the Brauer group of bielliptic surfaces

Derived, Birational, and Categorical Algebraic Geometry

Sofia Tirabassi

tirabassi@math.su.se

This seminar is brought to you by

The Question

Let X a smooth projective variety over a field k (which will be \mathbb{C} for what it concerns us today). The cohomological Brauer group of X is

$$
\operatorname{Br}^{\prime}(X):=\mathrm{H}_{\mathrm{et}}^{2}\left(X, \mathcal{O}_{X}^{*}\right)_{\text {tor }} .
$$

Given a morphism $f: X \rightarrow Y$ of smooth projective varieties, then, by pulling back classes, we get a group homomorphism

$$
f_{\mathrm{Br}}: \operatorname{Br}^{\prime}(Y) \longrightarrow \operatorname{Br}^{\prime}(X)
$$

which we call the Brauer map associated to f.

The Question

Let X a smooth projective variety over a field k (which will be \mathbb{C} for what it concerns us today). The cohomological Brauer group of X is

$$
\operatorname{Br}^{\prime}(X):=\mathrm{H}_{\mathrm{et}}^{2}\left(X, \mathcal{O}_{X}^{*}\right)_{\text {tor }} .
$$

Given a morphism $f: X \rightarrow Y$ of smooth projective varieties, then, by pulling back classes, we get a group homomorphism

$$
f_{\mathrm{Br}}: \operatorname{Br}^{\prime}(Y) \longrightarrow \operatorname{Br}^{\prime}(X)
$$

which we call the Brauer map associated to f.

Question

What can we say about f_{Br} ?

Beauville and Enriques surfaces

Let S be a complex Enriques surface and denote by \hat{S} its universal cover. Then \hat{S} is a K3 surface and there is an étale 2-1 morphism

$$
\pi: \hat{S} \longrightarrow S
$$

Denote by $\sigma: \hat{S} \rightarrow \hat{S}$ the Enriques involution. The Brauer group of an Enriques surfaces is isomomorphic $\mathbb{Z} / 2 \mathbb{Z}$ so there are only two possible behaviors for the Brauer map associated to π :

Theorem (Beauville 2009)

The Brauer map π_{Br} is trivial if, and only if, there is a line bundle L on \hat{S} such that $\sigma^{*} L=L^{-1}$ and $c_{1}(L)^{2} \equiv 2(\bmod 4)$.

Today

We are going to study the problem for complex bielliptic surfaces. Given a complex bielliptic surface S, then there is always a cyclic cover

$$
\pi: \hat{S} \rightarrow S
$$

where \hat{S} is an abelian surface. Sometimes (more details are coming) there is also a cyclic cover

$$
\tilde{\pi}: \tilde{S} \rightarrow S
$$

where \tilde{S} is another bielliptic surface.

Today

We are going to study the problem for complex bielliptic surfaces. Given a complex bielliptic surface S, then there is always a cyclic cover

$$
\pi: \hat{S} \rightarrow S
$$

where \hat{S} is an abelian surface. Sometimes (more details are coming) there is also a cyclic cover

$$
\tilde{\pi}: \tilde{S} \rightarrow S
$$

where \tilde{S} is another bielliptic surface.

Goal

We completely characterize the behavior of the Brauer map associated to these morphisms.

Today

We are going to study the problem for complex bielliptic surfaces. Given a complex bielliptic surface S, then there is always a cyclic cover

$$
\pi: \hat{S} \rightarrow S
$$

where \hat{S} is an abelian surface. Sometimes (more details are coming) there is also a cyclic cover

$$
\tilde{\pi}: \tilde{S} \rightarrow S
$$

where \tilde{S} is another bielliptic surface.

Goal

We completely characterize the behavior of the Brauer map associated to these morphisms.

We= this is a joint work with E. Ferrari, M. Vodrup (with an appendix by me and J. Bergström).

Derived Categories?

- Beauville work was used by Addington and Wray to study (the non existence of) twisted Fourier-Mukai partners of Enriques surfaces.
- Vodrup is using this work to do a similar investigation for bielliptic surfaces.

Plan

(1) Bielliptic Surfaces
(2) The results
(3) How did we do it?

The Definition

Definition

A bielliptic surface is a surface S with irregularity

$$
q(S):=h^{1}\left(X, \mathcal{O}_{S}\right)=1
$$

and numerically trivial canonical divisor class.

- The canonical bundle is torsion, but not trivial (we are working on the complex numbers!)
- They are always constructed as quotients of a product of two elliptic curves by a finite group action.

Example

Let A and B two elliptic curves and let $G:=\mathbb{Z} / 2 \mathbb{Z}$. Choose τ a point of order two in A and consider the involution

$$
\sigma: A \times B \longrightarrow A \times B
$$

defined by $(a, b) \mapsto(a+\tau,-b)$.
Then the surface $S:=A \times B /<\sigma>$ is bielliptic.

Example

Let A and B two elliptic curves and let $G:=\mathbb{Z} / 2 \mathbb{Z}$.
Choose τ a point of order two in A and consider the involution

$$
\sigma: A \times B \longrightarrow A \times B
$$

defined by $(a, b) \mapsto(a+\tau,-b)$.
Then the surface $S:=A \times B /<\sigma>$ is bielliptic.
The surface S admits two elliptic fibrations

with general fibers isomorphic to A and B respectively.

Bagnera- de Franchis

Type	G	Order of ω_{S} in $\operatorname{Pic}(S)$	$H^{2}(S, \mathbb{Z})_{\text {tor }}$
1	$\mathbb{Z} / 2 \mathbb{Z}$	2	$\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$
2	$\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$	2	$\mathbb{Z} / 2 \mathbb{Z}$
3	$\mathbb{Z} / 4 \mathbb{Z}$	4	$\mathbb{Z} / 2 \mathbb{Z}$
4	$\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$	4	0
5	$\mathbb{Z} / 3 \mathbb{Z}$	3	$\mathbb{Z} / 3 \mathbb{Z}$
6	$\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$	3	0
7	$\mathbb{Z} / 6 \mathbb{Z}$	6	0

Bagnera- de Franchis

Type	G	Order of ω_{S} in $\operatorname{Pic}(S)$	$H^{2}(S, \mathbb{Z})_{\text {tor }}$
1	$\mathbb{Z} / 2 \mathbb{Z}$	2	$\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$
2	$\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$	2	$\mathbb{Z} / 2 \mathbb{Z}$
3	$\mathbb{Z} / 4 \mathbb{Z}$	4	$\mathbb{Z} / 2 \mathbb{Z}$
4	$\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$	4	0
5	$\mathbb{Z} / 3 \mathbb{Z}$	3	$\mathbb{Z} / 3 \mathbb{Z}$
6	$\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$	3	0
7	$\mathbb{Z} / 6 \mathbb{Z}$	6	0

Fun Facts

- The Brauer group of a bilelliptic surface is non canonically isomorphic to $H^{2}(S, \mathbb{Z})_{\text {tor }}$ so we will disregard types 4,6 and 7 .

Bagnera- de Franchis

Type	G	Order of ω_{S} in $\operatorname{Pic}(S)$	$H^{2}(S, \mathbb{Z})_{\text {tor }}$
1	$\mathbb{Z} / 2 \mathbb{Z}$	2	$\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$
2	$\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$	2	$\mathbb{Z} / 2 \mathbb{Z}$
3	$\mathbb{Z} / 4 \mathbb{Z}$	4	\mathbb{Z} / \mathbb{Z}
5	$\mathbb{Z} / 3 \mathbb{Z}$	3	$\mathbb{Z} / 3 \mathbb{Z}$

Fun Facts

- The Brauer group of a bilelliptic surface is non canonically isomorphic to $H^{2}(S, \mathbb{Z})_{\text {tor }}$ so we will disregard types 4,6 and 7 .
- To construct types 3 and 5 we cannot choose freely the elliptic curve B : for type 3 we have $j(B)=1728$, and for type 5 we have $j(B)=0$.

Canonical Covers

Let S be a bielliptic surface and denote by n the order of its canonical bundle. Then ω_{S} induces an étale cyclic cover $\pi_{S}: \hat{S} \rightarrow S$, called the canonical cover of S.
If we let $\lambda_{S}:=|G| /\left|\left(\omega_{S}\right)\right|$, we have that $G \simeq \mathbb{Z} / n \mathbb{Z} \oplus \mathbb{Z} / \lambda_{S} \mathbb{Z}$, and X is the abelian surface sitting as an intermediate quotient

where $H \simeq \mathbb{Z} / \lambda_{s} \mathbb{Z}$.

Bielliptic covers (after Nuer)

When G is not cyclic or when G is cyclic, of non prime order number, then the bielliptic surface S admits a cyclic cover $\tilde{\pi}: \tilde{S} \rightarrow S$, where \tilde{S} is another bielliptic surface.

Example

(1) If S is a bielliptic surface of type 3 , then the canonical bundle has order 4. In addition the canonical cover \hat{S} of S is a product of elliptic curves, that is $X \simeq A \times B$. By taking the cover associated with $\omega_{S}^{\otimes 2}$ we get \tilde{S} which is a bielliptic surface of type 1 .
(2) Suppose that S is a bielliptic surface of type 2 , so the group G is isomorphic to the product $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. Then we obtain \tilde{S} from $A \times B$ by taking the quotient with respect to $(x, y) \mapsto(x+\tau,-y)$. Thus \tilde{S} is a again bielliptic surface of type 1 .

Section 2 The results

Those easily stated...

Theorem (Ferrari, :-), Vodrup)

Let S be a bielliptic surface which admits a bielliptic cover $\tilde{\pi}: \tilde{S} \rightarrow S$.
(1) If S is of type 2, then $\tilde{\pi}_{\mathrm{Br}}: \operatorname{Br}(S) \rightarrow \operatorname{Br}(\tilde{S})$ is trivial.
(2) If S is of type 3 , then $\tilde{\pi}_{\mathrm{Br}}: \operatorname{Br}(S) \rightarrow \operatorname{Br}(\tilde{S})$ is injective.

Theorem (Ferrari, :-), Vodrup)

Let $S:=A \times B / G$ be a bielliptic surface and denote by $\pi: \hat{S} \rightarrow S$ its canonical cover. If the elliptic curves A and B are not isogenous, then the Brauer map π_{Br} is trivial.
(1) If S is of type 2, then $\tilde{\pi}_{\mathrm{Br}}: \operatorname{Br}(S) \rightarrow \operatorname{Br}(\tilde{S})$ is trivial.
(2) If S is of type 3, then $\tilde{\pi}_{\mathrm{Br}}: \operatorname{Br}(S) \rightarrow \operatorname{Br}(\tilde{S})$ is injective.
... and those not

The description of the behavior of the Brauer map associated to the canonical cover in the isogeny case is far from being neat.

Type 1 bielliptic surfaces:

There are two main subcases:
(1) When B (and so A) does not have complex multiplication. Here we will see has the map can be non injective, but it is never trivial.
(2) When B (and so A) has complex multiplication. Here the map can be trivial.

... and those not

The description of the behavior of the Brauer map associated to the canonical cover in the isogeny case is far from being neat.

Type 1 bielliptic surfaces:

There are two main subcases:
(1) When B (and so A) does not have complex multiplication. Here we will see has the map can be non injective, but it is never trivial.
(2) When B (and so A) has complex multiplication. Here the map can be trivial.

Notation

Recall that in this case G is cyclic of order 2 acting by translation by a point τ on A and by $-\mathrm{id}_{B}$ on B. We identify the dual of A with A using the isomorphism associated to $\mathcal{O}_{A}\left(O_{A}\right)$ and we denote by P_{τ} the topologically trivial line bundle on A associated to τ.

A whiteboard

Non CM case

If A and B are isogenous and do not have complex multiplication, then $\operatorname{Hom}(B, A)$ is a free \mathbb{Z}-module of rank 1 .

Theorem

The Brauer map associated to the canonical cover is not injective if, and only if, for a (and hence all) choice of a generator $\phi: B \rightarrow A$ we have that $\phi^{*} P_{\tau}$ is trivial. In this case the kernel of the Brauer map will be isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$.

CM case

If A and B are isogenous and do not have complex multiplication, then $\operatorname{Hom}(B, A)$ is a free \mathbb{Z}-module of rank 2.

Theorem

The Brauer map associated to the canonical cover is not injective if, and only if, for a (and hence all) choice of a generators $\phi_{1}, \phi_{2}: B \rightarrow A$ we have that one of the following line bundles is trivial

$$
\begin{equation*}
\phi_{1}^{*} P_{\tau}, \quad \phi_{2}^{*} P_{\tau}, \quad\left(\phi_{1}+\phi_{2}\right)^{*} P_{\tau} \tag{1}
\end{equation*}
$$

In addition the Brauer map is trivial if, and only if, two (and hence all) line bundles in are trivial. (1)

Examples

- Suppose that $A \simeq B$. If A does not have complex multiplication, then we can take $\psi= \pm 1_{A}$. In particular we have that $\psi^{*} P_{\tau}$ is never trivial and the Brauer map is injective.

Examples

- Suppose that $A \simeq B$. If A does not have complex multiplication, then we can take $\psi= \pm 1_{A}$. In particular we have that $\psi^{*} P_{\tau}$ is never trivial and the Brauer map is injective.
- Suppose again that $A \simeq B$ and that the j-invariant of A is 1728 . Then $\operatorname{End}(A) \simeq \mathbb{Z}[i]$ and the multiplication by i induces an automorphism ω of A of order 4, and we can take 1_{A} and ω as generators of $\operatorname{End}(A)$. Suppose that P_{τ} is a fixed point of the dual automorphism ω^{*} (For example we can identify A with its dual and ω^{*} with ω and take $\tau=\left(\frac{1}{2}, \frac{1}{2}\right)+\Lambda$, where $\left.\Lambda=<1, i\right\rangle$ $A \simeq \mathbb{C} / \Lambda)$. Then $\left(1_{A}+\omega\right)^{*} P_{\tau}$ is zero and the Brauer map is not injective (and is neither trivial!!!!

Examples II

- We can also use a similar argument to construct uncountably many Type 1 byelliptic surfaces with non injective Brauer map. Let B any elliptic curve without complex multiplication and chose θ a point of over 2 on B. Let $A:=B / \theta$ and $\psi: B \rightarrow A$ the quotient map. This is a degree 2 isogeny, so it is primitive and hence generating. If τ is the only point of order $2 \operatorname{in~} \operatorname{Ker} \psi^{*}$, then we have that the data A, τ, B uniquely identify a Type 1 bielliptic surface which has a non injective Brauer map.

Examples II

- We can also use a similar argument to construct uncountably many Type 1 byelliptic surfaces with non injective Brauer map. Let B any elliptic curve without complex multiplication and chose θ a point of over 2 on B. Let $A:=B / \theta$ and $\psi: B \rightarrow A$ the quotient map. This is a degree 2 isogeny, so it is primitive and hence generating. If τ is the only point of order $2 \operatorname{in~} \operatorname{Ker} \psi^{*}$, then we have that the data A, τ, B uniquely identify a Type 1 bielliptic surface which has a non injective Brauer map.
- Let now $A \simeq \mathbb{C} / \mathbb{Z}[2 i]$ and let τ the point $(0, i)+\mathbb{Z}[2 i]$. The elliptic curve $B:=A /<\tau>$ has j-invariant 1728 and $\operatorname{Hom}(B, A)$ is generated by the isogenies $\psi_{1}:=\varphi_{2}$ and $\psi_{2}:=\varphi_{2} \circ \lambda_{B}$, where $\varphi_{2}: B \rightarrow A$ denotes the isogeny induced by multiplication by 2 . Observe that

$$
\varphi_{2}^{*}\left(P_{\tau}\right) \simeq \varphi_{2}^{*}\left(\mathcal{O}_{A}\left(\tau-p_{0}\right) \simeq \mathcal{O}_{A}\left(\varphi_{2}(\tau)-\varphi\left(p_{0}\right)\right) \simeq \mathcal{O}_{B}\right.
$$

Thus we have that $\psi_{1}^{*} P_{\tau} \simeq \psi_{2}^{*} P_{\tau} \simeq \mathcal{O}_{B}$ and the Brauer map is trivial.

The "Moduli" Picture

Type 1 bielliptic surfaces are constructed by choosing two elliptic curves A and B and a 2-torsion point on A. Thus the moduli space has dimension 2. In order to have a non injective Brauer map one can choose freely the elliptic curve B, but has only finitely many possibilities for A and the 2-torsion point. Thus we obtain a 1dimensional family. On the other hand only countably many type 1 bielliptic surfaces can have a trivial Brauer map to their canonical cover. In fact, to obtain a trivial Brauer map one has to choose the ellipic curve B among those having complex multiplication.

The other types

Type 2: These surfaces are constructed by choosing two elliptic curves A and B and two 2-torsion points, one on A and one on B. Hences the moduli space has dimension 1. Similarly to what happens in the previous case, in order to have a trivial Brauer map only the choice of the curve B can be made freely, while A must be taken among finitely many possibilities.
Type 3: These surfaces are constructed by choosing one elliptic curve A and a 4-torsion point on it. Therefore the moduli space has dimension 1. In order to have a non injective (and hence trivial) Brauer map, A must be isogenous to the curve with j-invariant 1728. Thus there are only finitely many such surfaces.

Type 5: These surfaces are constructed by choosing one elliptic curve A and a 3 -torsion point on it. We deduce that the moduli space has dimension 1. In order to have a non injective (and hence trivial) Brauer map, A must be isogenous to the curve with j-invariant 0. Thus, as in the previous case, there are only finitely many such surfaces.

Beauville's Strategy

Let $\pi: X \rightarrow Y$ be a finite locally free morphism of projective varieties of degree n. To it we can associate a group homomorphism

$$
\mathrm{Nm}_{\pi}: \operatorname{Pic}(X) \rightarrow \operatorname{Pic}(Y)
$$

called the norm homomorphism associated to π

Proposition (Beauville 2009)

Let $\pi: X \rightarrow S$ be an étale cyclic covering of smooth projective varieties. Let σ be a generator of the Galois group of π, $\mathrm{Nm}_{\pi}: \operatorname{Pic}(X) \rightarrow \operatorname{Pic}(S)$ be the norm map and $\pi_{\mathrm{Br}}: \operatorname{Br}(S) \rightarrow \operatorname{Br}(X)$ be the pullback. Then we have a canonical isomorphism

$$
\operatorname{Ker}\left(\pi_{\mathrm{Br}}\right) \simeq \operatorname{Ker} \mathrm{Nm}_{\pi} /\left(1-\sigma^{*}\right) \operatorname{Pic}(X) .
$$

Beauville's Strategy

Let $\pi: X \rightarrow Y$ be a finite locally free morphism of projective varieties of degree n. To it we can associate a group homomorphism

$$
\mathrm{Nm}_{\pi}: \operatorname{Pic}(X) \rightarrow \operatorname{Pic}(Y)
$$

called the norm homomorphism associated to π

Proposition (Beauville 2009)

Let $\pi: X \rightarrow S$ be an étale cyclic covering of smooth projective varieties. Let σ be a generator of the Galois group of π, $\mathrm{Nm}_{\pi}: \operatorname{Pic}(X) \rightarrow \operatorname{Pic}(S)$ be the norm map and $\pi_{\mathrm{Br}}: \operatorname{Br}(S) \rightarrow \operatorname{Br}(X)$ be the pullback. Then we have a canonical isomorphism

$$
\operatorname{Ker}\left(\pi_{\mathrm{Br}}\right) \simeq \operatorname{Ker} \mathrm{Nm}_{\pi} /\left(1-\sigma^{*}\right) \operatorname{Pic}(X) .
$$

So we studied the quotient in the RHS in the various cases.

Outline:

(We first find numerical conditions for a line bundle to be in the kernel of the norm map, and we get V a subspace of the NS upstair.

Example

- If upstair and downstair we have the same Picard rank, then $L \in \operatorname{Ker} \mathrm{Nm}$ iff $L \equiv 0$.
- If the group G is cyclic and $\pi: A \times B \rightarrow S$ is the canonical cover, then $\operatorname{Nm}_{\pi}(L)$ is trivial iff the numerical class of L is in $\operatorname{Hom}(A, B)$.

Outline:

(0) We first find numerical conditions for a line bundle to be in the kernel of the norm map, and we get V a subspace of the NS upstair.

Example

- If upstair and downstair we have the same Picard rank, then $L \in \operatorname{Ker} \mathrm{Nm}$ iff $L \equiv 0$.
- If the group G is cyclic and $\pi: A \times B \rightarrow S$ is the canonical cover, then $\mathrm{Nm}_{\pi}(L)$ is trivial iff the numerical class of L is in $\operatorname{Hom}(A, B)$.
(2) We study $V /\left(1-\sigma^{*}\right) V$ and get "numerical candidates".

Outline:

(0) We first find numerical conditions for a line bundle to be in the kernel of the norm map, and we get V a subspace of the NS upstair.

Example

- If upstair and downstair we have the same Picard rank, then $L \in \operatorname{Ker} \mathrm{Nm}$ iff $L \equiv 0$.
- If the group G is cyclic and $\pi: A \times B \rightarrow S$ is the canonical cover, then $\mathrm{Nm}_{\pi}(L)$ is trivial iff the numerical class of L is in $\operatorname{Hom}(A, B)$.
(2) We study $V /\left(1-\sigma^{*}\right) V$ and get "numerical candidates".
(3) Study the norm of line bundles equivalent to the numerical candidates.

The Pic ${ }^{0}$ trick

How to construct elements in the kernel of the norm

Let $\pi: X \rightarrow Y$ be an étale morphism of degree n and suppose that there is a line bundle L on X such that $\mathrm{Nm}_{\pi}(L) \in \operatorname{Pic}^{0}(Y)$. Then there is an element $\alpha \in \operatorname{Pic}^{\circ}(X)$ such that $\mathrm{Nm}_{\pi}(L \otimes \alpha)$ is trivial.

The Pic ${ }^{0}$ trick

How to construct elements in the kernel of the norm

Let $\pi: X \rightarrow Y$ be an étale morphism of degree n and suppose that there is a line bundle L on X such that $\mathrm{Nm}_{\pi}(L) \in \operatorname{Pic}^{0}(Y)$. Then there is an element $\alpha \in \operatorname{Pic}^{0}(X)$ such that $\mathrm{Nm}_{\pi}(L \otimes \alpha)$ is trivial.

Proof:

The Pic ${ }^{0}$ trick

How to construct elements in the kernel of the norm

Let $\pi: X \rightarrow Y$ be an étale morphism of degree n and suppose that there is a line bundle L on X such that $\mathrm{Nm}_{\pi}(L) \in \operatorname{Pic}^{0}(Y)$. Then there is an element $\alpha \in \operatorname{Pic}^{0}(X)$ such that $\mathrm{Nm}_{\pi}(L \otimes \alpha)$ is trivial.

Proof:

(1) By Norm-calculus we have that $\mathrm{Nm}_{\pi}\left(\pi^{*} M\right)=M^{\otimes n}$;'

The Pic ${ }^{0}$ trick

How to construct elements in the kernel of the norm

Let $\pi: X \rightarrow Y$ be an étale morphism of degree n and suppose that there is a line bundle L on X such that $\mathrm{Nm}_{\pi}(L) \in \operatorname{Pic}^{0}(Y)$. Then there is an element $\alpha \in \operatorname{Pic}^{\circ}(X)$ such that $\mathrm{Nm}_{\pi}(L \otimes \alpha)$ is trivial.

Proof:

(1) By Norm-calculus we have that $\mathrm{Nm}_{\pi}\left(\pi^{*} M\right)=M^{\otimes n}$;'
(2) $\operatorname{Pic}^{0}(Y)$ is a divisible group so we can find $\beta \in \operatorname{Pic}^{0}(Y)$ such that $\beta^{\otimes n} \simeq \operatorname{Nm}_{\pi}(L)^{-1} ;$

The Pic ${ }^{0}$ trick

How to construct elements in the kernel of the norm

Let $\pi: X \rightarrow Y$ be an étale morphism of degree n and suppose that there is a line bundle L on X such that $\mathrm{Nm}_{\pi}(L) \in \operatorname{Pic}^{0}(Y)$. Then there is an element $\alpha \in \operatorname{Pic}^{\circ}(X)$ such that $\mathrm{Nm}_{\pi}(L \otimes \alpha)$ is trivial.

Proof:

(1) By Norm-calculus we have that $\mathrm{Nm}_{\pi}\left(\pi^{*} M\right)=M^{\otimes n}$;'
(2) $\operatorname{Pic}^{0}(Y)$ is a divisible group so we can find $\beta \in \operatorname{Pic}^{0}(Y)$ such that $\beta^{\otimes n} \simeq \mathrm{Nm}_{\pi}(L)^{-1}$;
(3) then we have

$$
\operatorname{Nm}_{\pi}\left(L \otimes \pi^{*} \beta\right) \simeq \operatorname{Nm}_{\pi}(L) \otimes \beta^{\otimes n} \simeq \mathcal{O}_{Y}
$$

Bielliptic covers

Let S be a Type 2 or 3 bielliptic surfaces, then there is a Type 1 bielliptic surface \tilde{S} and an involution $\tilde{\sigma}$ such that $S \simeq \tilde{S} / \tilde{\sigma}$.

Bielliptic covers

Let S be a Type 2 or 3 bielliptic surfaces, then there is a Type 1 bielliptic surface \tilde{S} and an involution $\tilde{\sigma}$ such that $S \simeq \tilde{S} / \tilde{\sigma}$.
(1) The fibration $g: \tilde{S} \rightarrow \mathbb{P}^{1}$ has four multiple fibers all of multiplicity 2 which we will denote by D_{1}, \ldots, D_{4}. Let $\tau_{i j}:=\mathcal{O}_{\tilde{S}}\left(D_{i}-D_{j}\right)$.

Bielliptic covers

Let S be a Type 2 or 3 bielliptic surfaces, then there is a Type 1 bielliptic surface \tilde{S} and an involution $\tilde{\sigma}$ such that $S \simeq \tilde{S} / \tilde{\sigma}$.
(1) The fibration $g: \tilde{S} \rightarrow \mathbb{P}^{1}$ has four multiple fibers all of multiplicity 2 which we will denote by D_{1}, \ldots, D_{4}. Let $\tau_{i j}:=\mathcal{O}_{\tilde{S}}\left(D_{i}-D_{j}\right)$.
(2) We have that

$$
\left.H^{2}(\tilde{S}, \mathbb{Z})_{\text {tor }}=\left\{0,\left[\tau_{1 j}\right]\right\}_{j \neq 1}\right\}
$$

Bielliptic covers

Let S be a Type 2 or 3 bielliptic surfaces, then there is a Type 1 bielliptic surface \tilde{S} and an involution $\tilde{\sigma}$ such that $S \simeq \tilde{S} / \tilde{\sigma}$.
(1) The fibration $g: \tilde{S} \rightarrow \mathbb{P}^{1}$ has four multiple fibers all of multiplicity 2 which we will denote by D_{1}, \ldots, D_{4}. Let $\tau_{i j}:=\mathcal{O}_{\tilde{S}}\left(D_{i}-D_{j}\right)$.
(2) We have that

$$
\left.H^{2}(\tilde{S}, \mathbb{Z})_{\text {tor }}=\left\{0,\left[\tau_{1 j}\right]\right\}_{j \neq 1}\right\}
$$

Type 2

If S is of type 2 , then by seeing how the involution acts on the D_{i} 's we get that $\operatorname{Nm}\left(\tau_{13}\right) \in \operatorname{Pic}^{0}(S)$, but $\tau_{13} \otimes \alpha \notin \operatorname{Im}\left(1-\tilde{\sigma}^{*}\right)$ for every $\alpha \in \operatorname{Pic}^{0}(\tilde{S})$. We conclude by the Pic^{0}-trick.

Bielliptic Cover of Type 3

Why they are different

The deep reason for the different behavior of the Brauer map in the two cases is how the $\tilde{\sigma}$ acts on the D_{i} 's, which affect the computation of the norm map.

Bielliptic Cover of Type 3

Why they are different

The deep reason for the different behavior of the Brauer map in the two cases is how the $\tilde{\sigma}$ acts on the D_{i} 's, which affect the computation of the norm map.

Lemma

Let n and m be two integers. Then the norm of the line bundle $\tau_{13}^{\otimes n} \otimes \tau_{14}^{\otimes m}$ is zero if and only if n and m have the same parity. In addition we have that $\operatorname{Nm}\left(\tau_{13}^{\otimes n} \otimes \tau_{14}^{\otimes m}\right)$ is not in $\mathrm{Pic}^{0}(S)$ if n and m are not congruent modulo 2.

Preposition

If L is in the Kernel of the norm map, then L is in $\operatorname{Pic}^{\top}(\tilde{S})$.

Bielliptic Cover of Type 3

Why they are different

The deep reason for the different behavior of the Brauer map in the two cases is how the $\tilde{\sigma}$ acts on the D_{i} 's, which affect the computation of the norm map.

Lemma

Let n and m be two integers. Then the norm of the line bundle $\tau_{13}^{\otimes n} \otimes \tau_{14}^{\otimes m}$ is zero if and only if n and m have the same parity. In addition we have that $\operatorname{Nm}\left(\tau_{13}^{\otimes n} \otimes \tau_{14}^{\otimes m}\right)$ is not in $\mathrm{Pic}^{0}(S)$ if n and m are not congruent modulo 2.

Preposition

If L is in the Kernel of the norm map, then L is in $\operatorname{Pic}^{\top}(\tilde{S})$.
(Depends from the fact that \tilde{S} and S have the same Picard rank).

Questions?

Questions?

Questions?

Thank you for your attention!

