ExCEPTIONAL COLLECTIONS ON MODULI SPACES OF STABLE RATIONAL CURVES

Ana-Maria Castravet (Versailles) joint work with Jenia Tevelev

November 2020
BIRS Workshop "Derived, Birational, and Categorical Algebraic Geometry"

Moduli spaces of stable rational curves

Moduli spaces of stable rational curves

$$
\begin{aligned}
& \mathcal{M}_{0, n}=\left\{\left(\mathbb{P}^{1}, p_{1}, \ldots, p_{n}\right) \mid p_{i} \neq p_{j}\right\} / \mathrm{PGL}_{2} \\
& \mathcal{M}_{0, n} \subseteq \overline{\mathcal{M}}_{0, n}=\text { functorial compactification } \\
& \overline{\mathcal{M}}_{0, n}=\left\{\left(C, p_{1}, \ldots, p_{n}\right)\right\} / \sim \quad \text { where: } \\
& \quad \text { - } C \text { is a tree of } \mathbb{P}^{1} \text { 's } \\
& \text { - } p_{1}, \ldots, p_{n} \text { distinct, smooth points } \\
& \quad \omega_{C}\left(p_{1}+\ldots+p_{n}\right) \text { ample } \\
& S_{n} \text { acts on } \overline{\mathcal{M}}_{0, n} \text { by permuting } p_{1}, \ldots, p_{n}
\end{aligned}
$$

Moduli spaces of stable rational curves

$$
\begin{aligned}
& \mathcal{M}_{0, n}=\left\{\left(\mathbb{P}^{1}, p_{1}, \ldots, p_{n}\right) \mid p_{i} \neq p_{j}\right\} / \mathrm{PGL}_{2} \\
& \mathcal{M}_{0, n} \subseteq \overline{\mathcal{M}}_{0, n}=\text { functorial compactification } \\
& \overline{\mathcal{M}}_{0, n}=\left\{\left(C, p_{1}, \ldots, p_{n}\right)\right\} / \sim \quad \text { where: } \\
& \quad \text { - } C \text { is a tree of } \mathbb{P}^{1} \text { 's } \\
& \text { - } p_{1}, \ldots, p_{n} \text { distinct, smooth points } \\
& \quad \omega_{C}\left(p_{1}+\ldots+p_{n}\right) \text { ample } \\
& S_{n} \text { acts on } \overline{\mathcal{M}}_{0, n} \text { by permuting } p_{1}, \ldots, p_{n}
\end{aligned}
$$

Asymmetry

$$
p_{1}, p_{2}, p_{3} \mapsto 0,1, \infty \quad \Rightarrow \quad \mathcal{M}_{0,4}=\mathbb{P}^{1} \backslash\{0,1, \infty\}, \quad \overline{\mathcal{M}}_{0,4}=\mathbb{P}^{1}
$$

Asymmetry

$p_{1}, p_{2}, p_{3} \mapsto 0,1, \infty \quad \Rightarrow \quad \mathcal{M}_{0,4}=\mathbb{P}^{1} \backslash\{0,1, \infty\}, \quad \overline{\mathcal{M}}_{0,4}=\mathbb{P}^{1}$
Kapranov: $\overline{\mathcal{M}}_{0, n}=\ldots \mathrm{BI}_{\binom{n-1}{3}} \mathrm{BI}_{\binom{n-1}{2}} \mathrm{BI}_{n-1} \mathbb{P}^{n-3}$
(blow-up $n-1$ points, all lines, planes,... spanned by them)

Asymmetry

$p_{1}, p_{2}, p_{3} \mapsto 0,1, \infty \quad \Rightarrow \quad \mathcal{M}_{0,4}=\mathbb{P}^{1} \backslash\{0,1, \infty\}, \quad \overline{\mathcal{M}}_{0,4}=\mathbb{P}^{1}$
Kapranov: $\overline{\mathcal{M}}_{0, n}=\ldots \mathrm{BI}_{\binom{n-1}{3}} \mathrm{BI}_{\binom{n-1}{2}} \mathrm{BI}_{n-1} \mathbb{P}^{n-3}$
(blow-up $n-1$ points, all lines, planes,... spanned by them)
Kapranov blow-up map $\Psi_{i}: \overline{\mathcal{M}}_{0, n} \rightarrow \mathbb{P}^{n-3}$ is not S_{n}-invariant:

Asymmetry

$p_{1}, p_{2}, p_{3} \mapsto 0,1, \infty \quad \Rightarrow \quad \mathcal{M}_{0,4}=\mathbb{P}^{1} \backslash\{0,1, \infty\}, \quad \overline{\mathcal{M}}_{0,4}=\mathbb{P}^{1}$
Kapranov: $\overline{\mathcal{M}}_{0, n}=\ldots \mathrm{BI}_{\binom{n-1}{3}} \mathrm{BI}_{\binom{n-1}{2}} \mathrm{Bl}_{n-1} \mathbb{P}^{n-3}$
(blow-up $n-1$ points, all lines, planes,... spanned by them)
Kapranov blow-up map $\Psi_{i}: \overline{\mathcal{M}}_{0, n} \rightarrow \mathbb{P}^{n-3}$ is not S_{n}-invariant:

Ψ_{i} given by the complete linear system of the line bundle ψ_{i} on $\overline{\mathcal{M}}_{0, n}$:

$$
\psi_{i \mid\left(C, p_{1}, \ldots, p_{n}\right)}=\left(T_{p_{i}} C\right)^{*}
$$

Asymmetry

$p_{1}, p_{2}, p_{3} \mapsto 0,1, \infty \quad \Rightarrow \quad \mathcal{M}_{0,4}=\mathbb{P}^{1} \backslash\{0,1, \infty\}, \quad \overline{\mathcal{M}}_{0,4}=\mathbb{P}^{1}$
Kapranov: $\overline{\mathcal{M}}_{0, n}=\ldots \mathrm{BI}_{\binom{n-1}{3}} \mathrm{BI}_{\binom{n-1}{2}} \mathrm{Bl}_{n-1} \mathbb{P}^{n-3}$
(blow-up $n-1$ points, all lines, planes,... spanned by them)
Kapranov blow-up map $\Psi_{i}: \overline{\mathcal{M}}_{0, n} \rightarrow \mathbb{P}^{n-3}$ is not S_{n}-invariant:

Ψ_{i} given by the complete linear system of the line bundle ψ_{i} on $\overline{\mathcal{M}}_{0, n}$:

$$
\psi_{i \mid\left(C, p_{1}, \ldots, p_{n}\right)}=\left(T_{p_{i}} C\right)^{*}
$$

A question of Orlov and Manin

A question of Orlov and Manin

Theorem (C.-Tevelev, 2020)
$\overline{\mathcal{M}}_{0, n}$ has a full, exceptional collection that is S_{n}-invariant.

A question of Orlov and Manin

Theorem (C.-Tevelev, 2020)
$\overline{\mathcal{M}}_{0, n}$ has a full, exceptional collection that is S_{n}-invariant.

Corollary
The K-group $K\left(\overline{\mathcal{M}}_{0, n}\right)$ is a permutation S_{n}-lattice. In particular, the cohomology group $\mathrm{H}^{*}\left(\overline{\mathcal{M}}_{0, n}, \mathbb{Q}\right)$ has a basis permuted by S_{n}.

A question of Orlov and Manin

Theorem (C.-Tevelev, 2020)
$\overline{\mathcal{M}}_{0, n}$ has a full, exceptional collection that is S_{n}-invariant.

Corollary
The K-group $K\left(\overline{\mathcal{M}}_{0, n}\right)$ is a permutation S_{n}-lattice. In particular, the cohomology group $\mathrm{H}^{*}\left(\overline{\mathcal{M}}_{0, n}, \mathbb{Q}\right)$ has a basis permuted by S_{n}.

Getzler 1994, Bergstrom-Minabe 2013:
character/length of the S_{n}-representation $\mathrm{H}^{*}\left(\overline{\mathcal{M}}_{0, n}, \mathbb{Q}\right)$ recursively

A question of Orlov and Manin

Theorem (C.-Tevelev, 2020)
$\overline{\mathcal{M}}_{0, n}$ has a full, exceptional collection that is S_{n}-invariant.

Corollary
The K-group $K\left(\overline{\mathcal{M}}_{0, n}\right)$ is a permutation S_{n}-lattice. In particular, the cohomology group $\mathrm{H}^{*}\left(\overline{\mathcal{M}}_{0, n}, \mathbb{Q}\right)$ has a basis permuted by S_{n}.

Getzler 1994, Bergstrom-Minabe 2013:
character/length of the S_{n}-representation $\mathrm{H}^{*}\left(\overline{\mathcal{M}}_{0, n}, \mathbb{Q}\right)$ recursively

Example

$S=$ del Pezzo $\mathrm{dP}_{2},\left|-K_{S}\right|: S \rightarrow \mathbb{P}^{2}$ degree $2 \rightsquigarrow$ involution σ $\sigma \curvearrowright \mathrm{H}^{*}(S ; \mathbb{Q})$ signature $(3,7) \Longrightarrow \mathrm{H}^{*}(S ; \mathbb{Q})$ has no basis permuted by σ

A question of Orlov and Manin

Theorem (C.-Tevelev, 2020)
$\overline{\mathcal{M}}_{0, n}$ has a full, exceptional collection that is S_{n}-invariant.

Corollary
The K-group $K\left(\overline{\mathcal{M}}_{0, n}\right)$ is a permutation S_{n}-lattice. In particular, the cohomology group $\mathrm{H}^{*}\left(\overline{\mathcal{M}}_{0, n}, \mathbb{Q}\right)$ has a basis permuted by S_{n}.

Getzler 1994, Bergstrom-Minabe 2013:
character/length of the S_{n}-representation $\mathrm{H}^{*}\left(\overline{\mathcal{M}}_{0, n}, \mathbb{Q}\right)$ recursively

Example

$S=$ del Pezzo $\mathrm{dP}_{2},\left|-K_{S}\right|: S \rightarrow \mathbb{P}^{2}$ degree $2 \rightsquigarrow$ involution σ $\sigma \curvearrowright \mathrm{H}^{*}(S ; \mathbb{Q})$ signature $(3,7) \Longrightarrow \mathrm{H}^{*}(S ; \mathbb{Q})$ has no basis permuted by σ

Exceptional collections

X smooth, projective variety over \mathbb{C}

Exceptional collections

X smooth, projective variety over \mathbb{C}
Definition

- $E \in D^{b}(X)$ is exceptional if $R \operatorname{Hom}(E, E)=\mathbb{C}$
- An ordered collection E_{1}, \ldots, E_{r} is an exceptional collection if

$$
R \operatorname{Hom}\left(E_{i}, E_{j}\right)=0 \quad \text { for all } \quad i>j
$$

- A collection E_{1}, \ldots, E_{r} is full if $D^{b}(X)=\left\langle E_{1}, \ldots, E_{r}\right\rangle$.

Exceptional collections

X smooth, projective variety over \mathbb{C}

DEFINITION

- $E \in D^{b}(X)$ is exceptional if $R \operatorname{Hom}(E, E)=\mathbb{C}$
- An ordered collection E_{1}, \ldots, E_{r} is an exceptional collection if

$$
R \operatorname{Hom}\left(E_{i}, E_{j}\right)=0 \quad \text { for all } \quad i>j
$$

- A collection E_{1}, \ldots, E_{r} is full if $D^{b}(X)=\left\langle E_{1}, \ldots, E_{r}\right\rangle$.

REmARK

If a full, exceptional collection E_{1}, \ldots, E_{r} exists, then the Grothendieck group $K(X)$ is a free abelian group of rank r.

Exceptional collections

X smooth, projective variety over \mathbb{C}

DEFINITION

- $E \in D^{b}(X)$ is exceptional if $R \operatorname{Hom}(E, E)=\mathbb{C}$
- An ordered collection E_{1}, \ldots, E_{r} is an exceptional collection if

$$
R \operatorname{Hom}\left(E_{i}, E_{j}\right)=0 \quad \text { for all } \quad i>j
$$

- A collection E_{1}, \ldots, E_{r} is full if $D^{b}(X)=\left\langle E_{1}, \ldots, E_{r}\right\rangle$.

REMARK

If a full, exceptional collection E_{1}, \ldots, E_{r} exists, then the Grothendieck group $K(X)$ is a free abelian group of rank r.

Example (Beilinson)
A full, exceptional collection on $\mathbb{P}^{n}: \quad \mathcal{O}, \quad \mathcal{O}(1), \ldots, \quad \mathcal{O}(n)$

Exceptional collections

X smooth, projective variety over \mathbb{C}

DEFINITION

- $E \in D^{b}(X)$ is exceptional if $R \operatorname{Hom}(E, E)=\mathbb{C}$
- An ordered collection E_{1}, \ldots, E_{r} is an exceptional collection if

$$
R \operatorname{Hom}\left(E_{i}, E_{j}\right)=0 \quad \text { for all } \quad i>j
$$

- A collection E_{1}, \ldots, E_{r} is full if $D^{b}(X)=\left\langle E_{1}, \ldots, E_{r}\right\rangle$.

REMARK

If a full, exceptional collection E_{1}, \ldots, E_{r} exists, then the Grothendieck group $K(X)$ is a free abelian group of rank r.

Example (Beilinson)
A full, exceptional collection on $\mathbb{P}^{n}: \quad \mathcal{O}, \quad \mathcal{O}(1), \ldots, \quad \mathcal{O}(n)$

Exceptional Collections on Blow-ups

$Y \subseteq X$ smooth subvariety, codimension $n+1$

Exceptional Collections on Blow-ups

$Y \subseteq X$ smooth subvariety, codimension $n+1$
$q: \mathrm{Bl}_{Y} X \rightarrow X$ blow-up of X along $Y, E \subseteq X$ exceptional divisor

Exceptional Collections on Blow-ups

$Y \subseteq X$ smooth subvariety, codimension $n+1$
$q: \mathrm{Bl}_{Y} X \rightarrow X$ blow-up of X along $Y, E \subseteq X$ exceptional divisor

Theorem (Orlov)

$\left\{F_{\beta}\right\}_{\beta}$ is a full, exceptional collection on Y and $\left\{G_{\alpha}\right\}_{\alpha}$ is a full, exceptional collection on X, \Rightarrow full, exceptional collection on $B l_{Y} X$:

$$
\left\{\left(q_{\mid E}\right)^{*} F_{\beta} \otimes \mathcal{O}_{E}(-n)\right\}_{\beta}, \quad \ldots, \quad\left\{\left(q_{\mid E}\right)^{*} F_{\beta} \otimes \mathcal{O}_{E}(-1)\right\}_{\beta}, \quad\left\{q^{*} G_{\alpha}\right\}_{\alpha} .
$$

Exceptional Collections on Blow-ups

$Y \subseteq X$ smooth subvariety, codimension $n+1$
$q: \mathrm{Bl}_{Y} X \rightarrow X$ blow-up of X along $Y, E \subseteq X$ exceptional divisor

Theorem (Orlov)

$\left\{F_{\beta}\right\}_{\beta}$ is a full, exceptional collection on Y and $\left\{G_{\alpha}\right\}_{\alpha}$ is a full, exceptional collection on X, \Rightarrow full, exceptional collection on $B_{Y} X$:

$$
\left\{\left(q_{\mid E}\right)^{*} F_{\beta} \otimes \mathcal{O}_{E}(-n)\right\}_{\beta}, \quad \ldots, \quad\left\{\left(q_{\mid E}\right)^{*} F_{\beta} \otimes \mathcal{O}_{E}(-1)\right\}_{\beta}, \quad\left\{q^{*} G_{\alpha}\right\}_{\alpha} .
$$

Remark

Kapranov's description of $\overline{\mathcal{M}}_{0, n}+$ Orlov's theorem \Rightarrow
\Rightarrow full, exceptional collection on $\overline{\mathcal{M}}_{0, n}$ (only S_{n-1}-invariant)

Exceptional Collections on Blow-ups

$Y \subseteq X$ smooth subvariety, codimension $n+1$
$q: \mathrm{Bl}_{Y} X \rightarrow X$ blow-up of X along $Y, E \subseteq X$ exceptional divisor

Theorem (Orlov)

$\left\{F_{\beta}\right\}_{\beta}$ is a full, exceptional collection on Y and $\left\{G_{\alpha}\right\}_{\alpha}$ is a full, exceptional collection on X, \Rightarrow full, exceptional collection on $B_{Y} X$:

$$
\left\{\left(q_{\mid E}\right)^{*} F_{\beta} \otimes \mathcal{O}_{E}(-n)\right\}_{\beta}, \quad \ldots, \quad\left\{\left(q_{\mid E}\right)^{*} F_{\beta} \otimes \mathcal{O}_{E}(-1)\right\}_{\beta}, \quad\left\{q^{*} G_{\alpha}\right\}_{\alpha} .
$$

Remark

Kapranov's description of $\overline{\mathcal{M}}_{0, n}+$ Orlov's theorem \Rightarrow
\Rightarrow full, exceptional collection on $\overline{\mathcal{M}}_{0, n}$ (only S_{n-1}-invariant)

Exceptional Collections on $\overline{\mathcal{M}}_{0,5}$

Exceptional Collections on $\overline{\mathcal{M}}_{0,5}$

Example (Orlov collection)
$\Psi_{5}: \overline{\mathcal{M}}_{0,5} \rightarrow \mathbb{P}^{2}$ blow-up points $p_{1}, p_{2}, p_{3}, p_{4}$ in \mathbb{P}^{2}

Exceptional Collections on $\overline{\mathcal{M}}_{0,5}$

Example (Orlov collection)
$\Psi_{5}: \overline{\mathcal{M}}_{0,5} \rightarrow \mathbb{P}^{2}$ blow-up points $p_{1}, p_{2}, p_{3}, p_{4}$ in \mathbb{P}^{2}
Exceptional divisors $=$ boundary divisors $\delta_{15}, \delta_{25}, \delta_{35}, \delta_{45}$

Exceptional Collections on $\overline{\mathcal{M}}_{0,5}$

Example (Orlov collection)
$\Psi_{5}: \overline{\mathcal{M}}_{0,5} \rightarrow \mathbb{P}^{2}$ blow-up points $p_{1}, p_{2}, p_{3}, p_{4}$ in \mathbb{P}^{2}
Exceptional divisors $=$ boundary divisors $\delta_{15}, \delta_{25}, \delta_{35}, \delta_{45}$
$\delta_{i 5} \leadsto$ reducible curves with (only) $i, 5$ on one component

Exceptional Collections on $\overline{\mathcal{M}}_{0,5}$

Example (Orlov collection)
$\Psi_{5}: \overline{\mathcal{M}}_{0,5} \rightarrow \mathbb{P}^{2}$ blow-up points $p_{1}, p_{2}, p_{3}, p_{4}$ in \mathbb{P}^{2}
Exceptional divisors $=$ boundary divisors $\delta_{15}, \delta_{25}, \delta_{35}, \delta_{45}$
$\delta_{i 5} \leadsto$ reducible curves with (only) i, 5 on one component
An S_{4}-invariant, full, exceptional collection on $\overline{\mathcal{M}}_{0,5}$:

$$
\left\{\mathcal{O}_{\delta_{i 5}}(-1)\right\}_{i=1,2,3,4}, \quad \mathcal{O}, \quad \psi_{5}, \quad 2 \psi_{5}
$$

Exceptional Collections on $\overline{\mathcal{M}}_{0,5}$

Example (Orlov collection)
$\Psi_{5}: \overline{\mathcal{M}}_{0,5} \rightarrow \mathbb{P}^{2}$ blow-up points $p_{1}, p_{2}, p_{3}, p_{4}$ in \mathbb{P}^{2}
Exceptional divisors $=$ boundary divisors $\delta_{15}, \delta_{25}, \delta_{35}, \delta_{45}$
$\delta_{i 5} \rightsquigarrow$ reducible curves with (only) $i, 5$ on one component
An S_{4}-invariant, full, exceptional collection on $\overline{\mathcal{M}}_{0,5}$:

$$
\left\{\mathcal{O}_{\delta_{i 5}}(-1)\right\}_{i=1,2,3,4}, \quad \mathcal{O}, \quad \psi_{5}, \quad 2 \psi_{5}
$$

Example (S_{5}-Invariant collection)

$$
\mathcal{O}, \quad\left\{\pi_{i}^{*} \mathcal{O}(1)\right\}_{i=1,2,3,4,5}, \quad \Omega_{\overline{\mathcal{M}}_{0,5}}(\log)
$$

Exceptional Collections on $\overline{\mathcal{M}}_{0,5}$

Example (Orlov collection)
$\Psi_{5}: \overline{\mathcal{M}}_{0,5} \rightarrow \mathbb{P}^{2}$ blow-up points $p_{1}, p_{2}, p_{3}, p_{4}$ in \mathbb{P}^{2}
Exceptional divisors $=$ boundary divisors $\delta_{15}, \delta_{25}, \delta_{35}, \delta_{45}$
$\delta_{i 5} \rightsquigarrow$ reducible curves with (only) $i, 5$ on one component An S_{4}-invariant, full, exceptional collection on $\overline{\mathcal{M}}_{0,5}$:

$$
\left\{\mathcal{O}_{\delta_{i 5}}(-1)\right\}_{i=1,2,3,4}, \quad \mathcal{O}, \quad \psi_{5}, \quad 2 \psi_{5}
$$

Example (S_{5}-Invariant collection)

$$
\mathcal{O}, \quad\left\{\pi_{i}^{*} \mathcal{O}(1)\right\}_{i=1,2,3,4,5}, \quad \Omega_{\overline{\mathcal{M}}_{0,5}}(\log)
$$

$\Omega_{\overline{\mathcal{M}}_{0,5}}(\log)=$ sheaf of log-differentials with poles along boundary
$\pi_{i}: \overline{\mathcal{M}}_{0,5} \rightarrow \overline{\mathcal{M}}_{0,4}=\mathbb{P}^{1} \rightsquigarrow$ forget marking $i+$ stabilize

Exceptional Collections on $\overline{\mathcal{M}}_{0,5}$

Example (Orlov collection)
$\Psi_{5}: \overline{\mathcal{M}}_{0,5} \rightarrow \mathbb{P}^{2}$ blow-up points $p_{1}, p_{2}, p_{3}, p_{4}$ in \mathbb{P}^{2}
Exceptional divisors $=$ boundary divisors $\delta_{15}, \delta_{25}, \delta_{35}, \delta_{45}$
$\delta_{i 5} \rightsquigarrow$ reducible curves with (only) $i, 5$ on one component An S_{4}-invariant, full, exceptional collection on $\overline{\mathcal{M}}_{0,5}$:

$$
\left\{\mathcal{O}_{\delta_{i 5}}(-1)\right\}_{i=1,2,3,4}, \quad \mathcal{O}, \quad \psi_{5}, \quad 2 \psi_{5}
$$

Example (S_{5}-Invariant collection)

$$
\mathcal{O}, \quad\left\{\pi_{i}^{*} \mathcal{O}(1)\right\}_{i=1,2,3,4,5}, \quad \Omega_{\overline{\mathcal{M}}_{0,5}}(\log)
$$

$\Omega_{\overline{\mathcal{M}}_{0,5}}(\log)=$ sheaf of log-differentials with poles along boundary
$\pi_{i}: \overline{\mathcal{M}}_{0,5} \rightarrow \overline{\mathcal{M}}_{0,4}=\mathbb{P}^{1} \rightsquigarrow$ forget marking $i+$ stabilize

Hassett Spaces

$\mathcal{A}=\left(a_{1}, \ldots, a_{n}\right), \quad a_{i} \in \mathbb{Q}, \quad \sum a_{i}>2$

Hassett Spaces

$\mathcal{A}=\left(a_{1}, \ldots, a_{n}\right), \quad a_{i} \in \mathbb{Q}, \quad \sum a_{i}>2$
Definition
$\left(C, p_{1}, \ldots, p_{n}\right)$ is an \mathcal{A}-stable rational curve if

- C is a tree of \mathbb{P}^{1} 's, p_{1}, \ldots, p_{n} smooth points on C,
- $\omega_{C}\left(a_{1} p_{1}+\ldots+a_{n} p_{n}\right)$ is ample,
- If $\left\{p_{i}\right\}_{i \in I}$ coincide, then $\sum_{i \in I} a_{i} \leq 1$.

Hassett Spaces

$\mathcal{A}=\left(a_{1}, \ldots, a_{n}\right), \quad a_{i} \in \mathbb{Q}, \quad \sum a_{i}>2$
Definition
(C, p_{1}, \ldots, p_{n}) is an \mathcal{A}-stable rational curve if

- C is a tree of \mathbb{P}^{1} 's, p_{1}, \ldots, p_{n} smooth points on C,
- $\omega_{C}\left(a_{1} p_{1}+\ldots+a_{n} p_{n}\right)$ is ample,
- If $\left\{p_{i}\right\}_{i \in I}$ coincide, then $\sum_{i \in I} a_{i} \leq 1$.

Properties:

- Fine moduli space $\overline{\mathcal{M}}_{\mathcal{A}}$ of \mathcal{A}-stable rational curves
- $\mathcal{M}_{0, n} \subseteq \overline{\mathcal{M}}_{\mathcal{A}}$ dense open set

Hassett Spaces

$\mathcal{A}=\left(a_{1}, \ldots, a_{n}\right), \quad a_{i} \in \mathbb{Q}, \quad \sum a_{i}>2$
Definition
(C, p_{1}, \ldots, p_{n}) is an \mathcal{A}-stable rational curve if

- C is a tree of \mathbb{P}^{1} 's, p_{1}, \ldots, p_{n} smooth points on C,
- $\omega_{C}\left(a_{1} p_{1}+\ldots+a_{n} p_{n}\right)$ is ample,
- If $\left\{p_{i}\right\}_{i \in I}$ coincide, then $\sum_{i \in I} a_{i} \leq 1$.

Properties:

- Fine moduli space $\overline{\mathcal{M}}_{\mathcal{A}}$ of \mathcal{A}-stable rational curves
- $\mathcal{M}_{0, n} \subseteq \overline{\mathcal{M}}_{\mathcal{A}}$ dense open set
- Reduction maps: $\overline{\mathcal{M}}_{A} \rightarrow \overline{\mathcal{M}}_{\mathcal{B}}$ whenever $a_{i} \geq b_{i} \forall i$ (contract only some boundary divisors)

Hassett Spaces

$\mathcal{A}=\left(a_{1}, \ldots, a_{n}\right), \quad a_{i} \in \mathbb{Q}, \quad \sum a_{i}>2$
Definition
(C, p_{1}, \ldots, p_{n}) is an \mathcal{A}-stable rational curve if

- C is a tree of \mathbb{P}^{1} 's, p_{1}, \ldots, p_{n} smooth points on C,
- $\omega_{C}\left(a_{1} p_{1}+\ldots+a_{n} p_{n}\right)$ is ample,
- If $\left\{p_{i}\right\}_{i \in I}$ coincide, then $\sum_{i \in I} a_{i} \leq 1$.

Properties:

- Fine moduli space $\overline{\mathcal{M}}_{\mathcal{A}}$ of \mathcal{A}-stable rational curves
- $\mathcal{M}_{0, n} \subseteq \overline{\mathcal{M}}_{\mathcal{A}}$ dense open set
- Reduction maps: $\overline{\mathcal{M}}_{A} \rightarrow \overline{\mathcal{M}}_{\mathcal{B}}$ whenever $a_{i} \geq b_{i} \forall i$ (contract only some boundary divisors)
- $\overline{\mathcal{M}}_{0, n}=\overline{\mathcal{M}}_{(1, \ldots, 1)} \rightarrow \overline{\mathcal{M}}_{\mathcal{A}}$ iterated blow-up

Hassett Spaces

$\mathcal{A}=\left(a_{1}, \ldots, a_{n}\right), \quad a_{i} \in \mathbb{Q}, \quad \sum a_{i}>2$
Definition
(C, p_{1}, \ldots, p_{n}) is an \mathcal{A}-stable rational curve if

- C is a tree of \mathbb{P}^{1} 's, p_{1}, \ldots, p_{n} smooth points on C,
- $\omega_{C}\left(a_{1} p_{1}+\ldots+a_{n} p_{n}\right)$ is ample,
- If $\left\{p_{i}\right\}_{i \in I}$ coincide, then $\sum_{i \in I} a_{i} \leq 1$.

Properties:

- Fine moduli space $\overline{\mathcal{M}}_{\mathcal{A}}$ of \mathcal{A}-stable rational curves
- $\mathcal{M}_{0, n} \subseteq \overline{\mathcal{M}}_{\mathcal{A}}$ dense open set
- Reduction maps: $\overline{\mathcal{M}}_{A} \rightarrow \overline{\mathcal{M}}_{\mathcal{B}}$ whenever $a_{i} \geq b_{i} \forall i$ (contract only some boundary divisors)
- $\overline{\mathcal{M}}_{0, n}=\overline{\mathcal{M}}_{(1, \ldots, 1)} \rightarrow \overline{\mathcal{M}}_{\mathcal{A}}$ iterated blow-up
- Walls of chamber decomposition in $[0,1]^{n}$ given by $\sum_{i \in l} a_{i}=1$

Hassett Spaces

$\mathcal{A}=\left(a_{1}, \ldots, a_{n}\right), \quad a_{i} \in \mathbb{Q}, \quad \sum a_{i}>2$
Definition
(C, p_{1}, \ldots, p_{n}) is an \mathcal{A}-stable rational curve if

- C is a tree of \mathbb{P}^{1} 's, p_{1}, \ldots, p_{n} smooth points on C,
- $\omega_{C}\left(a_{1} p_{1}+\ldots+a_{n} p_{n}\right)$ is ample,
- If $\left\{p_{i}\right\}_{i \in I}$ coincide, then $\sum_{i \in I} a_{i} \leq 1$.

Properties:

- Fine moduli space $\overline{\mathcal{M}}_{\mathcal{A}}$ of \mathcal{A}-stable rational curves
- $\mathcal{M}_{0, n} \subseteq \overline{\mathcal{M}}_{\mathcal{A}}$ dense open set
- Reduction maps: $\overline{\mathcal{M}}_{A} \rightarrow \overline{\mathcal{M}}_{\mathcal{B}}$ whenever $a_{i} \geq b_{i} \forall i$ (contract only some boundary divisors)
- $\overline{\mathcal{M}}_{0, n}=\overline{\mathcal{M}}_{(1, \ldots, 1)} \rightarrow \overline{\mathcal{M}}_{\mathcal{A}}$ iterated blow-up
- Walls of chamber decomposition in $[0,1]^{n}$ given by $\sum_{i \in l} a_{i}=1$

Kapranov models

$$
\mathcal{A}=\left(\begin{array}{lll}
1, & \underbrace{\epsilon,}_{n-1} \quad \cdots, \quad \epsilon \\
\text { light points }
\end{array}\right), \quad \frac{1}{n-1}<\epsilon<\frac{1}{n-2}
$$

Kapranov models

$$
\mathcal{A}=\left(\begin{array}{lll}
1, & \underbrace{\epsilon,}_{n-1} \text { light points }
\end{array}\right), \quad \frac{1}{n-1}<\epsilon<\frac{1}{n-2}
$$

- all but one of light points may coincide, but not all of them

Kapranov models

$$
\mathcal{A}=(1, \underbrace{\epsilon, \quad \ldots, \quad \epsilon}_{n-1}), \quad \frac{1}{n-1}<\epsilon<\frac{1}{n-2}
$$

- all but one of light points may coincide, but not all of them
- no light point may coincide with point p_{1} with weight 1

Kapranov models

$$
\mathcal{A}=(1, \underbrace{\epsilon, \quad \ldots, \quad \epsilon}_{n-1}), \quad \frac{1}{n-1}<\epsilon<\frac{1}{n-2}
$$

- all but one of light points may coincide, but not all of them
- no light point may coincide with point p_{1} with weight 1
- C is \mathcal{A}-stable curve $\Leftrightarrow C=\mathbb{P}^{1}$

Kapranov models

$$
\mathcal{A}=(1, \underbrace{\epsilon, \quad \ldots, \quad \epsilon}_{n-1}), \quad \frac{1}{n-1}<\epsilon<\frac{1}{n-2}
$$

- all but one of light points may coincide, but not all of them
- no light point may coincide with point p_{1} with weight 1
- C is \mathcal{A}-stable curve $\Leftrightarrow C=\mathbb{P}^{1}$
- Fix $p_{1}, p_{2}=\infty, 0 \in \mathbb{P}^{1} \Longrightarrow \overline{\mathcal{M}}_{\mathcal{A}}=\left(\mathbb{C}^{n-2} \backslash\{0\}\right) / \mathbb{C}^{*}=\mathbb{P}^{n-3}$

Kapranov models

$$
\mathcal{A}=(1, \underbrace{\epsilon, \quad \ldots, \quad \epsilon}_{n-1}), \quad \frac{1}{n-1}<\epsilon<\frac{1}{n-2}
$$

- all but one of light points may coincide, but not all of them
- no light point may coincide with point p_{1} with weight 1
- C is \mathcal{A}-stable curve $\Leftrightarrow C=\mathbb{P}^{1}$
- Fix $p_{1}, p_{2}=\infty, 0 \in \mathbb{P}^{1} \Longrightarrow \overline{\mathcal{M}}_{\mathcal{A}}=\left(\mathbb{C}^{n-2} \backslash\{0\}\right) / \mathbb{C}^{*}=\mathbb{P}^{n-3}$

An $S_{1} \times S_{n-1}$-invariant full, exceptional collection on $\overline{\mathcal{M}}_{\mathcal{A}}=\mathbb{P}^{n-3}$:

$$
\mathcal{O}, \quad \mathcal{O}(1), \quad \ldots, \quad \mathcal{O}(n-3)
$$

Kapranov models

$$
\mathcal{A}=(1, \underbrace{\epsilon, \quad \ldots, \quad \epsilon}_{n-1}), \quad \frac{1}{n-1}<\epsilon<\frac{1}{n-2}
$$

- all but one of light points may coincide, but not all of them
- no light point may coincide with point p_{1} with weight 1
- C is \mathcal{A}-stable curve $\Leftrightarrow C=\mathbb{P}^{1}$
- Fix $p_{1}, p_{2}=\infty, 0 \in \mathbb{P}^{1} \Longrightarrow \overline{\mathcal{M}}_{\mathcal{A}}=\left(\mathbb{C}^{n-2} \backslash\{0\}\right) / \mathbb{C}^{*}=\mathbb{P}^{n-3}$

An $S_{1} \times S_{n-1}$-invariant full, exceptional collection on $\overline{\mathcal{M}}_{\mathcal{A}}=\mathbb{P}^{n-3}$:

$$
\mathcal{O}, \quad \mathcal{O}(1), \quad \ldots, \quad \mathcal{O}(n-3)
$$

Losev-Manin spaces

$$
\overline{\mathrm{LM}}_{n}:=\overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A}=(\underbrace{1,1}_{2 \text { heavy }}, \underbrace{\epsilon, \ldots, \quad \epsilon}_{n-2 \text { light }}), \quad 0<\epsilon \ll 1
$$

Losev-Manin spaces

$$
\overline{\mathrm{LM}}_{n}:=\overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A}=(\underbrace{1,1,}_{2 \text { heavy }}, \underbrace{\epsilon, \ldots, \quad \epsilon}_{n-2 \text { light }}), \quad 0<\epsilon \ll 1
$$

- all light points may coincide, but not with the heavy points p_{1}, p_{2}

Losev-Manin spaces

$$
\overline{\mathrm{LM}}_{n}:=\overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A}=(\underbrace{1,1,}_{2 \text { heavy }} \underbrace{\epsilon, \quad \ldots, \quad \epsilon}_{n-2}), \quad 0<\epsilon \ll 1
$$

- all light points may coincide, but not with the heavy points p_{1}, p_{2}
- \mathcal{A}-stable curve \Leftrightarrow chain of \mathbb{P}^{1} 's with heavy points at the end

Losev-Manin spaces

$$
\overline{\mathrm{LM}}_{n}:=\overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A}=(\underbrace{1,1,}_{2 \text { heavy }} \underbrace{\epsilon, \quad \ldots, \quad \epsilon}_{n-2}), \quad 0<\epsilon \ll 1
$$

- all light points may coincide, but not with the heavy points p_{1}, p_{2}
- \mathcal{A}-stable curve \Leftrightarrow chain of \mathbb{P}^{1} 's with heavy points at the end
- $\overline{\mathrm{LM}}_{n}=\ldots \mathrm{BI}_{\binom{n-2}{3}} \mathrm{Bl}_{\binom{n-2}{2}} \mathrm{Bl}_{n-2} \mathbb{P}^{n-3}$ blow-up $n-2$ points, all lines, \ldots

Losev-Manin spaces

$$
\overline{\mathrm{LM}}_{n}:=\overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A}=(\underbrace{1,1,}_{2 \text { heavy }} \underbrace{\epsilon, \quad \ldots, \quad \epsilon}_{n-2}), \quad 0<\epsilon \ll 1
$$

- all light points may coincide, but not with the heavy points p_{1}, p_{2}
- \mathcal{A}-stable curve \Leftrightarrow chain of \mathbb{P}^{1} 's with heavy points at the end
- $\overline{\mathrm{LM}}_{n}=\ldots \mathrm{BI}_{\binom{n-2}{3}} \mathrm{Bl}_{\binom{n-2}{2}} \mathrm{Bl}_{n-2} \mathbb{P}^{n-3}$ blow-up $n-2$ points, all lines, \ldots

Losev-Manin spaces

$$
\overline{\mathrm{LM}}_{n}:=\overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A}=(\underbrace{1,1,}_{2 \text { heavy }} \underbrace{\epsilon, \ldots, \quad \epsilon}_{n-2}), \quad 0<\epsilon \ll 1
$$

- all light points may coincide, but not with the heavy points p_{1}, p_{2}
- \mathcal{A}-stable curve \Leftrightarrow chain of \mathbb{P}^{1} 's with heavy points at the end
- $\overline{\mathrm{LM}}_{n}=\ldots \mathrm{BI}_{\binom{n-2}{3}} \mathrm{Bl}_{\binom{n-2}{2}} \mathrm{Bl}_{n-2} \mathbb{P}^{n-3}$ blow-up $n-2$ points, all lines, \ldots

Example: An $S_{2} \times S_{3}$-invariant full, exceptional collection on $\overline{\mathrm{LM}}_{5}$

$$
-\psi_{1}, \quad-\psi_{2}, \quad\left\{\pi_{i}^{*} \mathcal{O}(-1)\right\}_{i=3,4,5}
$$

Losev-Manin spaces

$$
\overline{\mathrm{LM}}_{n}:=\overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A}=(\underbrace{1,1,}_{2 \text { heavy }} \underbrace{\epsilon, \ldots, \quad \epsilon}_{n-2}), \quad 0<\epsilon \ll 1
$$

- all light points may coincide, but not with the heavy points p_{1}, p_{2}
- \mathcal{A}-stable curve \Leftrightarrow chain of \mathbb{P}^{1} 's with heavy points at the end
- $\overline{\mathrm{LM}}_{n}=\ldots \mathrm{BI}_{\binom{n-2}{3}} \mathrm{Bl}_{\binom{n-2}{2}} \mathrm{Bl}_{n-2} \mathbb{P}^{n-3}$ blow-up $n-2$ points, all lines, \ldots

Example: An $S_{2} \times S_{3}$-invariant full, exceptional collection on $\overline{\mathrm{LM}}_{5}$

$$
-\psi_{1}, \quad-\psi_{2}, \quad\left\{\pi_{i}^{*} \mathcal{O}(-1)\right\}_{i=3,4,5}
$$

The $\overline{\mathrm{M}}_{p, q}$ SPACES

The $\overline{\mathrm{M}}_{p, q}$ SPACES

$$
\begin{gathered}
\overline{\mathrm{M}}_{p, q}:=\overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A}=(\underbrace{a+\eta, \quad \ldots, \quad a+\eta,}_{p \text { heavy }} \underbrace{\epsilon, \ldots, \quad \epsilon}_{q \text { light }}) \\
p \geq 2, \quad q \geq 0, \quad p a+q \epsilon=2, \quad 0<\epsilon, \eta \ll 1
\end{gathered}
$$

The $\overline{\mathrm{M}}_{p, q}$ SPACES

$$
\begin{gathered}
\overline{\mathrm{M}}_{p, q}:=\overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A}=(\underbrace{a+\eta, \quad \ldots, \quad a+\eta,}_{p \text { heavy }} \underbrace{\epsilon, \quad \ldots, \quad \epsilon}_{q \text { light }}) \\
p \geq 2, \quad q \geq 0, \quad p a+q \epsilon=2, \quad 0<\epsilon, \eta \ll 1
\end{gathered}
$$

There is a birational morphism

$$
\phi: \overline{\mathrm{M}}_{p, q} \rightarrow\left(\mathbb{P}^{1}\right)^{(p+q)} / / \mathcal{O}(a, \ldots, a, \epsilon, \ldots, \epsilon), \mathrm{PGL}_{2}
$$

The $\overline{\mathrm{M}}_{p, q}$ SPACES

$$
\begin{gathered}
\overline{\mathrm{M}}_{p, q}:=\overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A}=(\underbrace{a+\eta, \quad \ldots, \quad a+\eta,}_{p \text { heavy }} \quad \underbrace{\epsilon, \quad \ldots, \quad \epsilon}_{q \text { light }}) \\
p \geq 2, \quad q \geq 0, \quad p a+q \epsilon=2, \quad 0<\epsilon, \eta \ll 1
\end{gathered}
$$

There is a birational morphism

$$
\phi: \overline{\mathrm{M}}_{p, q} \rightarrow\left(\mathbb{P}^{1}\right)^{(p+q)} / / \mathcal{O}(a, \ldots, a, \epsilon, \ldots, \epsilon), \mathrm{PGL}_{2}
$$

- If p or q is odd, ϕ is an isomorphism; C is \mathcal{A}-stable $\Leftrightarrow C=\mathbb{P}^{1}$

The $\overline{\mathrm{M}}_{p, q}$ SPACES

$$
\begin{gathered}
\overline{\mathrm{M}}_{p, q}:=\overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A}=(\underbrace{a+\eta, \quad \ldots, \quad a+\eta,}_{p \text { heavy }} \underbrace{\epsilon, \quad \ldots, \quad \epsilon}_{q \text { light }}) \\
p \geq 2, \quad q \geq 0, \quad p a+q \epsilon=2, \quad 0<\epsilon, \eta \ll 1
\end{gathered}
$$

There is a birational morphism

$$
\phi: \overline{\mathrm{M}}_{p, q} \rightarrow\left(\mathbb{P}^{1}\right)^{(p+q)} / / \mathcal{O}(a, \ldots, a, \epsilon, \ldots, \epsilon), \mathrm{PGL}_{2}
$$

- If p or q is odd, ϕ is an isomorphism; C is \mathcal{A}-stable $\Leftrightarrow C=\mathbb{P}^{1}$
- If p and q are even, ϕ is the Kirwan desingularization:

The $\overline{\mathrm{M}}_{p, q}$ SPACES

$$
\begin{gathered}
\overline{\mathrm{M}}_{p, q}:=\overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A}=(\underbrace{a+\eta, \quad \ldots, \quad a+\eta,}_{p \text { heavy }} \underbrace{\epsilon, \quad \ldots, \quad \epsilon}_{q \text { light }}) \\
p \geq 2, \quad q \geq 0, \quad p a+q \epsilon=2, \quad 0<\epsilon, \eta \ll 1
\end{gathered}
$$

There is a birational morphism

$$
\phi: \overline{\mathrm{M}}_{p, q} \rightarrow\left(\mathbb{P}^{1}\right)^{(p+q)} / / \mathcal{O}(a, \ldots, a, \epsilon, \ldots, \epsilon)^{\mathrm{PGL}_{2}}
$$

- If p or q is odd, ϕ is an isomorphism; C is \mathcal{A}-stable $\Leftrightarrow C=\mathbb{P}^{1}$
- If p and q are even, ϕ is the Kirwan desingularization:

$$
\delta_{T, T^{c}}=\mathbb{P}^{k} \times \mathbb{P}^{k} \mapsto p t, \quad k=\frac{p+q}{2}-2
$$

The $\overline{\mathrm{M}}_{p, q}$ SPACES

$$
\begin{gathered}
\overline{\mathrm{M}}_{p, q}:=\overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A}=(\underbrace{a+\eta, \quad \ldots, \quad a+\eta,}_{p \text { heavy }} \underbrace{\epsilon, \quad \ldots, \quad \epsilon}_{q \text { light }}) \\
p \geq 2, \quad q \geq 0, \quad p a+q \epsilon=2, \quad 0<\epsilon, \eta \ll 1
\end{gathered}
$$

There is a birational morphism

$$
\phi: \overline{\mathrm{M}}_{p, q} \rightarrow\left(\mathbb{P}^{1}\right)^{(p+q)} / \|_{\mathcal{O}(a, \ldots, a, \epsilon, \ldots, \epsilon)} \mathrm{PGL}_{2}
$$

- If p or q is odd, ϕ is an isomorphism; C is \mathcal{A}-stable $\Leftrightarrow C=\mathbb{P}^{1}$
- If p and q are even, ϕ is the Kirwan desingularization:

$$
\delta_{T, T^{c}}=\mathbb{P}^{k} \times \mathbb{P}^{k} \mapsto p t, \quad k=\frac{p+q}{2}-2
$$

\mathcal{A}-stable, reducible \Leftrightarrow two components, marked by partition $T \sqcup T^{c}$

The $\overline{\mathrm{M}}_{p, q}$ SPACES

$$
\begin{gathered}
\overline{\mathrm{M}}_{p, q}:=\overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A}=(\underbrace{a+\eta, \quad \ldots, \quad a+\eta,}_{p \text { heavy }} \underbrace{\epsilon, \quad \ldots, \quad \epsilon}_{q \text { light }}) \\
p \geq 2, \quad q \geq 0, \quad p a+q \epsilon=2, \quad 0<\epsilon, \eta \ll 1
\end{gathered}
$$

There is a birational morphism

$$
\phi: \overline{\mathrm{M}}_{p, q} \rightarrow\left(\mathbb{P}^{1}\right)^{(p+q)} / \|_{\mathcal{O}(a, \ldots, a, \epsilon, \ldots, \epsilon)} \mathrm{PGL}_{2}
$$

- If p or q is odd, ϕ is an isomorphism; C is \mathcal{A}-stable $\Leftrightarrow C=\mathbb{P}^{1}$
- If p and q are even, ϕ is the Kirwan desingularization:

$$
\delta_{T, T^{c}}=\mathbb{P}^{k} \times \mathbb{P}^{k} \mapsto p t, \quad k=\frac{p+q}{2}-2
$$

\mathcal{A}-stable, reducible \Leftrightarrow two components, marked by partition $T \sqcup T^{c}$

The $\overline{\mathrm{M}}_{p, q}$ SPACES WHEN $q=0$

$$
\bar{M}_{p}:=\overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A}=(\underbrace{a, \quad \ldots, \quad a}_{p \text { heavy }}), \quad a=\left\{\begin{array}{lll}
\frac{1}{r} & \text { if } & p=2 r+1 \\
\frac{1}{r-1} & \text { if } & p=2 r
\end{array}\right.
$$

The $\overline{\mathrm{M}}_{p, q}$ SPACES WHEN $q=0$

$$
\bar{M}_{p}:=\overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A}=(\underbrace{a, \quad \ldots, \quad a}_{p \text { heavy }}), \quad a=\left\{\begin{array}{lll}
\frac{1}{r} & \text { if } & p=2 r+1 \\
\frac{1}{r-1} & \text { if } & p=2 r
\end{array}\right.
$$

- If p odd, $\overline{\mathrm{M}}_{p}=\left(\mathbb{P}^{1}\right)^{p} / \|_{\mathcal{O}(a, \ldots, a)} \mathrm{PGL}_{2}$

The $\overline{\mathrm{M}}_{p, q}$ SPACES WHEN $q=0$

$$
\overline{\mathrm{M}}_{p}:=\overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A}=\left(\begin{array}{lll}
\underbrace{a,}_{p \text { heavy }} \quad \ldots, \quad
\end{array}\right), \quad a=\left\{\begin{array}{lll}
\frac{1}{r} & \text { if } & p=2 r+1 \\
\frac{1}{r-1} & \text { if } & p=2 r
\end{array}\right.
$$

- If p odd, $\overline{\mathrm{M}}_{p}=\left(\mathbb{P}^{1}\right)^{p} / / \mathcal{O}(a, \ldots, a) \mathrm{PGL}_{2}$
- If p even, $\overline{\mathrm{M}}_{p} \rightarrow\left(\mathbb{P}^{1}\right)^{p} / / \mathcal{O}(a, \ldots, a) P \mathrm{PL}_{2}$ blows-up $\frac{1}{2}\binom{p}{2}$ singular points

The $\overline{\mathrm{M}}_{p, q}$ SPACES WHEN $q=0$

$$
\bar{M}_{p}:=\overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A}=(\underbrace{a, \quad \ldots, \quad a}_{p \text { heavy }}), \quad a=\left\{\begin{array}{lll}
\frac{1}{r} & \text { if } & p=2 r+1 \\
\frac{1}{r-1} & \text { if } & p=2 r
\end{array}\right.
$$

- If p odd, $\overline{\mathrm{M}}_{p}=\left(\mathbb{P}^{1}\right)^{p} / \|_{\mathcal{O}(a, \ldots, a)} \mathrm{PGL}_{2}$
- If p even, $\bar{M}_{p} \rightarrow\left(\mathbb{P}^{1}\right)^{p} / / \mathcal{O}(a, \ldots, a) P L_{2}$ blows-up $\frac{1}{2}\binom{p}{2}$ singular points Example (The space $\overline{\mathrm{M}}_{6} \cong \overline{\mathcal{M}}_{0,6}$)

$$
\phi: \overline{\mathcal{M}}_{0,6} \rightarrow\left(\mathbb{P}^{1}\right)^{6} / \|_{\mathcal{O}(, \ldots, a)} \mathrm{PGL}_{2}=X \subseteq \mathbb{P}^{4} \quad \text { Segre cubic }
$$

The $\overline{\mathrm{M}}_{p, q}$ SPACES WHEN $q=0$

$$
\overline{\mathrm{M}}_{p}:=\overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A}=\left(\begin{array}{lll}
\underbrace{a,}_{p \text { heavy }} \quad \ldots, \quad a
\end{array}\right), \quad a=\left\{\begin{array}{lll}
\frac{1}{r} & \text { if } & p=2 r+1 \\
\frac{1}{r-1} & \text { if } & p=2 r
\end{array}\right.
$$

- If p odd, $\overline{\mathrm{M}}_{p}=\left(\mathbb{P}^{1}\right)^{p} \|_{\mathcal{O}(a, \ldots, a)} \mathrm{PGL}_{2}$
- If p even, $\bar{M}_{p} \rightarrow\left(\mathbb{P}^{1}\right)^{p} / / \mathcal{O}(a, \ldots, a) P L_{2}$ blows-up $\frac{1}{2}\binom{p}{2}$ singular points Example (The space $\overline{\mathrm{M}}_{6} \cong \overline{\mathcal{M}}_{0,6}$)

$$
\begin{gathered}
\phi: \overline{\mathcal{M}}_{0,6} \rightarrow\left(\mathbb{P}^{1}\right)^{6} \|_{\mathcal{O}(a, \ldots, a)} \mathrm{PGL}_{2}=X \subseteq \mathbb{P}^{4} \quad \text { Segre cubic } \\
\delta_{T, T^{c}}=\mathbb{P}^{1} \times \mathbb{P}^{1} \mapsto p t \quad(\text { blow-up the } 10 \text { nodes of } X)
\end{gathered}
$$

The $\overline{\mathrm{M}}_{p, q}$ SPACES WHEN $q=0$

$$
\overline{\mathrm{M}}_{p}:=\overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A}=\left(\begin{array}{lll}
\underbrace{a,}_{p \text { heavy }} \quad \ldots, \quad a
\end{array}\right), \quad a=\left\{\begin{array}{lll}
\frac{1}{r} & \text { if } & p=2 r+1 \\
\frac{1}{r-1} & \text { if } & p=2 r
\end{array}\right.
$$

- If p odd, $\overline{\mathrm{M}}_{p}=\left(\mathbb{P}^{1}\right)^{p} \|_{\mathcal{O}(a, \ldots, a)} \mathrm{PGL}_{2}$
- If p even, $\bar{M}_{p} \rightarrow\left(\mathbb{P}^{1}\right)^{p} / / \mathcal{O}_{(a, \ldots, a)} \mathrm{PGL}_{2}$ blows-up $\frac{1}{2}\binom{p}{2}$ singular points Example (The space $\overline{\mathrm{M}}_{6} \cong \overline{\mathcal{M}}_{0,6}$)

$$
\begin{gathered}
\phi: \overline{\mathcal{M}}_{0,6} \rightarrow\left(\mathbb{P}^{1}\right)^{6} \|_{\mathcal{O}(a, \ldots, a)} \mathrm{PGL}_{2}=X \subseteq \mathbb{P}^{4} \quad \text { Segre cubic } \\
\delta_{T, T^{c}}=\mathbb{P}^{1} \times \mathbb{P}^{1} \mapsto p t \quad \text { (blow-up the } 10 \text { nodes of } X \text {) }
\end{gathered}
$$

An S_{6}-invariant full, exceptional collection on $\overline{\mathcal{M}}_{0,6}$:

The $\overline{\mathrm{M}}_{p, q}$ SPACES WHEN $q=0$

$$
\bar{M}_{p}:=\overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A}=(\underbrace{a, \quad \ldots, \quad a}_{p \text { heavy }}), \quad a=\left\{\begin{array}{lll}
\frac{1}{r} & \text { if } & p=2 r+1 \\
\frac{1}{r-1} & \text { if } & p=2 r
\end{array}\right.
$$

- If p odd, $\overline{\mathrm{M}}_{p}=\left(\mathbb{P}^{1}\right)^{p} / /_{\mathcal{O}(a, \ldots, a)} \mathrm{PGL}_{2}$
- If p even, $\overline{\mathrm{M}}_{p} \rightarrow\left(\mathbb{P}^{1}\right)^{p} / / \mathcal{O}(a, \ldots, a) \mathrm{PGL}_{2}$ blows-up $\frac{1}{2}\binom{p}{2}$ singular points Example (The space $\overline{\mathrm{M}}_{6} \cong \overline{\mathcal{M}}_{0,6}$)

$$
\begin{gathered}
\phi: \overline{\mathcal{M}}_{0,6} \rightarrow\left(\mathbb{P}^{1}\right)^{6} \|_{\mathcal{O}(a, \ldots, a)} \mathrm{PGL}_{2}=X \subseteq \mathbb{P}^{4} \quad \text { Segre cubic } \\
\delta_{T, T^{c}}=\mathbb{P}^{1} \times \mathbb{P}^{1} \mapsto p t \quad \text { (blow-up the } 10 \text { nodes of } X \text {) }
\end{gathered}
$$

An S_{6}-invariant full, exceptional collection on $\overline{\mathcal{M}}_{0,6}$:
$\left\{\mathcal{O}_{\delta_{T, T c}}(-1,-1)\right\}, \mathcal{O},\left\{\pi_{i j}^{*} \mathcal{O}(1)\right\},\left\{\pi_{i}^{*} \Omega_{\overline{\mathcal{M}}_{0,5}}(\log)\right\}, \phi^{*} \mathcal{O}_{X}(1), \Omega_{\overline{\mathcal{M}}_{0,6}}(\log)$

The $\overline{\mathrm{M}}_{p, q}$ SPACES WHEN $q=0$

$$
\bar{M}_{p}:=\overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A}=(\underbrace{a, \quad \ldots, \quad a}_{p \text { heavy }}), \quad a=\left\{\begin{array}{lll}
\frac{1}{r} & \text { if } & p=2 r+1 \\
\frac{1}{r-1} & \text { if } & p=2 r
\end{array}\right.
$$

- If p odd, $\overline{\mathrm{M}}_{p}=\left(\mathbb{P}^{1}\right)^{p} / /_{\mathcal{O}(a, \ldots, a)} \mathrm{PGL}_{2}$
- If p even, $\overline{\mathrm{M}}_{p} \rightarrow\left(\mathbb{P}^{1}\right)^{p} / / \mathcal{O}(a, \ldots, a) \mathrm{PGL}_{2}$ blows-up $\frac{1}{2}\binom{p}{2}$ singular points Example (The space $\overline{\mathrm{M}}_{6} \cong \overline{\mathcal{M}}_{0,6}$)

$$
\begin{gathered}
\phi: \overline{\mathcal{M}}_{0,6} \rightarrow\left(\mathbb{P}^{1}\right)^{6} \|_{\mathcal{O}(a, \ldots, a)} \mathrm{PGL}_{2}=X \subseteq \mathbb{P}^{4} \quad \text { Segre cubic } \\
\delta_{T, T^{c}}=\mathbb{P}^{1} \times \mathbb{P}^{1} \mapsto p t \quad \text { (blow-up the } 10 \text { nodes of } X \text {) }
\end{gathered}
$$

An S_{6}-invariant full, exceptional collection on $\overline{\mathcal{M}}_{0,6}$:
$\left\{\mathcal{O}_{\delta_{T, T c}}(-1,-1)\right\}, \mathcal{O},\left\{\pi_{i j}^{*} \mathcal{O}(1)\right\},\left\{\pi_{i}^{*} \Omega_{\overline{\mathcal{M}}_{0,5}}(\log)\right\}, \phi^{*} \mathcal{O}_{X}(1), \Omega_{\overline{\mathcal{M}}_{0,6}}(\log)$

Theorem (C.-Tevelev, 2017)
It suffices to find full, invariant, exceptional collections on:

Theorem (C.-Tevelev, 2017)

It suffices to find full, invariant, exceptional collections on:

- Kapranov models \mathbb{P}^{m-3}, for all $m\left(S_{1} \times S_{m-1}\right.$-invariant $)$,
- Losev-Manin spaces $\overline{L M}_{m}$, for all $m\left(S_{2} \times S_{m-2}\right.$-invariant),
- $\bar{M}_{p, q}$ spaces, for all $p \geq 2, q \geq 0\left(S_{p} \times S_{q}\right.$-invariant $)$.

Theorem (C.-Tevelev, 2017)
It suffices to find full, invariant, exceptional collections on:

- Kapranov models \mathbb{P}^{m-3}, for all $m\left(S_{1} \times S_{m-1}\right.$-invariant $)$,
- Losev-Manin spaces $\overline{L M}_{m}$, for all $m\left(S_{2} \times S_{m-2}\right.$-invariant),
- $\bar{M}_{p, q}$ spaces, for all $p \geq 2, q \geq 0\left(S_{p} \times S_{q}\right.$-invariant $)$.

Idea of proof: as Bergstrom-Minabe, use reduction maps

Theorem (C.-Tevelev, 2017)

It suffices to find full, invariant, exceptional collections on:

- Kapranov models \mathbb{P}^{m-3}, for all $m\left(S_{1} \times S_{m-1}\right.$-invariant $)$,
- Losev-Manin spaces $\overline{L M}_{m}$, for all $m\left(S_{2} \times S_{m-2}\right.$-invariant),
- $\bar{M}_{p, q}$ spaces, for all $p \geq 2, q \geq 0\left(S_{p} \times S_{q}\right.$-invariant $)$.

Idea of proof: as Bergstrom-Minabe, use reduction maps

$$
\overline{\mathcal{M}}_{0, n}=\overline{\mathcal{M}}_{(1, \ldots, 1)} \rightarrow \overline{\mathcal{M}}_{\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)} \rightarrow \ldots \rightarrow \overline{\mathcal{M}}_{\left(\frac{1}{r}, \ldots, \frac{1}{r}\right)}=\overline{\mathrm{M}}_{n}
$$

Theorem (C.-Tevelev, 2017)

It suffices to find full, invariant, exceptional collections on:

- Kapranov models \mathbb{P}^{m-3}, for all $m\left(S_{1} \times S_{m-1}\right.$-invariant $)$,
- Losev-Manin spaces $\overline{L M}_{m}$, for all $m\left(S_{2} \times S_{m-2}\right.$-invariant),
- $\bar{M}_{p, q}$ spaces, for all $p \geq 2, q \geq 0\left(S_{p} \times S_{q}\right.$-invariant $)$.

Idea of proof: as Bergstrom-Minabe, use reduction maps

$$
\overline{\mathcal{M}}_{0, n}=\overline{\mathcal{M}}_{(1, \ldots, 1)} \rightarrow \overline{\mathcal{M}}_{\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)} \rightarrow \ldots \rightarrow \overline{\mathcal{M}}_{\left(\frac{1}{r}, \ldots, \frac{1}{r}\right)}=\overline{\mathrm{M}}_{n}
$$

(at each step, blow-up loci $\overline{\mathcal{M}}_{(1, \ldots, 1, a \ldots, a)}$ intersecting transversely)

Theorem (C.-Tevelev, 2017)

It suffices to find full, invariant, exceptional collections on:

- Kapranov models \mathbb{P}^{m-3}, for all $m\left(S_{1} \times S_{m-1}\right.$-invariant $)$,
- Losev-Manin spaces $\overline{L M}_{m}$, for all $m\left(S_{2} \times S_{m-2}\right.$-invariant $)$,
- $\bar{M}_{p, q}$ spaces, for all $p \geq 2, q \geq 0\left(S_{p} \times S_{q}\right.$-invariant $)$.

Idea of proof: as Bergstrom-Minabe, use reduction maps

$$
\overline{\mathcal{M}}_{0, n}=\overline{\mathcal{M}}_{(1, \ldots, 1)} \rightarrow \overline{\mathcal{M}}_{\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)} \rightarrow \ldots \rightarrow \overline{\mathcal{M}}_{\left(\frac{1}{r}, \ldots, \frac{1}{r}\right)}=\overline{\mathrm{M}}_{n}
$$

(at each step, blow-up loci $\overline{\mathcal{M}}_{(1, \ldots, 1, a \ldots, a)}$ intersecting transversely)

$$
\overline{\mathcal{M}}_{(\underbrace{1, \ldots, 1}_{p}}^{\underbrace{a \ldots, a)}_{q}} \rightarrow \ldots \rightarrow \overline{\mathcal{M}}_{(1, \ldots, 1, \epsilon \ldots, \epsilon)} \rightarrow \ldots \rightarrow \overline{\mathcal{M}}_{(a, \ldots, a, \epsilon \ldots, \epsilon)}
$$

Theorem (C.-Tevelev, 2017)

It suffices to find full, invariant, exceptional collections on:

- Kapranov models \mathbb{P}^{m-3}, for all $m\left(S_{1} \times S_{m-1}\right.$-invariant $)$,
- Losev-Manin spaces $\overline{L M}_{m}$, for all $m\left(S_{2} \times S_{m-2}\right.$-invariant $)$,
- $\bar{M}_{p, q}$ spaces, for all $p \geq 2, q \geq 0\left(S_{p} \times S_{q}\right.$-invariant $)$.

Idea of proof: as Bergstrom-Minabe, use reduction maps

$$
\overline{\mathcal{M}}_{0, n}=\overline{\mathcal{M}}_{(1, \ldots, 1)} \rightarrow \overline{\mathcal{M}}_{\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)} \rightarrow \ldots \rightarrow \overline{\mathcal{M}}_{\left(\frac{1}{r}, \ldots, \frac{1}{r}\right)}=\overline{\mathrm{M}}_{n}
$$

(at each step, blow-up loci $\overline{\mathcal{M}}_{(1, \ldots, 1, a \ldots, a)}$ intersecting transversely)

$$
\overline{\mathcal{M}}_{(\underbrace{1, \ldots, 1}_{p}}^{\underbrace{a \ldots, a)}_{q}} \rightarrow \ldots \rightarrow \overline{\mathcal{M}}_{(1, \ldots, 1, \epsilon \ldots, \epsilon)} \rightarrow \ldots \rightarrow \overline{\mathcal{M}}_{(a, \ldots, a, \epsilon \ldots, \epsilon)}
$$

Reduce weights until $\overline{\mathcal{M}}_{(a, \ldots, a, \epsilon \ldots, \epsilon)}$ is one of $\mathbb{P}^{m-3}, \overline{\mathrm{LM}}_{m}, \overline{\mathrm{M}}_{p, q}$

Theorem (C.-Tevelev, 2017)

It suffices to find full, invariant, exceptional collections on:

- Kapranov models \mathbb{P}^{m-3}, for all $m\left(S_{1} \times S_{m-1}\right.$-invariant $)$,
- Losev-Manin spaces $\overline{L M}_{m}$, for all $m\left(S_{2} \times S_{m-2}\right.$-invariant $)$,
- $\bar{M}_{p, q}$ spaces, for all $p \geq 2, q \geq 0\left(S_{p} \times S_{q}\right.$-invariant $)$.

Idea of proof: as Bergstrom-Minabe, use reduction maps

$$
\overline{\mathcal{M}}_{0, n}=\overline{\mathcal{M}}_{(1, \ldots, 1)} \rightarrow \overline{\mathcal{M}}_{\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)} \rightarrow \ldots \rightarrow \overline{\mathcal{M}}_{\left(\frac{1}{r}, \ldots, \frac{1}{r}\right)}=\overline{\mathrm{M}}_{n}
$$

(at each step, blow-up loci $\overline{\mathcal{M}}_{(1, \ldots, 1, a \ldots, a)}$ intersecting transversely)

$$
\overline{\mathcal{M}}_{(\underbrace{1, \ldots, 1}_{p}}^{\underbrace{a \ldots, a)}_{q}} \rightarrow \ldots \rightarrow \overline{\mathcal{M}}_{(1, \ldots, 1, \epsilon \ldots, \epsilon)} \rightarrow \ldots \rightarrow \overline{\mathcal{M}}_{(a, \ldots, a, \epsilon \ldots, \epsilon)}
$$

Reduce weights until $\overline{\mathcal{M}}_{(a, \ldots, a, \epsilon \ldots, \epsilon)}$ is one of $\mathbb{P}^{m-3}, \overline{\mathrm{LM}}_{m}, \overline{\mathrm{M}}_{p, q}$

Example: an invariant version of Orlov

$Y_{1}, Y_{2} \subseteq X$ codimension $n+1$, intersecting transversely

Example: an invariant version of Orlov

$Y_{1}, Y_{2} \subseteq X$ codimension $n+1$, intersecting transversely
$q: \tilde{X} \rightarrow X$ blow-up along Y_{1}, Y_{2} (any order)

Example: an invariant version of Orlov

$Y_{1}, Y_{2} \subseteq X$ codimension $n+1$, intersecting transversely
$q: \tilde{X} \rightarrow X$ blow-up along Y_{1}, Y_{2} (any order)
$E_{i}=p^{-1}\left(Y_{i}\right), \quad E_{12}=p^{-1}\left(Y_{12}\right), \quad Y_{12}:=Y_{1} \cap Y_{2}, \quad Y_{\emptyset}:=X$

Example: an invariant version of Orlov

$Y_{1}, Y_{2} \subseteq X$ codimension $n+1$, intersecting transversely
$q: \tilde{X} \rightarrow X$ blow-up along Y_{1}, Y_{2} (any order)
$E_{i}=p^{-1}\left(Y_{i}\right), \quad E_{12}=p^{-1}\left(Y_{12}\right), \quad Y_{12}:=Y_{1} \cap Y_{2}, \quad Y_{\emptyset}:=X$
G finite group, $G \curvearrowright X$ permutes Y_{1}, Y_{2}

Example: an invariant version of Orlov

$Y_{1}, Y_{2} \subseteq X$ codimension $n+1$, intersecting transversely
$q: \tilde{X} \rightarrow X$ blow-up along Y_{1}, Y_{2} (any order)
$E_{i}=p^{-1}\left(Y_{i}\right), \quad E_{12}=p^{-1}\left(Y_{12}\right), \quad Y_{12}:=Y_{1} \cap Y_{2}, \quad Y_{\emptyset}:=X$
G finite group, $G \curvearrowright X$ permutes Y_{1}, Y_{2}
$I=\emptyset,\{1\},\{2\},\{1,2\}: G_{I} \subseteq G$ the stabilizer of Y_{I}

Example: an invariant version of Orlov

$Y_{1}, Y_{2} \subseteq X$ codimension $n+1$, intersecting transversely $q: \tilde{X} \rightarrow X$ blow-up along Y_{1}, Y_{2} (any order)
$E_{i}=p^{-1}\left(Y_{i}\right), \quad E_{12}=p^{-1}\left(Y_{12}\right), \quad Y_{12}:=Y_{1} \cap Y_{2}, \quad Y_{\emptyset}:=X$
G finite group, $G \curvearrowright X$ permutes Y_{1}, Y_{2}
$I=\emptyset,\{1\},\{2\},\{1,2\}: G_{I} \subseteq G$ the stabilizer of Y_{I}
$\left\{F_{\beta}^{\prime}\right\}_{\beta}=G_{l}$-invariant, full, exceptional collection on Y_{l}
$\Rightarrow G$-invariant, full, exceptional collection on \tilde{X} :

Example: an invariant version of Orlov

$Y_{1}, Y_{2} \subseteq X$ codimension $n+1$, intersecting transversely
$q: \tilde{X} \rightarrow X$ blow-up along Y_{1}, Y_{2} (any order)
$E_{i}=p^{-1}\left(Y_{i}\right), \quad E_{12}=p^{-1}\left(Y_{12}\right), \quad Y_{12}:=Y_{1} \cap Y_{2}, \quad Y_{\emptyset}:=X$
G finite group, $G \curvearrowright X$ permutes Y_{1}, Y_{2}
$I=\emptyset,\{1\},\{2\},\{1,2\}: G_{I} \subseteq G$ the stabilizer of $Y_{\text {I }}$
$\left\{F_{\beta}^{\prime}\right\}_{\beta}=G_{l}$-invariant, full, exceptional collection on Y_{l}
$\Rightarrow G$-invariant, full, exceptional collection on \tilde{X} :

- $\left\{q^{*} F_{\beta}^{12} \otimes \mathcal{O}_{E_{12}}\left(j_{1} E_{1}+j_{2} E_{2}\right)\right\}_{\beta, j_{i}}$, decreasing $j_{1}+j_{2}\left(0<j_{1}, j_{2} \leq n\right)$
- $\left\{q^{*} F_{\beta}^{i} \otimes \mathcal{O}_{E_{i}}\left(j E_{i}\right)\right\}_{\beta, j}$, decreasing $j(0<j \leq n)$
- $\left\{q^{*} F_{\beta}^{\emptyset}\right\}_{\beta}$

Example: an invariant version of Orlov

$Y_{1}, Y_{2} \subseteq X$ codimension $n+1$, intersecting transversely
$q: \tilde{X} \rightarrow X$ blow-up along Y_{1}, Y_{2} (any order)
$E_{i}=p^{-1}\left(Y_{i}\right), \quad E_{12}=p^{-1}\left(Y_{12}\right), \quad Y_{12}:=Y_{1} \cap Y_{2}, \quad Y_{\emptyset}:=X$
G finite group, $G \curvearrowright X$ permutes Y_{1}, Y_{2}
$I=\emptyset,\{1\},\{2\},\{1,2\}: G_{I} \subseteq G$ the stabilizer of $Y_{\text {I }}$
$\left\{F_{\beta}^{\prime}\right\}_{\beta}=G_{l}$-invariant, full, exceptional collection on Y_{l}
$\Rightarrow G$-invariant, full, exceptional collection on \tilde{X} :

- $\left\{q^{*} F_{\beta}^{12} \otimes \mathcal{O}_{E_{12}}\left(j_{1} E_{1}+j_{2} E_{2}\right)\right\}_{\beta, j_{i}}$, decreasing $j_{1}+j_{2}\left(0<j_{1}, j_{2} \leq n\right)$
- $\left\{q^{*} F_{\beta}^{i} \otimes \mathcal{O}_{E_{i}}\left(j E_{i}\right)\right\}_{\beta, j}$, decreasing $j(0<j \leq n)$
- $\left\{q^{*} F_{\beta}^{\emptyset}\right\}_{\beta}$

```
Theorem (C.-Tevelev, 2017)
```



```
Theorem (C.-Tevelev, 2017)
LM
```

Theorem (C.-Tevelev, 2020)
$\bar{M}_{p, q}$ has an $S_{p} \times S_{q}$-invariant, full exceptional collection for all p, q.

```
Theorem (C.-Tevelev, 2017)
LM
```

```
Theorem(C.-Tevelev, 2020)
```

$\bar{M}_{p, q}$ has an $S_{p} \times S_{q}$-invariant, full exceptional collection for all p, q.

Different types of objects on $\overline{\mathrm{M}}_{p, q}$:

Theorem (C.-Tevelev, 2017)

Theorem (C.-Tevelev, 2020)
$\bar{M}_{p, q}$ has an $S_{p} \times S_{q}$-invariant, full exceptional collection for all p, q.

Different types of objects on $\overline{\mathrm{M}}_{p, q}$:

- p odd: vector bundles $\left\{F_{l, E}\right\}$
- p even, q odd: vector bundles $\left\{F_{l, E}\right\}$, torsion sheaves $\left\{\mathcal{T}_{I, E}\right\}$
- p, q even: three types

$$
\left\{\mathcal{O}_{\delta_{T, T c}}(-a,-b)\right\}, \text { vector bundles }\left\{F_{I, E}\right\}, \text { complexes }\left\{\tilde{\mathcal{T}}_{I, E}\right\}
$$

Here $I \geq 0$ integer, $E=$ set of markings (for an appropriate range)

Theorem (C.-Tevelev, 2017)

Theorem (C.-Tevelev, 2020)
$\bar{M}_{p, q}$ has an $S_{p} \times S_{q}$-invariant, full exceptional collection for all p, q.

Different types of objects on $\overline{\mathrm{M}}_{p, q}$:

- p odd: vector bundles $\left\{F_{l, E}\right\}$
- p even, q odd: vector bundles $\left\{F_{l, E}\right\}$, torsion sheaves $\left\{\mathcal{T}_{I, E}\right\}$
- p, q even: three types

$$
\left\{\mathcal{O}_{\delta_{T, T c}}(-a,-b)\right\}, \text { vector bundles }\left\{F_{I, E}\right\}, \text { complexes }\left\{\tilde{\mathcal{T}}_{I, E}\right\}
$$

Here $I \geq 0$ integer, $E=$ set of markings (for an appropriate range)

The vector Bundles $F_{I, E}$

Universal family $\pi: \mathcal{U} \rightarrow \overline{\mathrm{M}}_{p, q}$, with sections σ_{i}

The vector bundles $F_{I, E}$

Universal family $\pi: \mathcal{U} \rightarrow \overline{\mathrm{M}}_{p, q}$, with sections σ_{i}

$$
i \in \Sigma:=\underbrace{P}_{\text {heavy }} \sqcup \underbrace{Q}_{\text {light }},|P|=p,|Q|=q
$$

The vector bundles $F_{I, E}$

Universal family $\pi: \mathcal{U} \rightarrow \overline{\mathrm{M}}_{p, q}$, with sections σ_{i}

$$
i \in \Sigma:=\underbrace{P}_{\text {heavy }} \sqcup \underbrace{Q}_{\text {light }},|P|=p,|Q|=q
$$

If p or q is odd, then π is a \mathbb{P}^{1}-bundle

The vector bundles $F_{I, E}$

Universal family $\pi: \mathcal{U} \rightarrow \overline{\mathrm{M}}_{p, q}$, with sections σ_{i}

$$
i \in \Sigma:=\underbrace{P}_{\text {heavy }} \sqcup \underbrace{Q}_{\text {light }},|P|=p,|Q|=q
$$

If p or q is odd, then π is a \mathbb{P}^{1}-bundle
Definition (p OR q odd)
For $I \geq 0, E \subseteq \Sigma,|E|=e, I+e$ even, let

$$
F_{l, E}=R \pi_{*}\left(\omega_{\pi^{\frac{e-1}{2}}}\left(\sum_{i \in E} \sigma_{i}\right)\right) \quad(\text { vector bundle of rank } I+1)
$$

The vector bundles $F_{I, E}$

Universal family $\pi: \mathcal{U} \rightarrow \overline{\mathrm{M}}_{p, q}$, with sections σ_{i}

$$
i \in \Sigma:=\underbrace{P}_{\text {heavy }} \sqcup \underbrace{Q}_{\text {light }},|P|=p,|Q|=q
$$

If p or q is odd, then π is a \mathbb{P}^{1}-bundle
Definition (p OR q odd)
For $I \geq 0, E \subseteq \Sigma,|E|=e, I+e$ even, let

$$
F_{l, E}=R \pi_{*}\left(\omega_{\pi^{2}}^{\frac{e-1}{2}}\left(\sum_{i \in E} \sigma_{i}\right)\right) \quad(\text { vector bundle of rank } I+1)
$$

If p and q even, \mathcal{U} is also a Hassett space. Define vector bundles

$$
F_{I, E}=R \pi_{*}\left(\omega_{\pi^{2}}^{\frac{e-1}{2}}\left(\sum_{i \in E} \sigma_{i}\right)(\ldots \text { boundary })\right) \quad \text { on } \quad \overline{\mathrm{M}}_{p, q}, \quad \mathcal{U}
$$

The vector bundles $F_{I, E}$

Universal family $\pi: \mathcal{U} \rightarrow \overline{\mathrm{M}}_{p, q}$, with sections σ_{i}

$$
i \in \Sigma:=\underbrace{P}_{\text {heavy }} \sqcup \underbrace{Q}_{\text {light }},|P|=p,|Q|=q
$$

If p or q is odd, then π is a \mathbb{P}^{1}-bundle
Definition (p OR q odd)
For $I \geq 0, E \subseteq \Sigma,|E|=e, I+e$ even, let

$$
F_{l, E}=R \pi_{*}\left(\omega_{\pi^{2}}^{\frac{e-1}{2}}\left(\sum_{i \in E} \sigma_{i}\right)\right) \quad(\text { vector bundle of rank } I+1)
$$

If p and q even, \mathcal{U} is also a Hassett space. Define vector bundles

$$
F_{I, E}=R \pi_{*}\left(\omega_{\pi^{2}}^{\frac{e-1}{2}}\left(\sum_{i \in E} \sigma_{i}\right)(\ldots \text { boundary })\right) \quad \text { on } \quad \overline{\mathrm{M}}_{p, q}, \quad \mathcal{U}
$$

Markings $\quad \Sigma=\underbrace{P}_{\text {heavy }} \sqcup \underbrace{Q}_{\text {light }},|P|=p,|Q|=q$

$$
\begin{array}{ll}
\text { Markings } & \Sigma=\underbrace{P}_{\text {heavy }} \sqcup \underbrace{Q}_{\text {light }},|P|=p,|Q|=q \\
E \subseteq \Sigma: & E=\underbrace{E_{p}}_{\text {heavy }} \sqcup \underbrace{E_{q}}_{\text {light }},\left|E_{p}\right|=e_{p},\left|E_{q}\right|=e_{q}, e=e_{p}+e_{q}
\end{array}
$$

$$
\begin{array}{ll}
\text { Markings } & \Sigma=\underbrace{P}_{\text {heavy }} \sqcup \underbrace{Q}_{\text {light }},|P|=p,|Q|=q \\
E \subseteq \Sigma: & E=\underbrace{E_{p}}_{\text {heavy }} \sqcup \underbrace{E_{q}}_{\text {light }},\left|E_{p}\right|=e_{p},\left|E_{q}\right|=e_{q}, e=e_{p}+e_{q}
\end{array}
$$

Theorem A (p ODD, ANY q)
For $p=2 r+1 \geq 1, q \geq 0, \bar{M}_{p, q}$ has an $S_{p} \times S_{q}$-invariant, full exceptional collection given by the vector bundles $F_{I, E}(I+e$ even) subject to

$$
I+\min \left(e_{p}, p-e_{p}\right) \leq r-1
$$

The order is by increasing e_{q}, increasing e_{p} if equal E_{q}.

Markings $\quad \Sigma=\underbrace{P}_{\text {heavy }} \sqcup \underbrace{Q}_{\text {light }},|P|=p,|Q|=q$

$$
E \subseteq \Sigma: \quad E=\underbrace{E_{p}}_{\text {heavy }} \sqcup \underbrace{E_{q}}_{\text {light }},\left|E_{p}\right|=e_{p},\left|E_{q}\right|=e_{q}, e=e_{p}+e_{q}
$$

Theorem A (p ODD, ANY q)
For $p=2 r+1 \geq 1, q \geq 0, \bar{M}_{p, q}$ has an $S_{p} \times S_{q}$-invariant, full exceptional collection given by the vector bundles $F_{I, E}(I+e$ even) subject to

$$
I+\min \left(e_{p}, p-e_{p}\right) \leq r-1
$$

The order is by increasing e_{q}, increasing e_{p} if equal E_{q}.
$\operatorname{ExAmple}\left(p=5, q=0, \overline{\mathrm{M}}_{5} \cong \overline{\mathcal{M}}_{0,5}\right)$
$-I=0, e_{p}=0$: one line bundle \rightsquigarrow

- $I=0, e_{p}=4$: five line bundles $\rightsquigarrow\left\{\pi_{i}^{*} \mathcal{O}(1)\right\}_{i=1,2,3,4,5}$
- $I=1, e_{p}=5$: one rank 2 bundle $\rightsquigarrow \Omega_{\overline{\mathcal{M}}_{0,5}}(\log)$

Markings $\quad \Sigma=\underbrace{P}_{\text {heavy }} \sqcup \underbrace{Q}_{\text {light }},|P|=p,|Q|=q$

$$
E \subseteq \Sigma: \quad E=\underbrace{E_{p}}_{\text {heavy }} \sqcup \underbrace{E_{q}}_{\text {light }},\left|E_{p}\right|=e_{p},\left|E_{q}\right|=e_{q}, e=e_{p}+e_{q}
$$

Theorem A (p ODD, ANY q)
For $p=2 r+1 \geq 1, q \geq 0, \bar{M}_{p, q}$ has an $S_{p} \times S_{q}$-invariant, full exceptional collection given by the vector bundles $F_{I, E}(I+e$ even) subject to

$$
I+\min \left(e_{p}, p-e_{p}\right) \leq r-1
$$

The order is by increasing e_{q}, increasing e_{p} if equal E_{q}.
$\operatorname{ExAmple}\left(p=5, q=0, \overline{\mathrm{M}}_{5} \cong \overline{\mathcal{M}}_{0,5}\right)$
$-I=0, e_{p}=0$: one line bundle \rightsquigarrow

- $I=0, e_{p}=4$: five line bundles $\rightsquigarrow\left\{\pi_{i}^{*} \mathcal{O}(1)\right\}_{i=1,2,3,4,5}$
- $I=1, e_{p}=5$: one rank 2 bundle $\rightsquigarrow \Omega_{\overline{\mathcal{M}}_{0,5}}(\log)$

The torsion sheaves $\mathcal{T}_{I, E}$ (p EVEN)

Markings $\quad \Sigma=\underbrace{P}_{\text {heavy }} \sqcup \underbrace{Q}_{\text {light }},|P|=p=2 r,|Q|=q \geq 0$

The torsion sheaves $\mathcal{T}_{I, E}$ (p EVEN)

Markings $\quad \Sigma=\underbrace{P}_{\text {heavy }} \sqcup \underbrace{Q}_{\text {light }},|P|=p=2 r,|Q|=q \geq 0$

DEfinition

For $R \subset P,|R|=r$, let $Z_{R} \subseteq \bar{M}_{p, q}$ locus where points in R coincide.

The torsion sheaves $\mathcal{T}_{I, E}$ (p EVEN $)$

Markings $\quad \Sigma=\underbrace{P}_{\text {heavy }} \sqcup \underbrace{Q}_{\text {light }},|P|=p=2 r,|Q|=q \geq 0$

Definition
For $R \subset P,|R|=r$, let $Z_{R} \subseteq \bar{M}_{p, q}$ locus where points in R coincide.

Universal family $\pi_{R}: \mathcal{U}_{R} \rightarrow Z_{R}$ has a section σ_{R} (combined points in R)

The torsion sheaves $\mathcal{T}_{I, E}$ (p EVEN)

Markings $\quad \Sigma=\underbrace{P}_{\text {heavy }} \sqcup \underbrace{Q}_{\text {light }},|P|=p=2 r,|Q|=q \geq 0$

DEfinition

For $R \subset P,|R|=r$, let $Z_{R} \subseteq \bar{M}_{p, q}$ locus where points in R coincide.

Universal family $\pi_{R}: \mathcal{U}_{R} \rightarrow Z_{R}$ has a section σ_{R} (combined points in R)
DEfinition
For $I \geq 0, E \subseteq \Sigma,|E|=e, I+e$ even, $E_{p}=R$, let

$$
\mathcal{T}_{I, E}=\sigma_{R}^{*}\left(\omega_{\pi_{R}}^{\frac{e-1}{2}}\left(\sum_{i \in E} \sigma_{i}\right)\right) .
$$

The torsion sheaves $\mathcal{T}_{I, E}$ (p EVEN)

Markings $\quad \Sigma=\underbrace{P}_{\text {heavy }} \sqcup \underbrace{Q}_{\text {light }},|P|=p=2 r,|Q|=q \geq 0$

DEfinition

For $R \subset P,|R|=r$, let $Z_{R} \subseteq \bar{M}_{p, q}$ locus where points in R coincide.

Universal family $\pi_{R}: \mathcal{U}_{R} \rightarrow Z_{R}$ has a section σ_{R} (combined points in R)
DEfinition
For $I \geq 0, E \subseteq \Sigma,|E|=e, I+e$ even, $E_{p}=R$, let

$$
\mathcal{T}_{I, E}=\sigma_{R}^{*}\left(\omega_{\pi_{R}}^{\frac{e-1}{2}}\left(\sum_{i \in E} \sigma_{i}\right)\right) .
$$

$\mathcal{T}_{I, E}$ has a Koszul resolution by $F_{l, E}$'s

The torsion sheaves $\mathcal{T}_{I, E}$ (p EVEN)

Markings $\quad \Sigma=\underbrace{P}_{\text {heavy }} \sqcup \underbrace{Q}_{\text {light }},|P|=p=2 r,|Q|=q \geq 0$

DEfinition

For $R \subset P,|R|=r$, let $Z_{R} \subseteq \bar{M}_{p, q}$ locus where points in R coincide.

Universal family $\pi_{R}: \mathcal{U}_{R} \rightarrow Z_{R}$ has a section σ_{R} (combined points in R)
DEfinition
For $I \geq 0, E \subseteq \Sigma,|E|=e, I+e$ even, $E_{p}=R$, let

$$
\mathcal{T}_{I, E}=\sigma_{R}^{*}\left(\omega_{\pi_{R}}^{\frac{e-1}{2}}\left(\sum_{i \in E} \sigma_{i}\right)\right) .
$$

$\mathcal{T}_{I, E}$ has a Koszul resolution by $F_{l, E}$'s

$$
E \subseteq \Sigma: \quad E=\underbrace{E_{p}}_{\text {heavy }} \sqcup \underbrace{E_{q}}_{\text {light }},\left|E_{p}\right|=e_{p},\left|E_{q}\right|=e_{q}, e=e_{p}+e_{q}
$$

$E \subseteq \Sigma: \quad E=\underbrace{E_{p}}_{\text {heavy }} \sqcup \underbrace{E_{q}}_{\text {light }},\left|E_{p}\right|=e_{p},\left|E_{q}\right|=e_{q}, e=e_{p}+e_{q}$
Theorem B (p EVEN, ANY ODD q)
Let $p=2 r \geq 4, q=2 s+1 \geq 1$. For $I \geq 0, I+e$ is even, consider:

- The vector bundles $F_{l, E}$ on $\bar{M}_{p, q}$ for

$$
\begin{array}{ll}
I+\min \left(e_{p}, p+1-e_{p}\right) \leq r-1 & (\text { group } 1 A) \\
I+\min \left(e_{p}+1, p-e_{p}\right) \leq r-1 & (\text { group } 1 B)
\end{array}
$$

- The torsion sheaves $\mathcal{T}_{1, E}$ on $\bar{M}_{p, q}$ for

$$
e_{p}=r, \quad l+\min \left(e_{q}, q-e_{q}\right) \leq s-1 \quad(\text { group } 2)
$$

$E \subseteq \Sigma: \quad E=\underbrace{E_{p}}_{\text {heavy }} \sqcup \underbrace{E_{q}}_{\text {light }},\left|E_{p}\right|=e_{p},\left|E_{q}\right|=e_{q}, e=e_{p}+e_{q}$
Theorem B (p EVEN, ANY ODD q)
Let $p=2 r \geq 4, q=2 s+1 \geq 1$. For $I \geq 0, I+e$ is even, consider:

- The vector bundles $F_{l, E}$ on $\bar{M}_{p, q}$ for

$$
\begin{array}{ll}
I+\min \left(e_{p}, p+1-e_{p}\right) \leq r-1 & (\operatorname{group} 1 A) \\
I+\min \left(e_{p}+1, p-e_{p}\right) \leq r-1 & (\operatorname{group} 1 B)
\end{array}
$$

- The torsion sheaves $\mathcal{T}_{1, E}$ on $\bar{M}_{p, q}$ for

$$
e_{p}=r, \quad I+\min \left(e_{q}, q-e_{q}\right) \leq s-1 \quad(\text { group } 2)
$$

There are 2 full $S_{p} \times S_{q}$-invariant exceptional collections on $\bar{M}_{p, q}$ obtained by combining group $1 A$ (resp., $1 B$) with group 2 .
$E \subseteq \Sigma: \quad E=\underbrace{E_{p}}_{\text {heavy }} \sqcup \underbrace{E_{q}}_{\text {light }},\left|E_{p}\right|=e_{p},\left|E_{q}\right|=e_{q}, e=e_{p}+e_{q}$
Theorem B (p EVEN, ANY ODD q)
Let $p=2 r \geq 4, q=2 s+1 \geq 1$. For $I \geq 0, I+e$ is even, consider:

- The vector bundles $F_{l, E}$ on $\bar{M}_{p, q}$ for

$$
\begin{array}{ll}
I+\min \left(e_{p}, p+1-e_{p}\right) \leq r-1 & (\operatorname{group} 1 A) \\
I+\min \left(e_{p}+1, p-e_{p}\right) \leq r-1 & (\operatorname{group} 1 B)
\end{array}
$$

- The torsion sheaves $\mathcal{T}_{1, E}$ on $\bar{M}_{p, q}$ for

$$
e_{p}=r, \quad I+\min \left(e_{q}, q-e_{q}\right) \leq s-1 \quad(\text { group } 2)
$$

There are 2 full $S_{p} \times S_{q}$-invariant exceptional collections on $\bar{M}_{p, q}$ obtained by combining group $1 A$ (resp., $1 B$) with group 2 .

Not an exceptional collection if replacing $\mathcal{T}_{I, E}$ with $F_{I, E}$
$E \subseteq \Sigma: \quad E=\underbrace{E_{p}}_{\text {heavy }} \sqcup \underbrace{E_{q}}_{\text {light }},\left|E_{p}\right|=e_{p},\left|E_{q}\right|=e_{q}, e=e_{p}+e_{q}$
Theorem B (p EVEN, ANY ODD q)
Let $p=2 r \geq 4, q=2 s+1 \geq 1$. For $I \geq 0, I+e$ is even, consider:

- The vector bundles $F_{l, E}$ on $\bar{M}_{p, q}$ for

$$
\begin{array}{ll}
I+\min \left(e_{p}, p+1-e_{p}\right) \leq r-1 & (\operatorname{group} 1 A) \\
I+\min \left(e_{p}+1, p-e_{p}\right) \leq r-1 & (\operatorname{group} 1 B)
\end{array}
$$

- The torsion sheaves $\mathcal{T}_{1, E}$ on $\bar{M}_{p, q}$ for

$$
e_{p}=r, \quad I+\min \left(e_{q}, q-e_{q}\right) \leq s-1 \quad(\text { group } 2)
$$

There are 2 full $S_{p} \times S_{q}$-invariant exceptional collections on $\bar{M}_{p, q}$ obtained by combining group $1 A$ (resp., $1 B$) with group 2 .

Not an exceptional collection if replacing $\mathcal{T}_{I, E}$ with $F_{I, E}$

The complexes $\tilde{\mathcal{T}}_{I, E}$ (p AND q EVEN $)$

The complexes $\tilde{\mathcal{T}}_{l, E}$ (p AND q EVEN)

$$
\Sigma=\underbrace{P}_{\text {heavy }} \sqcup \underbrace{Q}_{\text {light }},|P|=p=2 r \geq 4,|Q|=q+1=2 s+2 \geq 0
$$

The complexes $\tilde{\mathcal{T}}_{I, E}$ (p AND q EVEN)

$$
\Sigma=\underbrace{P}_{\text {heavy }} \sqcup \underbrace{Q}_{\text {light }},|P|=p=2 r \geq 4,|Q|=q+1=2 s+2 \geq 0
$$

Kirwan resolution $\overline{\mathrm{M}}_{p, q+1} \rightarrow\left(\mathbb{P}^{1}\right)^{(p+q+1)} / / \mathrm{PGL}_{2}$

The Complexes $\tilde{\mathcal{T}}_{l, E}$ (p AND q EVEN $)$

$$
\Sigma=\underbrace{P}_{\text {heavy }} \sqcup \underbrace{Q}_{\text {light }},|P|=p=2 r \geq 4,|Q|=q+1=2 s+2 \geq 0
$$

Kirwan resolution $\overline{\mathrm{M}}_{p, q+1} \rightarrow\left(\mathbb{P}^{1}\right)^{(p+q+1)} / / \mathrm{PGL}_{2}$
$\mathcal{A} \subset \mathrm{D}^{b}\left(\overline{\mathrm{M}}_{p, q+1}\right)$ triangulated subcategory generated by torsion sheaves

$$
\mathcal{O}_{\mathbb{P}^{r+s-1} \times \mathbb{P}^{r+s-1}}(-a,-b)
$$

where

- either $1 \leq a, b \leq r+s-1$ or
- $a=0$ and $1 \leq b \leq \frac{r+s-1}{2}$ or
- $b=0$ and $1 \leq a \leq \frac{r+s-1}{2}$.

The Complexes $\tilde{\mathcal{T}}_{l, E}$ (p AND q EVEN $)$

$$
\Sigma=\underbrace{P}_{\text {heary }} \sqcup \underbrace{Q}_{\text {light }},|P|=p=2 r \geq 4,|Q|=q+1=2 s+2 \geq 0
$$

Kirwan resolution $\overline{\mathrm{M}}_{p, q+1} \rightarrow\left(\mathbb{P}^{1}\right)^{(p+q+1)} / / \mathrm{PGL}_{2}$
$\mathcal{A} \subset \mathrm{D}^{b}\left(\overline{\mathrm{M}}_{p, q+1}\right)$ triangulated subcategory generated by torsion sheaves

$$
\mathcal{O}_{\mathbb{P}^{r+s-1} \times \mathbb{P}^{r+s-1}}(-a,-b)
$$

where

- either $1 \leq a, b \leq r+s-1$ or
- $a=0$ and $1 \leq b \leq \frac{r+s-1}{2}$ or
- $b=0$ and $1 \leq a \leq \frac{r+s-1}{2}$.
$\tilde{\mathcal{T}}_{1, E}=$ projection in $\mathcal{A}^{\perp} \subset \mathrm{D}^{b}\left(\overline{\mathrm{M}}_{p, q+1}\right)$ of the torsion sheaf $\mathcal{T}_{1, E}$

The Complexes $\tilde{\mathcal{T}}_{l, E}$ (p AND q EVEN $)$

$$
\Sigma=\underbrace{P}_{\text {heary }} \sqcup \underbrace{Q}_{\text {light }},|P|=p=2 r \geq 4,|Q|=q+1=2 s+2 \geq 0
$$

Kirwan resolution $\overline{\mathrm{M}}_{p, q+1} \rightarrow\left(\mathbb{P}^{1}\right)^{(p+q+1)} / / \mathrm{PGL}_{2}$
$\mathcal{A} \subset \mathrm{D}^{b}\left(\overline{\mathrm{M}}_{p, q+1}\right)$ triangulated subcategory generated by torsion sheaves

$$
\mathcal{O}_{\mathbb{P}^{r+s-1} \times \mathbb{P}^{r+s-1}}(-a,-b)
$$

where

- either $1 \leq a, b \leq r+s-1$ or
- $a=0$ and $1 \leq b \leq \frac{r+s-1}{2}$ or
- $b=0$ and $1 \leq a \leq \frac{r+s-1}{2}$.
$\tilde{\mathcal{T}}_{1, E}=$ projection in $\mathcal{A}^{\perp} \subset \mathrm{D}^{b}\left(\overline{\mathrm{M}}_{p, q+1}\right)$ of the torsion sheaf $\mathcal{T}_{1, E}$

Theorem C

Let $p=2 r \geq 4, q+1=2 s+2 \geq 0$. Consider the following objects:

- The vector bundles $F_{l, E}$ on $\bar{M}_{p, q+1}$ for

$$
\begin{array}{ll}
I+\min \left(e_{p}, p+1-e_{p}\right) \leq r-1 & (\text { group } 1 A) \\
I+\min \left(e_{p}+1, p-e_{p}\right) \leq r-1 & (\text { group } 1 B)
\end{array}
$$

- The complexes $\tilde{\mathcal{T}}_{1, E}$ on $\bar{M}_{p, q+1}$ for

$$
e_{p}=r, \quad l+\min \left(e_{q}, q+2-e_{q}\right) \leq s \quad(\text { group } 2 B)
$$

Theorem C

Let $p=2 r \geq 4, q+1=2 s+2 \geq 0$. Consider the following objects:

- The vector bundles $F_{l, E}$ on $\bar{M}_{p, q+1}$ for

$$
\begin{array}{ll}
I+\min \left(e_{p}, p+1-e_{p}\right) \leq r-1 & (\operatorname{group} 1 A) \\
I+\min \left(e_{p}+1, p-e_{p}\right) \leq r-1 & (\operatorname{group} 1 B)
\end{array}
$$

- The complexes $\tilde{\mathcal{T}}_{1, E}$ on $\bar{M}_{p, q+1}$ for

$$
e_{p}=r, \quad l+\min \left(e_{q}, q+2-e_{q}\right) \leq s \quad(\text { group } 2 B)
$$

Then $\bar{M}_{p, q+1}$ has two $S_{p} \times S_{q+1 \text {-invariant full exceptional collections of }}$

- The torsion sheaves $\mathcal{O}(-a,-b)$ in subcategory \mathcal{A};
- The bundles $F_{I, E}$ for pairs (I, E) in group $1 A$ (alternatively $1 B$),
- The complexes $\tilde{\mathcal{T}}_{I, E}$ for pairs (I, E) in group $2 B$.

Example: $p=6, q=0$ in Theorem C

S_{6}-invariant full, exceptional collection on $\overline{\mathrm{M}}_{6} \cong \overline{\mathcal{M}}_{0,6}$:

Example: $p=6, q=0$ in Theorem C

S_{6}-invariant full, exceptional collection on $\overline{\mathrm{M}}_{6} \cong \overline{\mathcal{M}}_{0,6}$:

- The torsion sheaves $\mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(-1,-1)$
- The vector bundles $F_{l, E}$ with $I+\min \left(e_{p}+1,6-e_{p}\right) \leq 2$

Example: $p=6, q=0$ in Theorem C

S_{6}-invariant full, exceptional collection on $\overline{\mathrm{M}}_{6} \cong \overline{\mathcal{M}}_{0,6}$:

- The torsion sheaves $\mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(-1,-1)$
- The vector bundles $F_{l, E}$ with $I+\min \left(e_{p}+1,6-e_{p}\right) \leq 2$
- $I=0, e_{p}=0$: one line bundle $\rightsquigarrow \mathcal{O}$
- $I=0, e_{p}=4:\binom{6}{2}$ line bundles $\rightsquigarrow\left\{\pi_{i j}^{*} \mathcal{O}(1)\right\}_{i, j}$

$$
\pi_{i j}: \overline{\mathcal{M}}_{0,6} \rightarrow \overline{\mathcal{M}}_{0,4}=\mathbb{P}^{1} \quad \text { forget markings } i, j
$$

- $I=1, e_{p}=5: 6$ rank 2 vector bundles $\rightsquigarrow\left\{\pi_{i}^{*} \Omega_{\overline{\mathcal{M}}_{0,5}}(\log)\right\}_{i,}$

$$
\pi_{i}: \overline{\mathcal{M}}_{0,6} \rightarrow \overline{\mathcal{M}}_{0,5} \quad \text { forget marking } \quad i
$$

- $I=2, e_{p}=6$: one rank 3 vector bundle $\rightsquigarrow \Omega_{\overline{\mathcal{M}}_{0,6}}(\log)$

Map of Proof

Exceptionality of $F_{l, E}$'s:

- Theorem A for p odd, $q=0$: window calculation
- Theorem A for p odd, $q>0$: forgetful maps

$$
\overline{\mathrm{M}}_{p, q} \rightarrow \overline{\mathrm{M}}_{p, q-1} \quad \text { is a } \quad \mathbb{P}^{1} \quad \text { bundle }
$$

- Theorem B for $\overline{\mathrm{M}}_{p, q} \Rightarrow$ Theorem C for $\overline{\mathrm{M}}_{p, q+1}$ (p even, q odd) Compare $R \operatorname{Hom}\left(F_{l, E}, F_{l^{\prime}, E^{\prime}}\right)$'s via forgetful maps

$$
\overline{\mathrm{M}}_{p, q+1} \rightarrow \overline{\mathrm{M}}_{p, q}
$$

- Theorem C for $\overline{\mathrm{M}}_{p, q-1} \Rightarrow$ Theorem B for $\overline{\mathrm{M}}_{p, q}$ (p even, q odd) There is no forgetful map $\overline{\mathrm{M}}_{p, q} \rightarrow \overline{\mathrm{M}}_{p, q-1}$. Use instead:
universal family $\mathcal{U} \rightarrow \overline{\mathrm{M}}_{p, q-1}+$ a new reduction map $\mathcal{U} \rightarrow \overline{\mathrm{M}}_{p, q}$

Map of Proof

Exceptionality of $\mathcal{T}_{l, E}$'s with $F_{l, E}$'s, $\mathcal{T}_{l, E}$'s (p even, any q)

- window calculation on Z_{R} (support of torsion sheaf $\mathcal{T}_{I, E}$)

Map of Proof

Exceptionality of $\mathcal{T}_{l, E}$'s with $F_{l, E}$'s, $\mathcal{T}_{l, E}$'s (p even, any q)

- window calculation on Z_{R} (support of torsion sheaf $\mathcal{T}_{I, E}$)

Fullness (all p, all q)

- Prove that all $F_{l, E}$'s generate $\mathrm{D}^{b}\left(\overline{\mathrm{M}}_{p, q}\right)$
- Generate all vector bundles $F_{l, E}$ with the given collection:
- Use forgetful maps+ universal families+ new reduction map
- Use Koszul resolutions of $\mathcal{T}_{l, E}$'s by $F_{I, E}$'s

