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MOTIVATION AND BACKGROUND



Observability and Structural Identifiability: the concepts

We consider the following type of dynamic models of ODEs:

MNL :=


ẋ(t) = f (x(t), θ, u(t),w(t)) ,

y(t) = g(x(t), θ, u(t),w(t)) ,

x(t0) = x0(θ)

with states x(t) ∈ Rm, parameters θ ∈ Rq, outputs y(t) ∈ Rn,
known inputs u(t) ∈ Rmu , unknown inputs w(t) ∈ Rmw , f and g vectors
of analytical functions.

Observability

A model is observable if it is theoretically possible to infer its states, x(t),
by observing its outputs, y(t)

Structural Identifiability

A model is structurally identifiable if it is theoretically possible to infer its
parameters, θ, by observing its outputs, y(t)
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Structural Identifiability and Observability (SIO)

Structural Local Identifiability as Observability

Extend the state vector as:

x̃(t) =

[
x(t)
θ

]
, ˙̃x(t) =

[
f (x̃(t), u(t))

0

]
⇒ MNL :=

{
˙̃x = f̃ (x̃ , u)

y = g(x̃ , u)

Structurally locally Identifiable or Observable (SIO)

A variable (state or parameter) x̃i is structurally locally identifiable
or observable (SIO) if there is a neighbourhood V (x̃∗i ) s.t.

ˆ̃xi ∈ V (x̃∗i ) and y( ˆ̃xi ) = y(x̃∗i )⇒ ˆ̃xi = x̃∗i

Otherwise it is Structurally Unidentifiable or Unobservable (SU).
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Why it matters: SU models provide wrong insights
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LIE SYMMETRIES



Assessing SIO with Lie Symmetries

I Existence of Lie symmetries ⇒
existence of similarity transformations1 ⇒
existence of transformations of x̃ that leave y unchanged:
non-observability (SU).

I Similarity transformations are one-parameter Lie group
morphisms that map solutions of a differential equation onto
themselves.

I Algorithm for finding Lie symmetries using Ansatz
polynomials 2 + some modifications 3.

1Yates, J.W.; Evans, N.D.; Chappell, M.J. Structural identifiability analysis via
symmetries of differential equations. Automatica 2009, 45, 25852591.

2Merkt, B., Timmer, J., and Kaschek, D. “Higher-order Lie symmetries in
identifiability and predictability analysis of dynamic models”. Phys Rev E 92.1, 2015.

3Massonis, G., and Villaverde, A.F. “Finding and Breaking Lie Symmetries:
Implications for Structural Identifiability and Observability in Biological Modelling”.
Symmetry 12(3):469, 2020.



Methodology
Theoretical framework

One-parameter Lie group of transformations:

x∗ = X (x ; ε) ,

We say that:

I η(x) =
∂X (x ; ε)

∂ε
|ε=0 is an infinitesimal

I X is the infinitesimal generator, X = X (x) =
∑n

i=1 ηi (x)
∂

∂xi
I x + εη(x) is the infinitesimal transformation of the Lie group

of transformations.



Methodology
Creation of infinitesimal generators

First, augment the state vector x:

x :=


ẋi (t) = fi (x(t), u(t)), i = 1, ...,m

xi (t) = θ, i = m + 1, ...,m + q

xi (t) = wi (t), i = m + q + 1, ..., n∗ = m + q + mw .

Then, consider different types of polynomial Ansatz for the
infinitesimals (univariate, partially variate, and multivariate).

Univariate:

ηi (x) =
dmax∑
d=0

ri ,dx
d
i , i = 1, ..., n∗ .



Methodology
Creation of infinitesimal generators

Partially variate:

ηi (x) =

|d|=dmax∑
di ,dm+1,...,dm+q=0

ri,dx
di
i x

dm+1
m+1 · · · x

dm+q
m+q , i = 1, ...,m ,

ηi (x) =

|d|=dmax∑
dm+1,...,dm+q=0

ri,dx
dm+1
m+1 · · · x

dm+q
m+q , i = m + 1, ...,m + q ,

ηi (x) =

|d|=dmax∑
di ,dm+1,...,dm+q=0

ri,dx
di
i x

dm+1
m+1 · · · x

dm+q
m+q , i = m + q + 1, ..., n∗ .

Multivariate:

ηi (x) =

|d|=dmax∑
d1,...,dm+q=0

ri,dx
d1
1 · · · x

dm+q
m+q , i = 1, ...,m ,

ηi (x) =

|d|=dmax∑
dm+1,...,dm+q=0

ri,dx
dm+1
m+1 · · · x

dm+q
m+q , i = m + 1, ...,m + q ,

ηi (x) =

|d|=dmax∑
d1,...,dn∗=0

ri,dx
d1
1 · · · x

dn∗
n∗ , i = 1, ..., n∗ .



Methodology
Criterion for admittance of a Lie group of transformations

Theorem

The system MNL :=

{
ẋ(t) = f (x(t), θ, u(t)) ,

y(t) = g(x(t), θ, u(t))
admits a

one-parameter Lie group of transformations defined by X ⇐⇒ :

X′ · (ẋk − fk(x)) = 0, k = 1, ...,m ,

X · (yl − gl(x)) = 0, l = 1, ..., n .

where X’ is the derivative of infinitesimal generators:

X ′ =
n∗∑
i=1

ηi (x)
∂

∂xi
+

n∗∑
i=1

η′i (x)
∂

∂ẋi
, where η′i (x) =

n∗∑
j=1

ẋj
∂ηi
∂xj

.



Methodology
Criterion for admittance of a Lie group of transformations

The previous theorem leads to:

n∗∑
j=1

ẋj
∂ηk
∂xj

(x)−
n∗∑
i=1

ηi (x)
∂fk
∂xi

(x) =0, k = 1, ...,m ,

n∗∑
i=1

ηi (x)
∂gl
∂xi

(x) =0, l = 1, ..., n .

The above system of PDEs can be converted to a system of ODEs
if we assume rational functions...

ẋk = fk(x) =
Pk(x)

Qk(x)
, k = 1, ...,m ,

yl = gl(x) =
R l(x)

S l(x)
, l = 1, ..., n .



Methodology
Computing polynomials

... leading to:

I Univariate + Partially variate:

PkQk ∂ηk
∂xk
−

n∗∑
i=1

ηi [P
k
xiQ

k − PkQk
xi ] =0, k = 1, ...,m ,

n∗∑
i=1

ηi [R
l
xiS

l − R lQ l
xi ] =0, l = 1, ..., n .

I Multivariate:

m∑
j=1

P jQk

∏
b 6=j

Qb

 ∂ηk
∂xj
−

n∗∑
i=1

ηi

∏
b 6=k

Qb

 [Pk
xiQ

k − PkQk
xi ] =0,

n∗∑
i=1

ηi [R
l
xiS

l − R lQ l
xi ] =0.



Methodology
Taking initial conditions into account

If the model contains specific initial conditions, they should be
included in the equations.

X · (xk − pini )|x=pini
= 0, k = 1, ...,m . (1)

Thus, following the same procedure as before:

n∗∑
i=1

ηi (pini )−
n∗∑
i=1

ηi
V k
xiW

k − V kW k
xi

(W k)2
|x=pini

= 0, k = 1, ...,m . (2)



Methodology
Obtaining transformations

1. Consider the vector r = (r1,0, r1,1, ..., rn∗,dmax ),∑
i1,...,in

ci1,...,in(r)x i11 · · · x
in
n = 0 =⇒ C · r = 0 .

(Coefficients ci1,...,in are linear in r).

2. To find symmetries, solve the linear system by computing the

kernel of C =


. . . . . . . . . . . .
...

. . .
...

...
. . .

...
. . . . . . . . . . . .

 .

3. Take the vectors r:
(

...

)
,
(

...

)
, ... and replace them in

ηi to obtain the infinitesimal generators X =
∑n

i=1 ηi (x)
∂

∂xi



Methodology
Obtaining transformations

I Build the expression of x* with the infinitesimal generators X

I When the infinitesimal transformation is given by powers of
one variable → “elementary” transformation. Examples:

x∗i = xi + ε, X =
∂

∂xi
(translation) ,

x∗i = exp(ε)xi , X = xi
∂

∂xi
(scaling) ,

x∗i =
xi

1− εxi
, X = x2

i

∂

∂xi
(Mobius) ,

x∗i =
xi

[1− (p − 1)εxp−1
i ]

1
p−1

, X = xpi
∂

∂xi
(higher order) .

The most common ones are translation and scaling.



Summary

1. Choose the type of polynomial Ansatz (uni-, partial, multi-)
and the maximum degree.

2. Create infinitesimal polynomials, ηi

3. Build the expressions for states, outputs, (& ICs)

4. Cast as C · r = 0 and find r by kernel(C)

5. Replace r in ηi to obtain transformations X



Implementations

I MinimalOutputSets (Mathematica)4

I SADE (Maple) 5

I symmetryDetection (Python)6

I LieSymmetries (Matlab) 7

I Maximizes number of elementary transformations.
I Computes non-elementary transformations.
I Choose the states for which initial conditions are considered.

4Anguelova, M.; Karlsson, J.; Jirstrand, M. “Minimal output sets for
identifiability”. Mathe Biosci, 239:139153, 2012.

5Rocha Filho, T.M.; Figueiredo, A. “[SADE] a Maple package for the symmetry
analysis of differential equations”. Comput Phys Commun, 182:467476, 2011.

6Merkt, B., Timmer, J., and Kaschek, D. “Higher-order Lie symmetries in
identifiability and predictability analysis of dynamic models”. Phys Rev E 92.1, 2015.

7Massonis, G., and Villaverde, A.F. “Finding and Breaking Lie Symmetries:
Implications for Structural Identifiability and Observability in Biological Modelling”.
Symmetry 12(3):469, 2020.



EXAMPLES



Simple chemical reaction

(1) Model diagram:

(3) Two infinitesimal
generators:

X = A
∂

∂A
−k ∂

∂k
−s1

∂

∂s1
−s2

∂

∂s2
.

X = A2 ∂

∂A
+

∂

∂s2
.

(2) Model equations:

Ȧ =− 2kA2 ,

Aobs =s1
A

1 + s2A
.

(4) New variables (all
transformations are
elementary):

A∗ = eεA, k∗ = e−εk ,

s∗1 = e−εs1, s
∗
2 = e−εs2 .

A∗ =
A

1− εA
, s∗2 = s2 + ε .



Simple chemical reaction
MATLAB output



Pharmacokinetic model

(1) Model diagram:

(3) Infinitesimal generator:

X = k1

(
∂

∂k1
− ∂

∂k2

)
−k3(k1 + k2)

k2

(
∂

∂k3
− ∂

∂k7

)
−s2

∂

∂s2
+

+
k1s3

k2

∂

∂s3
+x2

∂

∂x2
−k1s3

k2

∂

∂x3
+x4

∂

∂x4
.

(2) Model equations:

ẋ1 = u − (k1 + k2)x1 ,

ẋ2 = k1x1 − (k3 + k6 + k7)x2 + k5x4 ,

ẋ3 = k2x1 + k3x2 − k4x3 ,

ẋ4 = k6x2 − k5x4 ,

xobs
2 = s2x2 ,

xobs
3 = s3x3 .



Pharmacokinetic model

(4) New variables (I):

x∗2 = x2e
ε, x∗4 = x4e

ε, k∗1 = k1e
ε, s∗2 = s2e

−ε

x∗3 = x3 −
εk1x3

k2
− ε2k1x3

2k2
− ε3k1x3

6k2
− ε4k1x3

24k2
,

k∗2 = k2 − εk1 −
ε2k1

2
− ε3k1

6
− ε4k1

24
,

k∗3 = k3 −
k3(k1 + k2)ε

k2
+
ε2k3(k1 + k2)

2k2
− ε3k3(k1 + k2)

6k2
+
ε4k3(k1 + k2)

24k2
,

k∗7 = k7 +
k3(k1 + k2)ε

k2
− ε2k3(k1 + k2)

2k2
+
ε3k3(k1 + k2)

6k2
− ε4k3(k1 + k2)

24k2
,

s∗3 = s3 +
εk1s3

k2
+
ε2k1s3(2k1 + k2)

2k2
2

+
ε3k1s3(6k2

1 + 6k1k2 + k2
2 )

6k3
2

+

+
ε4k1s3(24k3

1 + 36k12k2
2 + 14k1k

2
2 + k3

2 )

24k4
2

.



Pharmacokinetic model

(4) New variables (II):

x∗2 =x2e
ε, x∗4 = x4e

ε, k∗1 = k1e
ε, s∗2 = s2e

−ε ,

k∗2 =k1 + k2 − k1e
ε ,

k∗3 =
k3e
−ε(k1 + k2 − k1e

ε)

k2
,

k∗7 =k7 +
k3(k1 + k2)

k2
− k3e

−ε(k1 + k2)

k2
,

x∗3 =
x3(k1 + k2 − k1e

ε)

k2
,

s∗3 =
k2s3

(k1 + k2 − k1eε)
.



JAK-STAT signaling pathway



JAK-STAT signaling pathway

Infinitesimal generators:

X = t13
∂

∂t13
− t17

∂

∂t17
+ t22

∂

∂t22
,

X = −x10
∂

∂x10
− t11

∂

∂t11
− t15

∂

∂t15
+ t21

∂

∂t21
.

(3)

New variables:

t∗13 = t13e
ε, t∗17 = t17e

−ε, t∗22 = t22e
ε , (4)

x∗10 = x10e
−ε, t∗11 = t11e

−ε, t∗15 = t15e
−ε, t∗21 = t21e

ε . (5)



DISCUSSION



Conclusions

I Symmetries inform about lack of SIO — and about its source.

I Their study can replace or complement other SIO tests.

I We have illustrated the use of a symbolic computation tool
that finds Lie symmetries and the corresponding
transformations automatically.

I Open-source implementation in MATLAB. Integrated in the
STRIKE-GOLDD toolbox.

I Other tools in Mathematica, Python, Maple.

I Based on previous results (Merkt et al) + a few additions, incl.
automatically calculating symmetry-breaking transformations.

I Symmetry-breaking transformations fix observability... but the
mechanistic meaning is generally lost (so are they any good?).



Bonus: other uses of symmetry in biological modelling

The study of symmetries can inform about observability. But there
are other possible uses, see e.g. (& recent, open special issues in
MDPI Symmetry journal):

I morphological (a)symmetries in development

I homeostasis processes

I ...
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