) x_{1}, \\
\dot{x_{2}} & =k_{1} x_{1}-\left(k_{3}+k_{6}+k_{7}\right) x_{2}+k_{5} x_{4}, \\
\dot{x_{3}} & =k_{2} x_{1}+k_{3} x_{2}-k_{4} x_{3}, \\
\dot{x_{4}} & =k_{6} x_{2}-k_{5} x_{4}, \\
x_{2}^{\text {obs }} & =s_{2} x_{2}, \\
x_{3}^{\text {obs }} & =s_{3} x_{3} .
\end{aligned}
$$

(3) Infinitesimal generator:
$\mathbf{X}=k_{1}\left(\frac{\partial}{\partial k_{1}}-\frac{\partial}{\partial k_{2}}\right)-\frac{k_{3}\left(k_{1}+k_{2}\right)}{k_{2}}\left(\frac{\partial}{\partial k_{3}}-\frac{\partial}{\partial k_{7}}\right)-s_{2} \frac{\partial}{\partial s_{2}}+$
$+\frac{k_{1} s_{3}}{k_{2}} \frac{\partial}{\partial s_{3}}+x_{2} \frac{\partial}{\partial x_{2}}-\frac{k_{1} s_{3}}{k_{2}} \frac{\partial}{\partial x_{3}}+x_{4} \frac{\partial}{\partial x_{4}}$.

Pharmacokinetic model

(4) New variables (I):

$$
x_{2}^{*}=x_{2} e^{\varepsilon}, x_{4}^{*}=x_{4} e^{\varepsilon}, k_{1}^{*}=k_{1} e^{\varepsilon}, s_{2}^{*}=s_{2} e^{-\varepsilon}
$$

$$
x_{3}^{*}=x_{3}-\frac{\varepsilon k_{1} x_{3}}{k_{2}}-\frac{\varepsilon^{2} k_{1} x_{3}}{2 k_{2}}-\frac{\varepsilon^{3} k_{1} x_{3}}{6 k_{2}}-\frac{\varepsilon^{4} k_{1} x_{3}}{24 k_{2}}
$$

$$
k_{2}^{*}=k_{2}-\varepsilon k_{1}-\frac{\varepsilon^{2} k_{1}}{2}-\frac{\varepsilon^{3} k_{1}}{6}-\frac{\varepsilon^{4} k_{1}}{24}
$$

$$
k_{3}^{*}=k_{3}-\frac{k_{3}\left(k_{1}+k_{2}\right) \varepsilon}{k_{2}}+\frac{\varepsilon^{2} k_{3}\left(k_{1}+k_{2}\right)}{2 k_{2}}-\frac{\varepsilon^{3} k_{3}\left(k_{1}+k_{2}\right)}{6 k_{2}}+\frac{\varepsilon^{4} k_{3}\left(k_{1}+k_{2}\right.}{24 k_{2}}
$$

$$
k_{7}^{*}=k_{7}+\frac{k_{3}\left(k_{1}+k_{2}\right) \varepsilon}{k_{2}}-\frac{\varepsilon^{2} k_{3}\left(k_{1}+k_{2}\right)}{2 k_{2}}+\frac{\varepsilon^{3} k_{3}\left(k_{1}+k_{2}\right)}{6 k_{2}}-\frac{\varepsilon^{4} k_{3}\left(k_{1}+k_{2}\right.}{24 k_{2}}
$$

$$
s_{3}^{*}=s_{3}+\frac{\varepsilon k_{1} s_{3}}{k_{2}}+\frac{\varepsilon^{2} k_{1} s_{3}\left(2 k_{1}+k_{2}\right)}{2 k_{2}^{2}}+\frac{\varepsilon^{3} k_{1} s_{3}\left(6 k_{1}^{2}+6 k_{1} k_{2}+k_{2}^{2}\right)}{6 k_{2}^{3}}+
$$

$$
+\frac{\varepsilon^{4} k_{1} s_{3}\left(24 k_{1}^{3}+36 k 1^{2} k_{2}^{2}+14 k_{1} k_{2}^{2}+k_{2}^{3}\right)}{24 k_{2}^{4}}
$$

Pharmacokinetic model

(4) New variables (II):

$$
\begin{aligned}
& x_{2}^{*}=x_{2} e^{\varepsilon}, x_{4}^{*}=x_{4} e^{\varepsilon}, k_{1}^{*}=k_{1} e^{\varepsilon}, s_{2}^{*}=s_{2} e^{-\varepsilon}, \\
& k_{2}^{*}=k_{1}+k_{2}-k_{1} e^{\varepsilon}, \\
& k_{3}^{*}=\frac{k_{3} e^{-\varepsilon}\left(k_{1}+k_{2}-k_{1} e^{\varepsilon}\right)}{k_{2}}, \\
& k_{7}^{*}=k_{7}+\frac{k_{3}\left(k_{1}+k_{2}\right)}{k_{2}}-\frac{k_{3} e^{-\varepsilon}\left(k_{1}+k_{2}\right)}{k_{2}}, \\
& x_{3}^{*}=\frac{x_{3}\left(k_{1}+k_{2}-k_{1} e^{\varepsilon}\right)}{k_{2}}, \\
& s_{3}^{*}=\frac{k_{2} s_{3}}{\left(k_{1}+k_{2}-k_{1} e^{\varepsilon}\right)} .
\end{aligned}
$$

JAK-STAT signaling pathway

JAK-STAT signaling pathway

Infinitesimal generators:

$$
\begin{align*}
& \mathbf{X}=t_{13} \frac{\partial}{\partial t_{13}}-t_{17} \frac{\partial}{\partial t_{17}}+t_{22} \frac{\partial}{\partial t_{22}} \tag{3}\\
& \mathbf{X}=-x_{10} \frac{\partial}{\partial x_{10}}-t_{11} \frac{\partial}{\partial t_{11}}-t_{15} \frac{\partial}{\partial t_{15}}+t_{21} \frac{\partial}{\partial t_{21}}
\end{align*}
$$

New variables:

$$
\begin{gather*}
t_{13}^{*}=t_{13} e^{\varepsilon}, \quad t_{17}^{*}=t_{17} e^{-\varepsilon}, \quad t_{22}^{*}=t_{22} e^{\varepsilon}, \tag{4}\\
x_{10}^{*}=x_{10} e^{-\varepsilon}, \quad t_{11}^{*}=t_{11} e^{-\varepsilon}, \quad t_{15}^{*}=t_{15} e^{-\varepsilon}, \quad t_{21}^{*}=t_{21} e^{\varepsilon} . \tag{5}
\end{gather*}
$$

DISCUSSION

Conclusions

- Symmetries inform about lack of SIO - and about its source.
- Their study can replace or complement other SIO tests.
- We have illustrated the use of a symbolic computation tool that finds Lie symmetries and the corresponding transformations automatically.
- Open-source implementation in MATLAB. Integrated in the STRIKE-GOLDD toolbox.
- Other tools in Mathematica, Python, Maple.
- Based on previous results (Merkt et al) + a few additions, incl. automatically calculating symmetry-breaking transformations.
- Symmetry-breaking transformations fix observability... but the mechanistic meaning is generally lost (so are they any good?).

Bonus: other uses of symmetry in biological modelling

The study of symmetries can inform about observability. But there are other possible uses, see e.g. (\& recent, open special issues in MDPI Symmetry journal):

- morphological (a)symmetries in development
- homeostasis processes
- ...

PLOS COMPUTATIONAL BIOLOGY

RESEARCH ARTICLE
Conservation laws by virtue of scale symmetries in neural systems

Erik D. Fagerholm $\odot^{1 *}$, W. M. C. Foulkes \odot^{2}, Yasir Gallero-Salas $\odot_{-}^{3,4}$, Fritjof Helmchen $\odot_{\odot}{ }^{3,4}$, Karl J. Friston \odot^{5}, Rosalyn J. Moran ${ }^{1 \oplus}$, Robert Leech \odot^{10}

1 Department of Neuroimaging, King's College London, London, United Kingdom, 2 Department of Physics, Imperial College London, London, United Kingdom, 3 Brain Research Institute, University of Zürich, Zürich, Switzerland, 4 Neuroscience Center Zürich, Zürich, Switzerland, 5 Wellcome Centrefor Human Neuroimaging, University College London, London, United Kingdom

Acknowledgements

She did the work

- Gemma Massonis Feixas

They provided the funding

- Spanish Ministry of Science, Innovation and Universities ref. DPI2017-82896-C2-2-R (SYNBIOCONTROL)

And thank you for your attention

[^0]: ${ }^{1}$ Yates, J.W.; Evans, N.D.; Chappell, M.J. Structural identifiability analysis via symmetries of differential equations. Automatica 2009, 45, 25852591.
 ${ }^{2}$ Merkt, B., Timmer, J., and Kaschek, D. "Higher-order Lie symmetries in identifiability and predictability analysis of dynamic models". Phys Rev E 92.1, 2015.
 ${ }^{3}$ Massonis, G., and Villaverde, A.F. "Finding and Breaking Lie Symmetries: Implications for Structural Identifiability and Observability in Biological Modelling". Symmetry 12(3):469, 2020.

[^1]: ${ }^{4}$ Anguelova, M.; Karlsson, J.; Jirstrand, M. "Minimal output sets for identifiability". Mathe Biosci, 239:139153, 2012.
 ${ }^{5}$ Rocha Filho, T.M.; Figueiredo, A. "[SADE] a Maple package for the symmetry analysis of differential equations". Comput Phys Commun, 182:467476, 2011.
 ${ }^{6}$ Merkt, B., Timmer, J., and Kaschek, D. "Higher-order Lie symmetries in identifiability and predictability analysis of dynamic models". Phys Rev E 92.1, 2015.
 ${ }^{7}$ Massonis, G., and Villaverde, A.F. "Finding and Breaking Lie Symmetries: Implications for Structural Identifiability and Observability in Biological Modelling". Symmetry 12(3):469, 2020.

