Rationality and derived categories of some Fano threefolds over non-closed fields

Alexander Kuznetsov

BIRS November 02 2020

Predicting rationality criteria

Derived categories (semiorthogonal decompositions) are useful for predicting (not proving yet) rationality conditions/criteria for algebraic varieties over algebraically closed fields.

Example

If $X \subset \mathbb{P}^5$ is a smooth cubic fourfold, one has

$$\mathbf{D}(X) = \langle \mathcal{A}_X, \mathcal{O}_X, \mathcal{O}_X(1), \mathcal{O}_X(2) \rangle,$$

where \mathcal{A}_X is a K3-category.

Conjecture

Cubic fourfold X is rational if and only if $A_X \cong D(S)$, where S is a K3-surface.

Griffiths components

In general, assume $\dim(X) = n$ and

$$\mathbf{D}(X) = \langle \mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_m \rangle$$

is a semiorthogonal decomposition with indecomposable A_i .

Conjecture

X is rational if and only if A_i is a semiorthogonal component of $D(Y_i)$, where Y_i is smooth projective and $\dim(Y_i) \le n - 2$.

Definition

Components A_i of D(X) for which there is no embedding $A_i \hookrightarrow D(Y_i)$ with dim $(Y_i) \le n-2$ are called Griffiths components of D(X).

- Expected: Griffiths componets of D(X) is a birational invariant of X.
- Problem: failure of Jordan-Hölder property for s.o.d.

Galois setup

What can one say when the base field k is not algebraically closed?

Galois setup: X is a Fano threefold over k, char(k) = 0, such that

- $X_{\bar{k}}$ is rational;
- **2** $\rho(X) := \mathsf{rk}(\mathsf{Pic}(X)) = 1.$

Remark

- $\rho(X_{\overline{k}}) := \mathsf{rk}(\mathsf{Pic}(X_{\overline{k}}))$ may be higher than 1, if $\mathsf{Pic}(X_{\overline{k}})^{\mathsf{Gal}(\overline{k}/k)} \subset \mathbb{Q}K_X$.
- The case ρ(X) > 1 reduces to the case ρ(X) = 1 or to lower dimensions by MMP.

Question

Find a relation between rationality of X and Griffiths components of D(X).

Alexander Kuznetsov

Equivariant setup

Definition

- X is a G-Fano variety if X is a Fano variety and G is a finite group acting on X faithfully.
- X is G-rational if there is a G-equivariant birational isomorphism $X \sim \mathbb{P}^n$ for some faithful action $G \curvearrowright \mathbb{P}^n$.

Equivariant setup: X is a G-Fano threefold over $k = \overline{k}$, char(k) = 0, s.t.

- $\bigcirc X \text{ is rational};$
- **2** $\rho_G(X) := \operatorname{rk}(\operatorname{Pic}(X)^G) = 1.$

Question

Find a relation between *G*-rationality of *X* and Griffiths components of the equivariant derived category $D_G(X) = D([X/G])$.

General setup

General setup: $X \rightarrow S$ is a smooth family of Fano varieties such that S is connected and

- for any geometric point s of the base S the corresponding geometric fiber X_s is rational;
- **2** $\rho(X/S) := \operatorname{rk}(\operatorname{Pic}(X/S)) = 1.$

Question

Find a relation between rationality of X over S and relative Griffiths components of S-linear semiorthogonal decompositions of D(X).

- The case S = Spec(k) is equivalent to the Galois setting.
- The case S = [pt/G] is equivalent to the equivariant setting.

Geometrically rational Fano threefolds with $\rho(X_{\bar{k}}) = 1$

Rationality criteria (Galois setup) for Fano threefolds with $\rho(X_{\bar{k}}) = 1$ were established in https://arxiv.org/abs/1911.08949. There are 8 types of Fano threefolds X/\bar{k} with $\rho(X_{\bar{k}}) = 1$:

- **₽**³;
- $Q^3 = (\mathbb{P}^4, \mathbb{O}(2));$
- $V_4 = (\mathbb{P}^5, \mathbb{O}(2) \oplus \mathbb{O}(2));$
- $V_5 = (\mathsf{Gr}(2,5), \mathcal{O}(1) \oplus \mathcal{O}(1) \oplus \mathcal{O}(1));$
- $X_{12} = (OGr_+(5, 10), O(1)^{\oplus 7});$
- $X_{16} = (LGr(3, 6), O(1)^{\oplus 3});$
- $X_{18} = (G_2Gr(2,7), O(1)^{\oplus 2});$
- $X_{22} = (Gr(3,7), (\wedge^2 \mathcal{U}^{\vee})^{\oplus 3}).$

If X is a Fano threefold such that $X_{\bar{k}}$ is rational and $\rho(X_{\bar{k}}) = 1$ then X is a k-form of one of the Fano threefolds from this list.

Rationality results, I

Theorem (K, Prokhorov, 2019)

- If X is a k-form of V_5 then X is always rational.
- **2** If X is a k-form of \mathbb{P}^3 , Q^3 , X_{12} , X_{22} then X is rational if and only if

 $X(k) \neq \emptyset$.

If X is a k-form of V_4 , X_{18} , X_{16} then X is rational if and only if

		$F_1(X)(k) \neq \emptyset,$	when X is a k-form of V_4
$X(k) \neq \emptyset$	and <	$F_2(X)(k) \neq \emptyset,$	when X is a k-form of X_{18}
		$F_3(X)(k) \neq \emptyset,$	when X is a k-form of X_{16}

In all these cases $X(k) \neq \emptyset$ implies that X is unirational.

Here $F_d(X)$ is the Hilber scheme of rational curves of degree d on X.

Geometrically rational Fano threefolds with $\rho(X_{\bar{k}}) > 1$

There are 6 types of Fano threefolds with $\rho(X) = 1$ and $\rho(X_{\overline{k}}) > 1$:

- $X_{\overline{k}} \cong \mathbb{P}^1 imes \mathbb{P}^1 imes \mathbb{P}^1;$
- $X_{\overline{k}} \cong (\mathbb{P}^2 \times \mathbb{P}^2, \mathcal{O}(1, 1));$
- $X_{\overline{k}} \cong (\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}(1, 1, 1, 1));$
- $X_{\overline{k}} \cong (\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2, \mathcal{O}(1, 1, 0) \oplus \mathcal{O}(1, 0, 1) \oplus \mathcal{O}(0, 1, 1));$
- $X_{\overline{k}} \cong (\mathbb{P}^3 \times \mathbb{P}^3, \mathbb{O}(1, 1)^{\oplus 3});$
- $X_{\overline{k}} \cong \mathsf{Bl}_{C_1}(Q_1) \cong \mathsf{Bl}_{C_2}(Q_2) \subset Q_1 \times Q_2 \subset \mathbb{P}^4 \times \mathbb{P}^4$, where
 - Q_1 and Q_2 are smooth 3-dimensional quadrics,
 - C_1 and C_2 are rational twisted quartic curves,
 - the isomorphism of the blowups is given by a Cremona transformation.

We call these threefolds $X_{1,1,1}$, $X_{2,2}$, $X_{1,1,1,1}$, $X_{2,2,2}$, $X_{3,3}$, and $X_{4,4}$, respectively.

Rationality results, II

Theorem (K, Prokhorov)

- $X_{1,1,1}$, $X_{2,2}$, $X_{2,2,2}$, and $X_{4,4}$ are rational if and only if $X(k) \neq \emptyset$.
- **2** $X_{3,3}$ is never rational.

Conjecture

 $X_{1,1,1,1}$ is never rational.

- $G_X := \operatorname{Im} \left(\operatorname{Gal}(\overline{k}/k) \to \mathfrak{S}_4 \subset \operatorname{Aut}(\operatorname{Pic}(X_{\overline{k}})) \right);$
- G_X is a transitive subgroup of \mathfrak{S}_4 , i.e., $G_X \in \{\mathfrak{S}_4, \mathfrak{A}_4, \mathrm{D}_4, \mathrm{V}_4, \mathrm{C}_4\}$.

Theorem (K, Prokhorov)

- For $G_X \in \{\mathfrak{S}_4, \mathfrak{A}_4, \mathrm{D}_4, \mathrm{V}_4\}$: a very general $X = X_{1,1,1,1}$ with $X(\mathsf{k}) \neq \emptyset$ is not stably rational.
- **a** For $G \in {\mathfrak{S}_4, \mathfrak{A}_4}$ any G-Fano $X = X_{1,1,1,1}$ is not G-rational.

Griffiths components for threefolds over a base

Recall that an *S*-linear admissible subcategory $\mathcal{A} \subset \mathbf{D}(X)$ is not a Griffiths component for a family X/S of smooth threefolds if \mathcal{A} is admissible and *S*-linear in $\mathbf{D}(Y)$, where dim $(Y/S) \leq 1$.

Assume Y is connected, flat over S, and

- $\dim(Y/S) = 0$, or
- $\dim(Y/S) = 1$ and g(Y/S) > 0,

then D(Y) has no S-linear decompositions.

• If dim(Y/S) = 1 with the Stein factorization $Y \xrightarrow{\mathbb{P}^1} T \xrightarrow{\text{finite}} S$, where $Y \to T$ is a \mathbb{P}^1 -bundle then $\mathbf{D}(Y) = \langle \mathbf{D}(T), \mathbf{D}(T, \beta) \rangle$, where $\beta \in Br(T)_2$ is the corresponding **2-torsion** Brauer class.

Thus, non-Griffiths components are:

- **1** D(T), where T/S is finite;
- **2** $D(T,\beta)$, where T/S is finite and $\beta \in Br(T)_2$;
- **3** $D(\Gamma)$, where Γ/S is a family of smooth curves of genus g > 0.

Derived categories, I

Theorem

Let X/S be a family of smooth Fano threefolds such that

• geometric fibers X_s are rational, and

• $\rho(X_s) = 1.$

Then

2 a $\mathbf{D}(\mathbb{P}^3/S) = \langle \mathbf{D}(S), \mathbf{D}(S, \beta_4), \mathbf{D}(S, \beta_4^2), \mathbf{D}(S, \beta_4^3) \rangle$

- $\mathbf{D}(Q^3/S) = \langle \mathbf{D}(S), \mathbf{D}(S), \mathbf{D}(S), \mathbf{D}(S, \beta_4) \rangle$
- $\mathbf{D}(X_{12}/S) = \langle \mathbf{D}(S), \mathbf{D}(S), \mathbf{D}(\Gamma_7/\overline{S}) \rangle$ • $\mathbf{D}(X_{22}/S) = \langle \mathbf{D}(S), \mathbf{D}(S), \mathbf{D}(S, \beta_2), \mathbf{D}(S) \rangle$

Griffiths components are underlined.

Derived categories, II

Theorem

Let X/S be a family of smooth Fano threefolds such that

- geometric fibers X_s are rational,
- $\rho(X/S) = 1$, and $r := \rho(X_s) > 1$.

Monodromy $\pi_0(S) \to \mathfrak{S}_r \subset \operatorname{Aut}(\operatorname{Pic}(X_s))$ gives étale $S_r \xrightarrow{r:1} S$. Then

 $\begin{array}{l} \bullet \quad O(X_{1,1,1}/S) = \langle D(S), D(S_3, \beta_2), D(S, Nm(\beta_2)), D(S_3, \beta_2 + Nm(\beta_2)) \rangle \\ \bullet \quad D(X_{2,2}/S) = \langle D(S), D(S_2, \beta_3), D(S), D(S_2, \beta_3) \rangle \\ \bullet \quad D(X_{2,2,2}/S) = \langle D(S), \overline{D(S, \beta_2)}, D(S_3), \overline{D(S_3)} \rangle \\ \bullet \quad D(X_{4,4}/S) = \langle D(S), D(S), D(S_2, \beta_2), D(S_2, \beta_2) \rangle \end{array}$

$$\begin{array}{ll} \textcircled{2} & \textcircled{0} & \fbox{D}(X_{3,3}/S) = \langle \emph{D}(S), \emph{D}(S_2, \beta_4), \underline{A}_X \rangle, \\ & \mathcal{A}_{X_s} = \langle \emph{D}(\Gamma_3), \emph{D}(\bar{k}) \rangle; \\ & \textcircled{0} & \fbox{D}(X_{1,1,1,1}/S) = \langle \emph{D}(S), \emph{D}(S_4, \beta_2), \underline{A}_X \rangle, \\ & \mathcal{A}_{X_s} = \langle \emph{D}(\Gamma_1), \emph{D}(\bar{k}), \emph{D}(\bar{k}), \emph{D}(\bar{k}) \rangle; \end{array}$$

Griffiths components are underlined.

Derived categories, III

Theorem

Let X/S be a family of smooth Fano threefolds such that

• geometric fibers X_s are rational, and

• $\rho(X_s) = 1.$

If there is a rational section $S \dashrightarrow X$ then

2 a $\beta_4 \mapsto 1$, hence $\mathbf{D}(\mathbb{P}^3/S) = \langle \mathbf{D}(S), \mathbf{D}(S), \mathbf{D}(S), \mathbf{D}(S) \rangle$ **b** $\beta_4 \mapsto \beta_2$, hence $\mathbf{D}(Q^3/S) = \langle \mathbf{D}(S), \mathbf{D}(S), \mathbf{D}(S), \mathbf{D}(S), \beta_2 \rangle \rangle$

If also $F_1(V_4/S) \to S$, $F_2(X_{18}/S) \to S$, and $F_3(X_{16}/S) \to S$ have rational sections, then $\beta_{\Gamma,d} \mapsto 1$ and all Griffiths components disappear.

Derived categories, IV

Theorem

Let X/S be a family of smooth Fano threefolds such that

• geometric fibers X_s are rational,

• $\rho(X/S) = 1$, and $\rho(X_s) > 1$.

If there is a rational section $S \rightarrow X$ then

$$\begin{array}{l} \bullet \quad \beta_2 \mapsto 1, \text{ hence } \mathbf{D}(X_{1,1,1}/S) = \langle \mathbf{D}(S), \mathbf{D}(S_3), \mathbf{D}(S), \mathbf{D}(S_3) \rangle \\ \bullet \quad \beta_3 \mapsto 1, \text{ hence } \mathbf{D}(X_{2,2}/S) = \langle \mathbf{D}(S), \mathbf{D}(S_2), \mathbf{D}(S), \mathbf{D}(S_2) \rangle \\ \bullet \quad \beta_4 \mapsto 1, \text{ hence } \mathbf{D}(X_{3,3}/S) = \langle \mathbf{D}(S), \mathbf{D}(S_2), \underline{\mathcal{A}}_X \rangle, \\ \bullet \quad - \langle \mathbf{D}(\Gamma_{-}), \mathbf{D}(\bar{L}) \rangle; \end{array}$$

$$\mathcal{A}_{X_s} = \langle \mathbf{D}(\Gamma_3), \mathbf{D}(\bar{k}) \rangle,$$

$$\mathcal{B}_2 \mapsto 1, \text{ hence } \mathbf{D}(X_{1,1,1,1}/S) = \langle \mathbf{D}(S), \mathbf{D}(S_4), \underline{\mathcal{A}_X} \rangle,$$

$$\mathcal{A}_{X_s} = \langle \mathbf{D}(\Gamma_1), \mathbf{D}(\bar{k}), \mathbf{D}(\bar{k}), \mathbf{D}(\bar{k}) \rangle;$$

Λ

Rationality conjecture

Conjecture

Let X be a smooth projective threefold over k, char(k) = 0. Assume

- $X_{\bar{k}}$ is rational,
- $X(k) \neq \emptyset$.

Then X is rational if and only if it has no Griffiths components, i.e.,

$$\mathbf{D}(X) = \langle \mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_m \rangle$$

and for each *i* one has

 $\mathcal{A}_i \cong \mathbf{D}(\mathsf{k}')$ or $\mathcal{A}_i \cong \mathbf{D}(\mathsf{k}', \beta_2)$ or $\mathcal{A}_i \cong \mathbf{D}(\Gamma)$,

where k'/k is a finite field extension, $\beta_2 \in Br(k')_2$ is a 2-torsion Brauer class, and Γ is a smooth projective curve of positive genus.

Thanks for attention!