EXCEPTIONAL COLLECTIONS ON MODULI SPACES OF STABLE RATIONAL CURVES

Ana-Maria Castravet (Versailles) joint work with Jenia Tevelev

November 2020

BIRS Workshop "Derived, Birational, and Categorical Algebraic Geometry"

MODULI SPACES OF STABLE RATIONAL CURVES

$$\mathcal{M}_{0,n} = \left\{ (\mathbb{P}^1, p_1, \dots, p_n) | p_i \neq p_j \right\} / \mathsf{PGL}_2$$
$$\mathcal{M}_{0,n} \subseteq \overline{\mathcal{M}}_{0,n} = \text{functorial compactification}$$
$$\overline{\mathcal{M}}_{0,n} = \left\{ (C, p_1, \dots, p_n) \right\} / \sim \quad \text{where:}$$

- C is a tree of \mathbb{P}^1 's
- p_1, \ldots, p_n distinct, smooth points
- $\omega_C(p_1 + \ldots + p_n)$ ample

MODULI SPACES OF STABLE RATIONAL CURVES

$$\mathcal{M}_{0,n} = \left\{ (\mathbb{P}^1, p_1, \dots, p_n) | p_i \neq p_j \right\} / \mathsf{PGL}_2$$
$$\mathcal{M}_{0,n} \subseteq \overline{\mathcal{M}}_{0,n} = \text{functorial compactification}$$
$$\overline{\mathcal{M}}_{0,n} = \left\{ (C, p_1, \dots, p_n) \right\} / \sim \quad \text{where:}$$
$$\blacktriangleright C \text{ is a tree of } \mathbb{P}^{1'}\mathsf{s}$$

- p_1, \ldots, p_n distinct, smooth points
- $\omega_C(p_1 + \ldots + p_n)$ ample

 S_n acts on $\overline{\mathcal{M}}_{0,n}$ by permuting p_1, \ldots, p_n

MODULI SPACES OF STABLE RATIONAL CURVES

$$\mathcal{M}_{0,n} = \left\{ (\mathbb{P}^1, p_1, \dots, p_n) | p_i \neq p_j \right\} / \mathsf{PGL}_2$$
$$\mathcal{M}_{0,n} \subseteq \overline{\mathcal{M}}_{0,n} = \text{functorial compactification}$$
$$\overline{\mathcal{M}}_{0,n} = \left\{ (C, p_1, \dots, p_n) \right\} / \sim \quad \text{where:}$$
$$\blacktriangleright C \text{ is a tree of } \mathbb{P}^{1'}\mathsf{s}$$

- p_1, \ldots, p_n distinct, smooth points
- $\omega_C(p_1 + \ldots + p_n)$ ample

 S_n acts on $\overline{\mathcal{M}}_{0,n}$ by permuting p_1, \ldots, p_n

 $p_1,p_2,p_3\mapsto 0,1,\infty\quad\Rightarrow\quad \mathcal{M}_{0,4}=\mathbb{P}^1\setminus\{0,1,\infty\},\quad\overline{\mathcal{M}}_{0,4}=\mathbb{P}^1$

 $p_{1}, p_{2}, p_{3} \mapsto 0, 1, \infty \quad \Rightarrow \quad \mathcal{M}_{0,4} = \mathbb{P}^{1} \setminus \{0, 1, \infty\}, \quad \overline{\mathcal{M}}_{0,4} = \mathbb{P}^{1}$ Kapranov: $\overline{\mathcal{M}}_{0,n} = \dots \operatorname{Bl}_{\binom{n-1}{3}} \operatorname{Bl}_{\binom{n-1}{2}} \operatorname{Bl}_{n-1} \mathbb{P}^{n-3}$ (blow-up n-1 points, all lines, planes,... spanned by them)

 $p_{1}, p_{2}, p_{3} \mapsto 0, 1, \infty \quad \Rightarrow \quad \mathcal{M}_{0,4} = \mathbb{P}^{1} \setminus \{0, 1, \infty\}, \quad \overline{\mathcal{M}}_{0,4} = \mathbb{P}^{1}$ Kapranov: $\overline{\mathcal{M}}_{0,n} = \dots \operatorname{Bl}_{\binom{n-1}{3}} \operatorname{Bl}_{\binom{n-1}{2}} \operatorname{Bl}_{n-1} \mathbb{P}^{n-3}$ (blow-up n-1 points, all lines, planes,... spanned by them)

Kapranov blow-up map $\Psi_i : \overline{\mathcal{M}}_{0,n} \to \mathbb{P}^{n-3}$ is not S_n -invariant:

 $p_{1}, p_{2}, p_{3} \mapsto 0, 1, \infty \quad \Rightarrow \quad \mathcal{M}_{0,4} = \mathbb{P}^{1} \setminus \{0, 1, \infty\}, \quad \overline{\mathcal{M}}_{0,4} = \mathbb{P}^{1}$ Kapranov: $\overline{\mathcal{M}}_{0,n} = \dots \operatorname{Bl}_{\binom{n-1}{3}} \operatorname{Bl}_{\binom{n-1}{2}} \operatorname{Bl}_{n-1} \mathbb{P}^{n-3}$ (blow-up n-1 points, all lines, planes,... spanned by them)

Kapranov blow-up map $\Psi_i : \overline{\mathcal{M}}_{0,n} \to \mathbb{P}^{n-3}$ is not S_n -invariant:

 Ψ_i given by the complete linear system of the line bundle ψ_i on $\overline{\mathcal{M}}_{0,n}$:

$$\psi_{i|(C,p_1,...,p_n)} = (T_{p_i}C)^*$$

 $p_{1}, p_{2}, p_{3} \mapsto 0, 1, \infty \quad \Rightarrow \quad \mathcal{M}_{0,4} = \mathbb{P}^{1} \setminus \{0, 1, \infty\}, \quad \overline{\mathcal{M}}_{0,4} = \mathbb{P}^{1}$ Kapranov: $\overline{\mathcal{M}}_{0,n} = \dots \operatorname{Bl}_{\binom{n-1}{3}} \operatorname{Bl}_{\binom{n-1}{2}} \operatorname{Bl}_{n-1} \mathbb{P}^{n-3}$ (blow-up n-1 points, all lines, planes,... spanned by them)

Kapranov blow-up map $\Psi_i : \overline{\mathcal{M}}_{0,n} \to \mathbb{P}^{n-3}$ is not S_n -invariant:

 Ψ_i given by the complete linear system of the line bundle ψ_i on $\overline{\mathcal{M}}_{0,n}$:

$$\psi_{i|(C,p_1,...,p_n)} = (T_{p_i}C)^*$$

THEOREM (C.-TEVELEV, 2020)

 $\overline{\mathcal{M}}_{0,n}$ has a full, exceptional collection that is S_n -invariant.

THEOREM (C.-TEVELEV, 2020)

 $\overline{\mathcal{M}}_{0,n}$ has a full, exceptional collection that is S_n -invariant.

COROLLARY

The K-group $K(\overline{\mathcal{M}}_{0,n})$ is a permutation S_n -lattice. In particular, the cohomology group $H^*(\overline{\mathcal{M}}_{0,n}, \mathbb{Q})$ has a basis permuted by S_n .

THEOREM (C.-TEVELEV, 2020)

 $\overline{\mathcal{M}}_{0,n}$ has a full, exceptional collection that is S_n -invariant.

COROLLARY

The K-group $K(\overline{\mathcal{M}}_{0,n})$ is a permutation S_n -lattice. In particular, the cohomology group $H^*(\overline{\mathcal{M}}_{0,n}, \mathbb{Q})$ has a basis permuted by S_n .

Getzler 1994, Bergstrom-Minabe 2013:

character/length of the S_n -representation $H^*(\overline{\mathcal{M}}_{0,n},\mathbb{Q})$ recursively

THEOREM (C.-TEVELEV, 2020)

 $\overline{\mathcal{M}}_{0,n}$ has a full, exceptional collection that is S_n -invariant.

COROLLARY

The K-group $K(\overline{\mathcal{M}}_{0,n})$ is a permutation S_n -lattice. In particular, the cohomology group $H^*(\overline{\mathcal{M}}_{0,n}, \mathbb{Q})$ has a basis permuted by S_n .

Getzler 1994, Bergstrom-Minabe 2013:

character/length of the S_n -representation $H^*(\overline{\mathcal{M}}_{0,n}, \mathbb{Q})$ recursively

EXAMPLE

 $S={\sf del} \; {\sf Pezzo} \; {\sf dP}_2, \; |-{\cal K}_S|:S o \mathbb{P}^2 \; {\sf degree} \; 2 \;\; \rightsquigarrow \;\; {\sf involution} \; \sigma$

 $\sigma \curvearrowright \mathsf{H}^*(S;\mathbb{Q})$ signature $(3,7) \Longrightarrow \mathsf{H}^*(S;\mathbb{Q})$ has no basis permuted by σ

THEOREM (C.-TEVELEV, 2020)

 $\overline{\mathcal{M}}_{0,n}$ has a full, exceptional collection that is S_n -invariant.

COROLLARY

The K-group $K(\overline{\mathcal{M}}_{0,n})$ is a permutation S_n -lattice. In particular, the cohomology group $H^*(\overline{\mathcal{M}}_{0,n}, \mathbb{Q})$ has a basis permuted by S_n .

Getzler 1994, Bergstrom-Minabe 2013:

character/length of the S_n -representation $H^*(\overline{\mathcal{M}}_{0,n}, \mathbb{Q})$ recursively

EXAMPLE

 $S={\sf del} \; {\sf Pezzo} \; {\sf dP}_2, \; |-{\cal K}_S|:S o \mathbb{P}^2 \; {\sf degree} \; 2 \;\; \rightsquigarrow \;\; {\sf involution} \; \sigma$

 $\sigma \curvearrowright \mathsf{H}^*(S;\mathbb{Q})$ signature $(3,7) \Longrightarrow \mathsf{H}^*(S;\mathbb{Q})$ has no basis permuted by σ

X smooth, projective variety over $\mathbb C$

X smooth, projective variety over $\mathbb C$

DEFINITION

- $E \in D^{b}(X)$ is exceptional if $R \operatorname{Hom}(E, E) = \mathbb{C}$
- An ordered collection E_1, \ldots, E_r is an exceptional collection if

 $R \operatorname{Hom}(E_i, E_j) = 0$ for all i > j

• A collection E_1, \ldots, E_r is full if $D^b(X) = \langle E_1, \ldots, E_r \rangle$.

X smooth, projective variety over $\mathbb C$

DEFINITION

- $E \in D^{b}(X)$ is exceptional if $R \operatorname{Hom}(E, E) = \mathbb{C}$
- An ordered collection E_1, \ldots, E_r is an exceptional collection if

 $R \operatorname{Hom}(E_i, E_j) = 0$ for all i > j

• A collection
$$E_1, \ldots, E_r$$
 is full if $D^b(X) = \langle E_1, \ldots, E_r \rangle$.

Remark

If a full, exceptional collection E_1, \ldots, E_r exists, then the Grothendieck group K(X) is a free abelian group of rank r.

X smooth, projective variety over $\mathbb C$

DEFINITION

- $E \in D^{b}(X)$ is exceptional if $R \operatorname{Hom}(E, E) = \mathbb{C}$
- An ordered collection E_1, \ldots, E_r is an exceptional collection if

 $R \operatorname{Hom}(E_i, E_j) = 0$ for all i > j

• A collection
$$E_1, \ldots, E_r$$
 is full if $D^b(X) = \langle E_1, \ldots, E_r \rangle$.

Remark

If a full, exceptional collection E_1, \ldots, E_r exists, then the Grothendieck group K(X) is a free abelian group of rank r.

EXAMPLE (BEILINSON)

A full, exceptional collection on \mathbb{P}^n : \mathcal{O} , $\mathcal{O}(1)$, ..., $\mathcal{O}(n)$

X smooth, projective variety over $\mathbb C$

DEFINITION

- $E \in D^{b}(X)$ is exceptional if $R \operatorname{Hom}(E, E) = \mathbb{C}$
- An ordered collection E_1, \ldots, E_r is an exceptional collection if

 $R \operatorname{Hom}(E_i, E_j) = 0$ for all i > j

• A collection
$$E_1, \ldots, E_r$$
 is full if $D^b(X) = \langle E_1, \ldots, E_r \rangle$.

Remark

If a full, exceptional collection E_1, \ldots, E_r exists, then the Grothendieck group K(X) is a free abelian group of rank r.

EXAMPLE (BEILINSON)

A full, exceptional collection on \mathbb{P}^n : \mathcal{O} , $\mathcal{O}(1)$, ..., $\mathcal{O}(n)$

 $Y \subseteq X$ smooth subvariety, codimension n+1

 $Y \subseteq X$ smooth subvariety, codimension n+1

 $q: \operatorname{Bl}_Y X o X$ blow-up of X along Y, $E \subseteq X$ exceptional divisor

 $Y \subseteq X$ smooth subvariety, codimension n+1

 $q: \mathsf{Bl}_Y X o X$ blow-up of X along Y, $E \subseteq X$ exceptional divisor

THEOREM (ORLOV)

 $\{F_{\beta}\}_{\beta}$ is a full, exceptional collection on Y and $\{G_{\alpha}\}_{\alpha}$ is a full, exceptional collection on X, \Rightarrow full, exceptional collection on Bl_Y X:

$$\{(q_{|E})^*F_\beta\otimes \mathcal{O}_E(-n)\}_\beta, \quad \ldots, \quad \{(q_{|E})^*F_\beta\otimes \mathcal{O}_E(-1)\}_\beta, \quad \{q^*G_\alpha\}_\alpha.$$

 $Y \subseteq X$ smooth subvariety, codimension n+1

 $q: \mathsf{Bl}_Y X \to X$ blow-up of X along Y, $E \subseteq X$ exceptional divisor

THEOREM (ORLOV)

 $\{F_{\beta}\}_{\beta}$ is a full, exceptional collection on Y and $\{G_{\alpha}\}_{\alpha}$ is a full, exceptional collection on X, \Rightarrow full, exceptional collection on Bl_Y X:

$$\{(q_{|E})^*F_\beta\otimes \mathcal{O}_E(-n)\}_\beta, \quad \ldots, \quad \{(q_{|E})^*F_\beta\otimes \mathcal{O}_E(-1)\}_\beta, \quad \{q^*G_\alpha\}_\alpha.$$

Remark

Kapranov's description of $\overline{\mathcal{M}}_{0,n}$ + Orlov's theorem \Rightarrow

 \Rightarrow full, exceptional collection on $\overline{\mathcal{M}}_{0,n}$ (only S_{n-1} -invariant)

 $Y \subseteq X$ smooth subvariety, codimension n+1

 $q: \mathsf{Bl}_Y X \to X$ blow-up of X along Y, $E \subseteq X$ exceptional divisor

THEOREM (ORLOV)

 $\{F_{\beta}\}_{\beta}$ is a full, exceptional collection on Y and $\{G_{\alpha}\}_{\alpha}$ is a full, exceptional collection on X, \Rightarrow full, exceptional collection on Bl_Y X:

$$\{(q_{|E})^*F_\beta\otimes \mathcal{O}_E(-n)\}_\beta, \quad \ldots, \quad \{(q_{|E})^*F_\beta\otimes \mathcal{O}_E(-1)\}_\beta, \quad \{q^*G_\alpha\}_\alpha.$$

Remark

Kapranov's description of $\overline{\mathcal{M}}_{0,n}$ + Orlov's theorem \Rightarrow

 \Rightarrow full, exceptional collection on $\overline{\mathcal{M}}_{0,n}$ (only S_{n-1} -invariant)

EXAMPLE (ORLOV COLLECTION)

 $\Psi_5: \overline{\mathcal{M}}_{0,5} o \mathbb{P}^2$ blow-up points p_1, p_2, p_3, p_4 in \mathbb{P}^2

EXAMPLE (ORLOV COLLECTION)

 $\Psi_5: \overline{\mathcal{M}}_{0,5} o \mathbb{P}^2$ blow-up points p_1, p_2, p_3, p_4 in \mathbb{P}^2

Exceptional divisors = boundary divisors $\delta_{15}, \delta_{25}, \delta_{35}, \delta_{45}$

Exceptional Collections on $\mathcal{M}_{0,5}$

EXAMPLE (ORLOV COLLECTION)

 $\Psi_5: \overline{\mathcal{M}}_{0,5} o \mathbb{P}^2$ blow-up points p_1, p_2, p_3, p_4 in \mathbb{P}^2

Exceptional divisors = boundary divisors $\delta_{15}, \delta_{25}, \delta_{35}, \delta_{45}$

 $\delta_{i5} \rightsquigarrow$ reducible curves with (only) i, 5 on one component

EXAMPLE (ORLOV COLLECTION)

 $\Psi_5: \overline{\mathcal{M}}_{0,5} o \mathbb{P}^2$ blow-up points p_1, p_2, p_3, p_4 in \mathbb{P}^2

Exceptional divisors = boundary divisors $\delta_{15}, \delta_{25}, \delta_{35}, \delta_{45}$

 $\delta_{i5} \rightsquigarrow$ reducible curves with (only) i, 5 on one component

An S_4 -invariant, full, exceptional collection on $\overline{\mathcal{M}}_{0,5}$:

$$\{\mathcal{O}_{\delta_{i5}}(-1)\}_{i=1,2,3,4}, \quad \mathcal{O}, \quad \psi_5, \quad 2\psi_5$$

EXAMPLE (ORLOV COLLECTION)

 $\Psi_5: \overline{\mathcal{M}}_{0,5} o \mathbb{P}^2$ blow-up points p_1, p_2, p_3, p_4 in \mathbb{P}^2

Exceptional divisors = boundary divisors $\delta_{15}, \delta_{25}, \delta_{35}, \delta_{45}$

 $\delta_{i5} \rightsquigarrow$ reducible curves with (only) i, 5 on one component

An S_4 -invariant, full, exceptional collection on $\overline{\mathcal{M}}_{0,5}$:

$$\{\mathcal{O}_{\delta_{i5}}(-1)\}_{i=1,2,3,4}, \quad \mathcal{O}, \quad \psi_5, \quad 2\psi_5$$

EXAMPLE (S_5 -INVARIANT COLLECTION)

$$\mathcal{O}, \quad {\pi_i^* \mathcal{O}(1)}_{i=1,2,3,4,5}, \quad \Omega_{\overline{\mathcal{M}}_{0,5}}(\log)$$

Exceptional Collections on $\mathcal{M}_{0,5}$

EXAMPLE (ORLOV COLLECTION)

 $\Psi_5: \overline{\mathcal{M}}_{0,5} o \mathbb{P}^2$ blow-up points p_1, p_2, p_3, p_4 in \mathbb{P}^2

Exceptional divisors = boundary divisors $\delta_{15}, \delta_{25}, \delta_{35}, \delta_{45}$

 $\delta_{i5} \rightsquigarrow$ reducible curves with (only) i, 5 on one component

An S_4 -invariant, full, exceptional collection on $\overline{\mathcal{M}}_{0,5}$:

$$\{\mathcal{O}_{\delta_{i5}}(-1)\}_{i=1,2,3,4}, \quad \mathcal{O}, \quad \psi_5, \quad 2\psi_5$$

EXAMPLE (S_5 -INVARIANT COLLECTION)

$$\mathcal{O}, \quad \{\pi_i^*\mathcal{O}(1)\}_{i=1,2,3,4,5}, \quad \Omega_{\overline{\mathcal{M}}_{0,5}}(\mathsf{log})$$

$$\begin{split} \Omega_{\overline{\mathcal{M}}_{0,5}}(\log) &= \text{ sheaf of log-differentials with poles along boundary} \\ \pi_i : \overline{\mathcal{M}}_{0,5} \to \overline{\mathcal{M}}_{0,4} = \mathbb{P}^1 \; \rightsquigarrow \; \text{ forget marking } i + \text{ stabilize} \end{split}$$

Exceptional Collections on $\mathcal{M}_{0,5}$

EXAMPLE (ORLOV COLLECTION)

 $\Psi_5: \overline{\mathcal{M}}_{0,5} o \mathbb{P}^2$ blow-up points p_1, p_2, p_3, p_4 in \mathbb{P}^2

Exceptional divisors = boundary divisors $\delta_{15}, \delta_{25}, \delta_{35}, \delta_{45}$

 $\delta_{i5} \rightsquigarrow$ reducible curves with (only) i, 5 on one component

An S_4 -invariant, full, exceptional collection on $\overline{\mathcal{M}}_{0,5}$:

$$\{\mathcal{O}_{\delta_{i5}}(-1)\}_{i=1,2,3,4}, \quad \mathcal{O}, \quad \psi_5, \quad 2\psi_5$$

EXAMPLE (S_5 -INVARIANT COLLECTION)

$$\mathcal{O}, \quad \{\pi_i^*\mathcal{O}(1)\}_{i=1,2,3,4,5}, \quad \Omega_{\overline{\mathcal{M}}_{0,5}}(\mathsf{log})$$

$$\begin{split} \Omega_{\overline{\mathcal{M}}_{0,5}}(\log) &= \text{ sheaf of log-differentials with poles along boundary} \\ \pi_i : \overline{\mathcal{M}}_{0,5} \to \overline{\mathcal{M}}_{0,4} = \mathbb{P}^1 \; \rightsquigarrow \; \text{ forget marking } i + \text{ stabilize} \end{split}$$

HASSETT SPACES

$$\mathcal{A} = (a_1, \ldots, a_n), \quad a_i \in \mathbb{Q}, \quad \sum a_i > 2$$

HASSETT SPACES

 $\mathcal{A} = (a_1, \ldots, a_n), \quad a_i \in \mathbb{Q}, \quad \sum a_i > 2$

DEFINITION

 (C, p_1, \ldots, p_n) is an A-stable rational curve if

- C is a tree of \mathbb{P}^1 's, p_1, \ldots, p_n smooth points on C,
- $\omega_C(a_1p_1+\ldots+a_np_n)$ is ample,
- If $\{p_i\}_{i \in I}$ coincide, then $\sum_{i \in I} a_i \leq 1$.

HASSETT SPACES

 $\mathcal{A} = (a_1, \dots, a_n), \quad a_i \in \mathbb{Q}, \quad \sum a_i > 2$

DEFINITION

 (C, p_1, \ldots, p_n) is an A-stable rational curve if

- C is a tree of \mathbb{P}^1 's, p_1, \ldots, p_n smooth points on C,
- $\omega_C(a_1p_1+\ldots+a_np_n)$ is ample,
- If $\{p_i\}_{i \in I}$ coincide, then $\sum_{i \in I} a_i \leq 1$.

Properties:

- Fine moduli space $\overline{\mathcal{M}}_{\mathcal{A}}$ of \mathcal{A} -stable rational curves
- $\mathcal{M}_{0,n} \subseteq \overline{\mathcal{M}}_{\mathcal{A}}$ dense open set
$\mathcal{A} = (a_1, \dots, a_n), \quad a_i \in \mathbb{Q}, \quad \sum a_i > 2$

DEFINITION

 (C, p_1, \ldots, p_n) is an A-stable rational curve if

- C is a tree of \mathbb{P}^1 's, p_1, \ldots, p_n smooth points on C,
- $\omega_C(a_1p_1+\ldots+a_np_n)$ is ample,
- If $\{p_i\}_{i \in I}$ coincide, then $\sum_{i \in I} a_i \leq 1$.

Properties:

- Fine moduli space $\overline{\mathcal{M}}_{\mathcal{A}}$ of \mathcal{A} -stable rational curves
- $\mathcal{M}_{0,n} \subseteq \overline{\mathcal{M}}_{\mathcal{A}}$ dense open set
- ▶ Reduction maps: $\overline{\mathcal{M}}_A \to \overline{\mathcal{M}}_{\mathcal{B}}$ whenever $a_i \ge b_i \forall i$

(contract only some boundary divisors)

 $\mathcal{A} = (a_1, \ldots, a_n), \quad a_i \in \mathbb{Q}, \quad \sum a_i > 2$

DEFINITION

 (C, p_1, \ldots, p_n) is an A-stable rational curve if

- C is a tree of \mathbb{P}^1 's, p_1, \ldots, p_n smooth points on C,
- $\omega_C(a_1p_1+\ldots+a_np_n)$ is ample,
- If $\{p_i\}_{i \in I}$ coincide, then $\sum_{i \in I} a_i \leq 1$.

Properties:

- Fine moduli space $\overline{\mathcal{M}}_{\mathcal{A}}$ of \mathcal{A} -stable rational curves
- $\mathcal{M}_{0,n} \subseteq \overline{\mathcal{M}}_{\mathcal{A}}$ dense open set
- ▶ Reduction maps: M_A → M_B whenever a_i ≥ b_i ∀i (contract only some boundary divisors)
- $\blacktriangleright \ \overline{\mathcal{M}}_{0,n} = \overline{\mathcal{M}}_{(1,\dots,1)} \to \overline{\mathcal{M}}_{\mathcal{A}} \text{ iterated blow-up}$

 $\mathcal{A} = (a_1, \dots, a_n), \quad a_i \in \mathbb{Q}, \quad \sum a_i > 2$

DEFINITION

 (C, p_1, \ldots, p_n) is an A-stable rational curve if

- C is a tree of \mathbb{P}^1 's, p_1, \ldots, p_n smooth points on C,
- $\omega_C(a_1p_1+\ldots+a_np_n)$ is ample,
- If $\{p_i\}_{i \in I}$ coincide, then $\sum_{i \in I} a_i \leq 1$.

Properties:

- ▶ Fine moduli space $\overline{\mathcal{M}}_{\mathcal{A}}$ of \mathcal{A} -stable rational curves
- $\mathcal{M}_{0,n} \subseteq \overline{\mathcal{M}}_{\mathcal{A}}$ dense open set
- ▶ Reduction maps: M_A → M_B whenever a_i ≥ b_i ∀i (contract only some boundary divisors)
- $\blacktriangleright \ \overline{\mathcal{M}}_{0,n} = \overline{\mathcal{M}}_{(1,\dots,1)} \to \overline{\mathcal{M}}_{\mathcal{A}} \text{ iterated blow-up}$
- ▶ Walls of chamber decomposition in $[0,1]^n$ given by $\sum_{i \in I} a_i = 1$

 $\mathcal{A} = (a_1, \dots, a_n), \quad a_i \in \mathbb{Q}, \quad \sum a_i > 2$

DEFINITION

 (C, p_1, \ldots, p_n) is an A-stable rational curve if

- C is a tree of \mathbb{P}^1 's, p_1, \ldots, p_n smooth points on C,
- $\omega_C(a_1p_1+\ldots+a_np_n)$ is ample,
- If $\{p_i\}_{i \in I}$ coincide, then $\sum_{i \in I} a_i \leq 1$.

Properties:

- ▶ Fine moduli space $\overline{\mathcal{M}}_{\mathcal{A}}$ of \mathcal{A} -stable rational curves
- $\mathcal{M}_{0,n} \subseteq \overline{\mathcal{M}}_{\mathcal{A}}$ dense open set
- ▶ Reduction maps: M_A → M_B whenever a_i ≥ b_i ∀i (contract only some boundary divisors)
- $\blacktriangleright \ \overline{\mathcal{M}}_{0,n} = \overline{\mathcal{M}}_{(1,\dots,1)} \to \overline{\mathcal{M}}_{\mathcal{A}} \text{ iterated blow-up}$
- ▶ Walls of chamber decomposition in $[0,1]^n$ given by $\sum_{i \in I} a_i = 1$

$$\mathcal{A} = (1, \underbrace{\epsilon, \dots, \epsilon}_{n-1 \text{ light points}}), \quad \frac{1}{n-1} < \epsilon < \frac{1}{n-2}$$

$$\mathcal{A} = (1, \underbrace{\epsilon, \dots, \epsilon}_{n-1 \text{ light points}}), \quad \frac{1}{n-1} < \epsilon < \frac{1}{n-2}$$

all but one of light points may coincide, but not all of them

$$\mathcal{A} = \left(1, \underbrace{\epsilon, \dots, \epsilon}_{n-1 \text{ light points}}\right), \quad \frac{1}{n-1} < \epsilon < \frac{1}{n-2}$$

- all but one of light points may coincide, but not all of them
- no light point may coincide with point p_1 with weight 1

$$\mathcal{A} = \left(1, \underbrace{\epsilon, \dots, \epsilon}_{n-1 \text{ light points}}\right), \quad \frac{1}{n-1} < \epsilon < \frac{1}{n-2}$$

- all but one of light points may coincide, but not all of them
- no light point may coincide with point p_1 with weight 1
- *C* is \mathcal{A} -stable curve $\Leftrightarrow C = \mathbb{P}^1$

$$\mathcal{A} = \left(1, \underbrace{\epsilon, \dots, \epsilon}_{n-1 \text{ light points}}\right), \quad \frac{1}{n-1} < \epsilon < \frac{1}{n-2}$$

- all but one of light points may coincide, but not all of them
- no light point may coincide with point p_1 with weight 1
- *C* is \mathcal{A} -stable curve $\Leftrightarrow C = \mathbb{P}^1$
- Fix $p_1, p_2 = \infty, 0 \in \mathbb{P}^1 \Longrightarrow \overline{\mathcal{M}}_{\mathcal{A}} = (\mathbb{C}^{n-2} \setminus \{0\})/\mathbb{C}^* = \mathbb{P}^{n-3}$

$$\mathcal{A} = \left(1, \underbrace{\epsilon, \dots, \epsilon}_{n-1 \text{ light points}}\right), \quad \frac{1}{n-1} < \epsilon < \frac{1}{n-2}$$

all but one of light points may coincide, but not all of them

no light point may coincide with point p₁ with weight 1

• *C* is
$$\mathcal{A}$$
-stable curve $\Leftrightarrow C = \mathbb{P}^1$

• Fix $p_1, p_2 = \infty, 0 \in \mathbb{P}^1 \Longrightarrow \overline{\mathcal{M}}_{\mathcal{A}} = (\mathbb{C}^{n-2} \setminus \{0\})/\mathbb{C}^* = \mathbb{P}^{n-3}$

An $S_1 \times S_{n-1}$ -invariant full, exceptional collection on $\overline{\mathcal{M}}_{\mathcal{A}} = \mathbb{P}^{n-3}$:

$$\mathcal{O}, \quad \mathcal{O}(1), \quad \ldots, \quad \mathcal{O}(n-3)$$

$$\mathcal{A} = \left(1, \underbrace{\epsilon, \dots, \epsilon}_{n-1 \text{ light points}}\right), \quad \frac{1}{n-1} < \epsilon < \frac{1}{n-2}$$

all but one of light points may coincide, but not all of them

no light point may coincide with point p₁ with weight 1

• *C* is
$$\mathcal{A}$$
-stable curve $\Leftrightarrow C = \mathbb{P}^1$

• Fix $p_1, p_2 = \infty, 0 \in \mathbb{P}^1 \Longrightarrow \overline{\mathcal{M}}_{\mathcal{A}} = (\mathbb{C}^{n-2} \setminus \{0\})/\mathbb{C}^* = \mathbb{P}^{n-3}$

An $S_1 \times S_{n-1}$ -invariant full, exceptional collection on $\overline{\mathcal{M}}_{\mathcal{A}} = \mathbb{P}^{n-3}$:

$$\mathcal{O}, \quad \mathcal{O}(1), \quad \ldots, \quad \mathcal{O}(n-3)$$

$$\overline{\mathsf{LM}}_n := \overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A} = \Big(\underbrace{1, 1}_{2 \text{ heavy}}, \underbrace{\epsilon, \ldots, \epsilon}_{n-2 \text{ light}}\Big), \quad 0 < \epsilon \ll 1$$

$$\overline{\mathsf{LM}}_n := \overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A} = \Big(\underbrace{1, 1}_{2 \text{ heavy}}, \underbrace{\epsilon, \ldots, \epsilon}_{n-2 \text{ light}}\Big), \quad 0 < \epsilon \ll 1$$

▶ all light points may coincide, but not with the heavy points p_1 , p_2

$$\overline{\mathsf{LM}}_n := \overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A} = \Big(\underbrace{1, 1}_{2 \text{ heavy}}, \underbrace{\epsilon, \ldots, \epsilon}_{n-2 \text{ light}}\Big), \quad 0 < \epsilon \ll 1$$

- ▶ all light points may coincide, but not with the heavy points p_1 , p_2
- \mathcal{A} -stable curve \Leftrightarrow chain of \mathbb{P}^1 's with heavy points at the end

$$\overline{\mathsf{LM}}_n := \overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A} = \Big(\underbrace{1, 1}_{2 \text{ heavy}}, \underbrace{\epsilon, \ldots, \epsilon}_{n-2 \text{ light}}\Big), \quad 0 < \epsilon \ll 1$$

- ▶ all light points may coincide, but not with the heavy points p_1 , p_2
- \mathcal{A} -stable curve \Leftrightarrow chain of \mathbb{P}^1 's with heavy points at the end

►
$$\overline{\text{LM}}_n = \dots \text{Bl}_{\binom{n-2}{2}} \text{Bl}_{n-2} \mathbb{P}^{n-3}$$
 blow-up $n-2$ points, all lines,...

$$\overline{\mathsf{LM}}_n := \overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A} = \big(\underbrace{1, 1}_{2 \text{ heavy}}, \underbrace{\epsilon, \ldots, \epsilon}_{n-2 \text{ light}}\big), \quad 0 < \epsilon \ll 1$$

- ▶ all light points may coincide, but not with the heavy points p_1 , p_2
- \mathcal{A} -stable curve \Leftrightarrow chain of \mathbb{P}^1 's with heavy points at the end
- ► $\overline{\text{LM}}_n = \dots \text{Bl}_{\binom{n-2}{2}} \text{Bl}_{n-2} \mathbb{P}^{n-3}$ blow-up n-2 points, all lines,...

$$\overline{\mathsf{LM}}_n := \overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A} = \Big(\underbrace{1, 1}_{2 \text{ heavy}}, \underbrace{\epsilon, \ldots, \epsilon}_{n-2 \text{ light}}\Big), \quad 0 < \epsilon \ll 1$$

- ▶ all light points may coincide, but not with the heavy points p_1 , p_2
- \mathcal{A} -stable curve \Leftrightarrow chain of \mathbb{P}^1 's with heavy points at the end
- ► $\overline{\text{LM}}_n = \dots \text{Bl}_{\binom{n-2}{3}} \text{Bl}_{\binom{n-2}{2}} \text{Bl}_{n-2} \mathbb{P}^{n-3}$ blow-up n-2 points, all lines,...

Example: An $S_2 \times S_3$ -invariant full, exceptional collection on LM₅

$$-\psi_1, \quad -\psi_2, \quad \{\pi_i^*\mathcal{O}(-1)\}_{i=3,4,5}, \quad \mathcal{O}.$$

$$\overline{\mathsf{LM}}_n := \overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A} = \Big(\underbrace{1, 1}_{2 \text{ heavy}}, \underbrace{\epsilon, \ldots, \epsilon}_{n-2 \text{ light}}\Big), \quad 0 < \epsilon \ll 1$$

- ▶ all light points may coincide, but not with the heavy points p_1 , p_2
- \mathcal{A} -stable curve \Leftrightarrow chain of \mathbb{P}^1 's with heavy points at the end
- ► $\overline{\text{LM}}_n = \dots \text{Bl}_{\binom{n-2}{3}} \text{Bl}_{\binom{n-2}{2}} \text{Bl}_{n-2} \mathbb{P}^{n-3}$ blow-up n-2 points, all lines,...

Example: An $S_2 \times S_3$ -invariant full, exceptional collection on LM₅

$$-\psi_1, \quad -\psi_2, \quad \{\pi_i^*\mathcal{O}(-1)\}_{i=3,4,5}, \quad \mathcal{O}.$$

$$\overline{\mathsf{M}}_{p,q} := \overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A} = \left(\underbrace{a+\eta, \dots, a+\eta}_{p \text{ heavy}}, \underbrace{\epsilon, \dots, \epsilon}_{q \text{ light}}\right)$$

$$\overline{\mathsf{M}}_{p,q} := \overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A} = \left(\underbrace{a+\eta, \dots, a+\eta}_{p \text{ heavy}}, \underbrace{\epsilon, \dots, \epsilon}_{q \text{ light}}\right)$$

 $p \ge 2$, $q \ge 0$, $pa + q\epsilon = 2$, $0 < \epsilon, \eta \ll 1$

$$\overline{\mathsf{M}}_{p,q} := \overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A} = \left(\underbrace{a+\eta, \dots, a+\eta}_{p \text{ heavy}}, \underbrace{\epsilon, \dots, \epsilon}_{q \text{ light}}\right)$$

 $\label{eq:planck} \textbf{\textit{p}} \geq 2, \quad \textbf{\textit{q}} \geq \textbf{0}, \quad \textbf{\textit{pa}} + \textbf{\textit{q}} \epsilon = 2, \quad \textbf{0} < \epsilon, \eta \ll 1$

There is a birational morphism

$$\phi: \overline{\mathsf{M}}_{p,q} \to (\mathbb{P}^1)^{(p+q)} /\!\!/_{\mathcal{O}(a,\dots,a,\epsilon,\dots,\epsilon)} \mathsf{PGL}_2$$

$$\overline{\mathsf{M}}_{p,q} := \overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A} = \left(\underbrace{a+\eta, \dots, a+\eta}_{p \text{ heavy}}, \underbrace{\epsilon, \dots, \epsilon}_{q \text{ light}}\right)$$

 $\label{eq:planck} \textbf{\textit{p}} \geq 2, \quad \textbf{\textit{q}} \geq \textbf{0}, \quad \textbf{\textit{pa}} + \textbf{\textit{q}} \epsilon = 2, \quad \textbf{0} < \epsilon, \eta \ll 1$

There is a birational morphism

$$\phi: \overline{\mathsf{M}}_{p,q} \to (\mathbb{P}^1)^{(p+q)} /\!\!/_{\mathcal{O}(a,\dots,a,\epsilon,\dots,\epsilon)} \mathsf{PGL}_2$$

• If p or q is odd, ϕ is an isomorphism; C is A-stable $\Leftrightarrow C = \mathbb{P}^1$

$$\overline{\mathsf{M}}_{p,q} := \overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A} = \left(\underbrace{a+\eta, \dots, a+\eta}_{p \text{ heavy}}, \underbrace{\epsilon, \dots, \epsilon}_{q \text{ light}}\right)$$

 $\label{eq:planck} \textbf{\textit{p}} \geq 2, \quad \textbf{\textit{q}} \geq \textbf{0}, \quad \textbf{\textit{pa}} + \textbf{\textit{q}} \epsilon = 2, \quad \textbf{0} < \epsilon, \eta \ll 1$

There is a birational morphism

$$\phi: \overline{\mathsf{M}}_{p,q} \to (\mathbb{P}^1)^{(p+q)} /\!\!/_{\mathcal{O}(a,\dots,a,\epsilon,\dots,\epsilon)} \mathsf{PGL}_2$$

If p or q is odd, φ is an isomorphism; C is A-stable ⇔ C = P¹
If p and q are even, φ is the Kirwan desingularization:

$$\overline{\mathsf{M}}_{p,q} := \overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A} = \left(\underbrace{a+\eta, \dots, a+\eta}_{p \text{ heavy}}, \underbrace{\epsilon, \dots, \epsilon}_{q \text{ light}}\right)$$

 $\label{eq:planck} \textbf{\textit{p}} \geq 2, \quad \textbf{\textit{q}} \geq \textbf{0}, \quad \textbf{\textit{pa}} + \textbf{\textit{q}} \epsilon = 2, \quad \textbf{0} < \epsilon, \eta \ll 1$

There is a birational morphism

$$\phi: \overline{\mathsf{M}}_{p,q} \to (\mathbb{P}^1)^{(p+q)} /\!\!/_{\mathcal{O}(a,\dots,a,\epsilon,\dots,\epsilon)} \mathsf{PGL}_2$$

If p or q is odd, φ is an isomorphism; C is A-stable ⇔ C = P¹
If p and q are even, φ is the Kirwan desingularization:

$$\delta_{\mathcal{T},\mathcal{T}^c} = \mathbb{P}^k \times \mathbb{P}^k \mapsto pt, \quad k = \frac{p+q}{2} - 2$$

$$\overline{\mathsf{M}}_{p,q} := \overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A} = \left(\underbrace{a+\eta, \dots, a+\eta}_{p \text{ heavy}}, \underbrace{\epsilon, \dots, \epsilon}_{q \text{ light}}\right)$$

 $\label{eq:planck} p \geq 2, \quad q \geq 0, \quad pa+q\epsilon=2, \quad 0 < \epsilon, \eta \ll 1$

There is a birational morphism

$$\phi: \overline{\mathsf{M}}_{p,q} \to (\mathbb{P}^1)^{(p+q)} /\!\!/_{\mathcal{O}(a,\dots,a,\epsilon,\dots,\epsilon)} \mathsf{PGL}_2$$

If p or q is odd, φ is an isomorphism; C is A-stable ⇔ C = P¹
If p and q are even, φ is the Kirwan desingularization:

$$\delta_{\mathcal{T},\mathcal{T}^c} = \mathbb{P}^k \times \mathbb{P}^k \mapsto pt, \quad k = \frac{p+q}{2} - 2$$

 \mathcal{A} -stable, reducible \Leftrightarrow two components, marked by partition $T \sqcup T^c$

$$\overline{\mathsf{M}}_{p,q} := \overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A} = \left(\underbrace{a+\eta, \dots, a+\eta}_{p \text{ heavy}}, \underbrace{\epsilon, \dots, \epsilon}_{q \text{ light}}\right)$$

 $\label{eq:planck} p \geq 2, \quad q \geq 0, \quad pa+q\epsilon=2, \quad 0 < \epsilon, \eta \ll 1$

There is a birational morphism

$$\phi: \overline{\mathsf{M}}_{p,q} \to (\mathbb{P}^1)^{(p+q)} /\!\!/_{\mathcal{O}(a,\dots,a,\epsilon,\dots,\epsilon)} \mathsf{PGL}_2$$

If p or q is odd, φ is an isomorphism; C is A-stable ⇔ C = P¹
If p and q are even, φ is the Kirwan desingularization:

$$\delta_{\mathcal{T},\mathcal{T}^c} = \mathbb{P}^k \times \mathbb{P}^k \mapsto pt, \quad k = \frac{p+q}{2} - 2$$

 \mathcal{A} -stable, reducible \Leftrightarrow two components, marked by partition $T \sqcup T^c$

$$\overline{\mathsf{M}}_p := \overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A} = \left(\underbrace{a, \dots, a}_{p \text{ heavy}}\right), \quad a = \begin{cases} \frac{1}{r} & \text{if } p = 2r + 1\\ \frac{1}{r-1} & \text{if } p = 2r \end{cases}$$

$$\overline{\mathsf{M}}_p := \overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A} = \left(\underbrace{a, \dots, a}_{p \text{ heavy}}\right), \quad a = \begin{cases} \frac{1}{r} & \text{if } p = 2r + 1\\ \frac{1}{r-1} & \text{if } p = 2r \end{cases}$$

▶ If p odd, $\overline{\mathsf{M}}_{p} = (\mathbb{P}^{1})^{p} /\!\!/_{\mathcal{O}(a,...,a)} \mathsf{PGL}_{2}$

$$\overline{\mathsf{M}}_{p} := \overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A} = \left(\underbrace{a, \dots, a}_{p \text{ heavy}}\right), \quad a = \begin{cases} \frac{1}{r} & \text{if } p = 2r+1\\ \frac{1}{r-1} & \text{if } p = 2r \end{cases}$$

.

► If p odd, $\overline{\mathsf{M}}_p = (\mathbb{P}^1)^p /\!\!/_{\mathcal{O}(a,...,a)} \mathsf{PGL}_2$

▶ If *p* even, $\overline{\mathsf{M}}_{p} \to (\mathbb{P}^{1})^{p} /\!\!/_{\mathcal{O}(a,...,a)} \mathsf{PGL}_{2}$ blows-up $\frac{1}{2} \binom{p}{2}$ singular points

$$\overline{\mathsf{M}}_{p} := \overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A} = \left(\underbrace{a, \dots, a}_{p \text{ heavy}}\right), \quad a = \begin{cases} \frac{1}{r} & \text{if } p = 2r+1\\ \frac{1}{r-1} & \text{if } p = 2r \end{cases}$$

If p odd, M
p = (P¹)^p //{O(a,...,a)} PGL₂
 If p even, M
p → (P¹)^p //{O(a,...,a)} PGL₂ blows-up ¹/₂(^p/₂) singular points

Example (The space $\overline{\mathrm{M}}_6 \cong \overline{\mathcal{M}}_{0,6}$)

$$\phi: \overline{\mathcal{M}}_{0,6} o (\mathbb{P}^1)^6 \ /\!\!/_{\mathcal{O}(a,\dots,a)} \operatorname{PGL}_2 = X \subseteq \mathbb{P}^4$$
 Segre cubic

The $M_{\rho,q}$ spaces when q = 0

$$\overline{\mathsf{M}}_{p} := \overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A} = \left(\underbrace{a, \dots, a}_{p \text{ heavy}}\right), \quad a = \begin{cases} \frac{1}{r} & \text{if } p = 2r+1\\ \frac{1}{r-1} & \text{if } p = 2r \end{cases}$$

If p odd, M
p = (P¹)^p #{O(a,...,a)} PGL₂
If p even, M
p → (P¹)^p #{O(a,...,a)} PGL₂ blows-up ½(^p/₂) singular points
EXAMPLE (THE SPACE M
₆ ≃ M
_{0,6})
φ: M
{0,6} → (P¹)⁶ #{O(a,...,a)} PGL₂ = X ⊆ P⁴ Segre cubic

 $\delta_{\mathcal{T},\mathcal{T}^c} = \mathbb{P}^1 \times \mathbb{P}^1 \mapsto pt$ (blow-up the 10 nodes of X)

$$\overline{\mathsf{M}}_{p} := \overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A} = \left(\underbrace{a, \dots, a}_{p \text{ heavy}}\right), \quad a = \begin{cases} \frac{1}{r} & \text{if } p = 2r+1\\ \frac{1}{r-1} & \text{if } p = 2r \end{cases}$$

If p odd, M
p = (P¹)^p #{O(a,...,a)} PGL₂
If p even, M
p → (P¹)^p #{O(a,...,a)} PGL₂ blows-up ¹/₂(^p/₂) singular points
EXAMPLE (THE SPACE M
₆ ≅ M
_{0,6})

$$\phi:\overline{\mathcal{M}}_{0,6}
ightarrow (\mathbb{P}^1)^6 \mathop{/\!\!/}_{\mathcal{O}(a,...,a)}\mathsf{PGL}_2 = X\subseteq \mathbb{P}^4$$
 Segre cubic

 $\delta_{\mathcal{T},\mathcal{T}^c} = \mathbb{P}^1 \times \mathbb{P}^1 \mapsto pt \quad (\text{blow-up the 10 nodes of } X)$ An S_6 -invariant full, exceptional collection on $\overline{\mathcal{M}}_{0.6}$:

$$\overline{\mathsf{M}}_{p} := \overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A} = \left(\underbrace{a, \dots, a}_{p \text{ heavy}}\right), \quad a = \begin{cases} \frac{1}{r} & \text{if } p = 2r+1\\ \frac{1}{r-1} & \text{if } p = 2r \end{cases}$$

If p odd, M
p = (P¹)^p #{O(a,...,a)} PGL₂
If p even, M
p → (P¹)^p #{O(a,...,a)} PGL₂ blows-up ½(^p₂) singular points
EXAMPLE (THE SPACE M
₆ ≅ M
_{0,6})

$$\phi:\overline{\mathcal{M}}_{0,6}
ightarrow (\mathbb{P}^1)^6 \mathop{/\!\!/}_{\mathcal{O}(a,...,a)}\mathsf{PGL}_2 = X\subseteq \mathbb{P}^4$$
 Segre cubic

 $\delta_{\mathcal{T},\mathcal{T}^c} = \mathbb{P}^1 \times \mathbb{P}^1 \mapsto pt$ (blow-up the 10 nodes of X)

An S_6 -invariant full, exceptional collection on $\overline{\mathcal{M}}_{0,6}$:

 $\{\mathcal{O}_{\delta_{\mathcal{T},\mathcal{T}^{c}}}(-1,-1)\}, \ \mathcal{O}, \ \{\pi_{ij}^{*}\mathcal{O}(1)\}, \ \{\pi_{i}^{*}\Omega_{\overline{\mathcal{M}}_{0,5}}(\mathsf{log})\}, \ \phi^{*}\mathcal{O}_{X}(1), \ \Omega_{\overline{\mathcal{M}}_{0,6}}(\mathsf{log})\}$

$$\overline{\mathsf{M}}_{p} := \overline{\mathcal{M}}_{\mathcal{A}}, \quad \mathcal{A} = \left(\underbrace{a, \dots, a}_{p \text{ heavy}}\right), \quad a = \begin{cases} \frac{1}{r} & \text{if } p = 2r+1\\ \frac{1}{r-1} & \text{if } p = 2r \end{cases}$$

If p odd, M
p = (P¹)^p #{O(a,...,a)} PGL₂
If p even, M
p → (P¹)^p #{O(a,...,a)} PGL₂ blows-up ½(^p₂) singular points
EXAMPLE (THE SPACE M
₆ ≅ M
_{0,6})

$$\phi:\overline{\mathcal{M}}_{0,6}
ightarrow (\mathbb{P}^1)^6 \mathop{/\!\!/}_{\mathcal{O}(a,...,a)}\mathsf{PGL}_2 = X\subseteq \mathbb{P}^4$$
 Segre cubic

 $\delta_{\mathcal{T},\mathcal{T}^c} = \mathbb{P}^1 \times \mathbb{P}^1 \mapsto pt$ (blow-up the 10 nodes of X)

An S_6 -invariant full, exceptional collection on $\overline{\mathcal{M}}_{0,6}$:

 $\{\mathcal{O}_{\delta_{\mathcal{T},\mathcal{T}^{c}}}(-1,-1)\}, \ \mathcal{O}, \ \{\pi_{ij}^{*}\mathcal{O}(1)\}, \ \{\pi_{i}^{*}\Omega_{\overline{\mathcal{M}}_{0,5}}(\mathsf{log})\}, \ \phi^{*}\mathcal{O}_{X}(1), \ \Omega_{\overline{\mathcal{M}}_{0,6}}(\mathsf{log})\}$

THEOREM (C.-TEVELEV, 2017)

It suffices to find full, invariant, exceptional collections on:

THEOREM (C.-TEVELEV, 2017)

It suffices to find full, invariant, exceptional collections on:

- Kapranov models \mathbb{P}^{m-3} , for all m ($S_1 \times S_{m-1}$ -invariant),
- Losev-Manin spaces \overline{LM}_m , for all m ($S_2 \times S_{m-2}$ -invariant),
- $\overline{M}_{p,q}$ spaces, for all $p \ge 2$, $q \ge 0$ ($S_p \times S_q$ -invariant).
It suffices to find full, invariant, exceptional collections on:

- Kapranov models \mathbb{P}^{m-3} , for all m ($S_1 \times S_{m-1}$ -invariant),
- Losev-Manin spaces \overline{LM}_m , for all m ($S_2 \times S_{m-2}$ -invariant),
- $\overline{M}_{p,q}$ spaces, for all $p \ge 2$, $q \ge 0$ ($S_p \times S_q$ -invariant).

Idea of proof: as Bergstrom-Minabe, use reduction maps

It suffices to find full, invariant, exceptional collections on:

- Kapranov models \mathbb{P}^{m-3} , for all m ($S_1 \times S_{m-1}$ -invariant),
- Losev-Manin spaces \overline{LM}_m , for all $m (S_2 \times S_{m-2}$ -invariant),
- $\overline{M}_{p,q}$ spaces, for all $p \ge 2$, $q \ge 0$ ($S_p \times S_q$ -invariant).

Idea of proof: as Bergstrom-Minabe, use reduction maps

$$\overline{\mathcal{M}}_{0,n} = \overline{\mathcal{M}}_{(1,\dots,1)} \to \overline{\mathcal{M}}_{(\frac{1}{2},\dots,\frac{1}{2})} \to \dots \to \overline{\mathcal{M}}_{(\frac{1}{r},\dots,\frac{1}{r})} = \overline{\mathsf{M}}_{n}$$

It suffices to find full, invariant, exceptional collections on:

- Kapranov models \mathbb{P}^{m-3} , for all m ($S_1 \times S_{m-1}$ -invariant),
- Losev-Manin spaces \overline{LM}_m , for all $m (S_2 \times S_{m-2}$ -invariant),
- $\overline{M}_{p,q}$ spaces, for all $p \ge 2$, $q \ge 0$ ($S_p \times S_q$ -invariant).

Idea of proof: as Bergstrom-Minabe, use reduction maps

$$\overline{\mathcal{M}}_{0,n} = \overline{\mathcal{M}}_{(1,\dots,1)} \to \overline{\mathcal{M}}_{(\frac{1}{2},\dots,\frac{1}{2})} \to \dots \to \overline{\mathcal{M}}_{(\frac{1}{r},\dots,\frac{1}{r})} = \overline{\mathsf{M}}_{n}$$

(at each step, blow-up loci $\overline{\mathcal{M}}_{(1,...,1,a...,a)}$ intersecting transversely)

It suffices to find full, invariant, exceptional collections on:

- Kapranov models \mathbb{P}^{m-3} , for all m ($S_1 \times S_{m-1}$ -invariant),
- Losev-Manin spaces \overline{LM}_m , for all $m (S_2 \times S_{m-2}$ -invariant),
- $\overline{M}_{p,q}$ spaces, for all $p \ge 2$, $q \ge 0$ ($S_p \times S_q$ -invariant).

Idea of proof: as Bergstrom-Minabe, use reduction maps

$$\overline{\mathcal{M}}_{0,n} = \overline{\mathcal{M}}_{(1,\dots,1)} \to \overline{\mathcal{M}}_{(\frac{1}{2},\dots,\frac{1}{2})} \to \dots \to \overline{\mathcal{M}}_{(\frac{1}{r},\dots,\frac{1}{r})} = \overline{\mathsf{M}}_{n}$$

(at each step, blow-up loci $\overline{\mathcal{M}}_{(1,...,1,a...,a)}$ intersecting transversely)

$$\overline{\mathcal{M}}_{(\underbrace{1,\ldots,1}_{p},\underbrace{a\ldots,a}_{q})} \to \ldots \to \overline{\mathcal{M}}_{(1,\ldots,1,\epsilon\ldots,\epsilon)} \to \ldots \to \overline{\mathcal{M}}_{(a,\ldots,a,\epsilon\ldots,\epsilon)}$$

It suffices to find full, invariant, exceptional collections on:

- Kapranov models \mathbb{P}^{m-3} , for all m ($S_1 \times S_{m-1}$ -invariant),
- Losev-Manin spaces \overline{LM}_m , for all $m (S_2 \times S_{m-2}$ -invariant),
- $\overline{M}_{p,q}$ spaces, for all $p \ge 2$, $q \ge 0$ ($S_p \times S_q$ -invariant).

Idea of proof: as Bergstrom-Minabe, use reduction maps

$$\overline{\mathcal{M}}_{0,n} = \overline{\mathcal{M}}_{(1,\dots,1)} \to \overline{\mathcal{M}}_{(\frac{1}{2},\dots,\frac{1}{2})} \to \dots \to \overline{\mathcal{M}}_{(\frac{1}{r},\dots,\frac{1}{r})} = \overline{\mathsf{M}}_{n}$$

(at each step, blow-up loci $\overline{\mathcal{M}}_{(1,...,1,a...,a)}$ intersecting transversely)

$$\overline{\mathcal{M}}_{(\underbrace{1,\ldots,1}_{p},\underbrace{a\ldots,a}_{q})} \to \ldots \to \overline{\mathcal{M}}_{(1,\ldots,1,\epsilon\ldots,\epsilon)} \to \ldots \to \overline{\mathcal{M}}_{(a,\ldots,a,\epsilon\ldots,\epsilon)}$$

Reduce weights until $\overline{\mathcal{M}}_{(a,...,a,\epsilon...,\epsilon)}$ is one of \mathbb{P}^{m-3} , $\overline{\mathsf{LM}}_m$, $\overline{\mathsf{M}}_{p,q}$

It suffices to find full, invariant, exceptional collections on:

- Kapranov models \mathbb{P}^{m-3} , for all m ($S_1 \times S_{m-1}$ -invariant),
- Losev-Manin spaces \overline{LM}_m , for all $m (S_2 \times S_{m-2}$ -invariant),
- $\overline{M}_{p,q}$ spaces, for all $p \ge 2$, $q \ge 0$ ($S_p \times S_q$ -invariant).

Idea of proof: as Bergstrom-Minabe, use reduction maps

$$\overline{\mathcal{M}}_{0,n} = \overline{\mathcal{M}}_{(1,\dots,1)} \to \overline{\mathcal{M}}_{(\frac{1}{2},\dots,\frac{1}{2})} \to \dots \to \overline{\mathcal{M}}_{(\frac{1}{r},\dots,\frac{1}{r})} = \overline{\mathsf{M}}_{n}$$

(at each step, blow-up loci $\overline{\mathcal{M}}_{(1,...,1,a...,a)}$ intersecting transversely)

$$\overline{\mathcal{M}}_{(\underbrace{1,\ldots,1}_{p},\underbrace{a\ldots,a}_{q})} \to \ldots \to \overline{\mathcal{M}}_{(1,\ldots,1,\epsilon\ldots,\epsilon)} \to \ldots \to \overline{\mathcal{M}}_{(a,\ldots,a,\epsilon\ldots,\epsilon)}$$

Reduce weights until $\overline{\mathcal{M}}_{(a,...,a,\epsilon...,\epsilon)}$ is one of \mathbb{P}^{m-3} , $\overline{\mathsf{LM}}_m$, $\overline{\mathsf{M}}_{p,q}$

 $Y_1, Y_2 \subseteq X$ codimension n + 1, intersecting transversely

 $Y_1, Y_2 \subseteq X$ codimension n + 1, intersecting transversely $q: \tilde{X} \to X$ blow-up along Y_1, Y_2 (any order)

 $Y_1, Y_2 \subseteq X$ codimension n + 1, intersecting transversely $q: \tilde{X} \to X$ blow-up along Y_1, Y_2 (any order) $E_i = p^{-1}(Y_i), \quad E_{12} = p^{-1}(Y_{12}), \quad Y_{12} := Y_1 \cap Y_2, \quad Y_{\emptyset} := X$

 $Y_1, Y_2 \subseteq X$ codimension n + 1, intersecting transversely $q: \tilde{X} \to X$ blow-up along Y_1, Y_2 (any order) $E_i = p^{-1}(Y_i), \quad E_{12} = p^{-1}(Y_{12}), \quad Y_{12} := Y_1 \cap Y_2, \quad Y_{\emptyset} := X$

G finite group, $G \curvearrowright X$ permutes Y_1, Y_2

 $\begin{array}{l} Y_1, Y_2 \subseteq X \text{ codimension } n+1, \text{ intersecting transversely} \\ q: \tilde{X} \to X \text{ blow-up along } Y_1, Y_2 \text{ (any order)} \\ E_i = p^{-1}(Y_i), \quad E_{12} = p^{-1}(Y_{12}), \quad Y_{12} := Y_1 \cap Y_2, \quad Y_{\emptyset} := X \\ \text{C finite group } C \subseteq X \text{ permutes } Y_2 X_2 \end{array}$

G finite group, $G \curvearrowright X$ permutes Y_1, Y_2

 $I = \emptyset, \{1\}, \{2\}, \{1,2\}$: $G_I \subseteq G$ the stabilizer of Y_I

 $Y_1, Y_2 \subseteq X$ codimension n + 1, intersecting transversely $q: \tilde{X} \to X$ blow-up along Y_1, Y_2 (any order) $E_i = p^{-1}(Y_i), \quad E_{12} = p^{-1}(Y_{12}), \quad Y_{12} := Y_1 \cap Y_2, \quad Y_{\emptyset} := X$

G finite group, $G \curvearrowright X$ permutes Y_1, Y_2 $I = \emptyset, \{1\}, \{2\}, \{1, 2\}$: $G_I \subseteq G$ the stabilizer of Y_I

 $\{F_{\beta}^{I}\}_{\beta} = G_{I}$ -invariant, full, exceptional collection on Y_{I}

 \Rightarrow *G*-invariant, full, exceptional collection on \tilde{X} :

 $Y_1, Y_2 \subseteq X$ codimension n + 1, intersecting transversely $q: \tilde{X} \to X$ blow-up along Y_1, Y_2 (any order) $E_i = p^{-1}(Y_i), \quad E_{12} = p^{-1}(Y_{12}), \quad Y_{12} := Y_1 \cap Y_2, \quad Y_{\emptyset} := X$

G finite group, $G \curvearrowright X$ permutes Y_1, Y_2

 $I = \emptyset, \{1\}, \{2\}, \{1,2\}$: $G_I \subseteq G$ the stabilizer of Y_I

 $\{F_{\beta}^{I}\}_{\beta} = G_{I}$ -invariant, full, exceptional collection on Y_{I}

 \Rightarrow *G*-invariant, full, exceptional collection on \tilde{X} :

► $\{q^*F_{\beta}^{12} \otimes \mathcal{O}_{E_{12}}(j_1E_1 + j_2E_2)\}_{\beta,j_i}$, decreasing $j_1 + j_2$ $(0 < j_1, j_2 \le n)$

- ► $\{q^*F^i_\beta \otimes \mathcal{O}_{E_i}(jE_i)\}_{\beta,j}$, decreasing j (0 < $j \le n$)
- $\blacktriangleright \{q^* F^{\emptyset}_{\beta}\}_{\beta}$

 $Y_1, Y_2 \subseteq X$ codimension n + 1, intersecting transversely $q: \tilde{X} \to X$ blow-up along Y_1, Y_2 (any order) $E_i = p^{-1}(Y_i), \quad E_{12} = p^{-1}(Y_{12}), \quad Y_{12} := Y_1 \cap Y_2, \quad Y_{\emptyset} := X$

G finite group, $G \curvearrowright X$ permutes Y_1, Y_2

 $I = \emptyset, \{1\}, \{2\}, \{1,2\}$: $G_I \subseteq G$ the stabilizer of Y_I

 $\{F_{\beta}^{I}\}_{\beta} = G_{I}$ -invariant, full, exceptional collection on Y_{I}

 \Rightarrow *G*-invariant, full, exceptional collection on \tilde{X} :

► $\{q^*F_{\beta}^{12} \otimes \mathcal{O}_{E_{12}}(j_1E_1 + j_2E_2)\}_{\beta,j_i}$, decreasing $j_1 + j_2$ $(0 < j_1, j_2 \le n)$

- ► $\{q^*F^i_\beta \otimes \mathcal{O}_{E_i}(jE_i)\}_{\beta,j}$, decreasing j (0 < $j \le n$)
- $\blacktriangleright \{q^* F^{\emptyset}_{\beta}\}_{\beta}$

 \overline{LM}_{n} , $\overline{M}_{2,n-2}$ have $S_2 \times S_{n-2}$ -invariant, full exceptional collections for all n.

 \overline{LM}_{n} , $\overline{M}_{2,n-2}$ have $S_2 \times S_{n-2}$ -invariant, full exceptional collections for all n.

THEOREM (C.-TEVELEV, 2020)

 $\overline{M}_{p,q}$ has an $S_p \times S_q$ -invariant, full exceptional collection for all p, q.

 \overline{LM}_{n} , $\overline{M}_{2,n-2}$ have $S_2 \times S_{n-2}$ -invariant, full exceptional collections for all n.

THEOREM (C.-TEVELEV, 2020)

 $\overline{M}_{p,q}$ has an $S_p \times S_q$ -invariant, full exceptional collection for all p, q.

Different types of objects on $\overline{M}_{p,q}$:

 \overline{LM}_n , $\overline{M}_{2,n-2}$ have $S_2 \times S_{n-2}$ -invariant, full exceptional collections for all n.

THEOREM (C.-TEVELEV, 2020)

 $\overline{M}_{p,q}$ has an $S_p \times S_q$ -invariant, full exceptional collection for all p, q.

Different types of objects on $\overline{M}_{p,q}$:

- p odd: vector bundles $\{F_{I,E}\}$
- ▶ *p* even, *q* odd: vector bundles $\{F_{I,E}\}$, torsion sheaves $\{\mathcal{T}_{I,E}\}$
- p, q even: three types

 $\{\mathcal{O}_{\delta_{T,T^c}}(-a,-b)\}, \text{ vector bundles } \{F_{l,E}\}, \text{ complexes } \{\mathcal{\ddot{T}}_{l,E}\}$

Here $l \ge 0$ integer, E = set of markings (for an appropriate range)

 \overline{LM}_n , $\overline{M}_{2,n-2}$ have $S_2 \times S_{n-2}$ -invariant, full exceptional collections for all n.

THEOREM (C.-TEVELEV, 2020)

 $\overline{M}_{p,q}$ has an $S_p \times S_q$ -invariant, full exceptional collection for all p, q.

Different types of objects on $\overline{M}_{p,q}$:

- p odd: vector bundles $\{F_{I,E}\}$
- ▶ *p* even, *q* odd: vector bundles $\{F_{I,E}\}$, torsion sheaves $\{\mathcal{T}_{I,E}\}$
- p, q even: three types

 $\{\mathcal{O}_{\delta_{T,T^c}}(-a,-b)\}, \text{ vector bundles } \{F_{l,E}\}, \text{ complexes } \{\mathcal{\ddot{T}}_{l,E}\}$

Here $l \ge 0$ integer, E = set of markings (for an appropriate range)

Universal family $\pi : \mathcal{U} \to \overline{\mathsf{M}}_{p,q}$, with sections σ_i

Universal family $\pi : \mathcal{U} \to \overline{\mathsf{M}}_{p,q}$, with sections σ_i

$$i \in \Sigma := \underbrace{P}_{heavy} \sqcup \underbrace{Q}_{light}, \ |P| = p, \ |Q| = q$$

Universal family $\pi : \mathcal{U} \to \overline{\mathsf{M}}_{p,q}$, with sections σ_i

$$i \in \Sigma := \underbrace{P}_{heavy} \sqcup \underbrace{Q}_{light}, \ |P| = p, \ |Q| = q$$

If p or q is odd, then π is a \mathbb{P}^1 -bundle

Universal family $\pi : \mathcal{U} \to \overline{\mathsf{M}}_{p,q}$, with sections σ_i

$$i \in \Sigma := \underbrace{P}_{heavy} \sqcup \underbrace{Q}_{light}, \ |P| = p, \ |Q| = q$$

If p or q is odd, then π is a \mathbb{P}^1 -bundle

DEFINITION (p OR q ODD) For $l \ge 0$, $E \subseteq \Sigma$, |E| = e, l + e even, let

$$F_{I,E} = R\pi_* \left(\omega_{\pi^2}^{rac{e-I}{2}} (\sum_{i \in E} \sigma_i)
ight)$$
 (vector bundle of rank $I + 1$)

Universal family $\pi : \mathcal{U} \to \overline{\mathsf{M}}_{p,q}$, with sections σ_i

$$i \in \Sigma := \underbrace{P}_{heavy} \sqcup \underbrace{Q}_{light}, \ |P| = p, \ |Q| = q$$

If p or q is odd, then π is a \mathbb{P}^1 -bundle

DEFINITION (p OR q ODD) For $l \ge 0$, $E \subseteq \Sigma$, |E| = e, l + e even, let

$$F_{I,E} = R\pi_* \left(\omega_{\pi}^{\frac{e-i}{2}} (\sum_{i \in E} \sigma_i) \right)$$
 (vector bundle of rank $I + 1$)

If p and q even, \mathcal{U} is also a Hassett space. Define vector bundles

$$F_{l,E} = R\pi_* \left(\omega_{\pi}^{\frac{e-l}{2}} (\sum_{i \in E} \sigma_i) (\dots \text{boundary}) \right) \text{ on } \overline{\mathsf{M}}_{p,q}, \quad \mathcal{U}$$

Universal family $\pi : \mathcal{U} \to \overline{\mathsf{M}}_{p,q}$, with sections σ_i

$$i \in \Sigma := \underbrace{P}_{heavy} \sqcup \underbrace{Q}_{light}, \ |P| = p, \ |Q| = q$$

If p or q is odd, then π is a \mathbb{P}^1 -bundle

DEFINITION (p OR q ODD) For $l \ge 0$, $E \subseteq \Sigma$, |E| = e, l + e even, let

$$F_{I,E} = R\pi_* \left(\omega_{\pi}^{\frac{e-i}{2}} (\sum_{i \in E} \sigma_i) \right)$$
 (vector bundle of rank $I + 1$)

If p and q even, \mathcal{U} is also a Hassett space. Define vector bundles

$$F_{l,E} = R\pi_* \left(\omega_{\pi}^{\frac{e-l}{2}} (\sum_{i \in E} \sigma_i) (\dots \text{boundary}) \right) \text{ on } \overline{\mathsf{M}}_{p,q}, \quad \mathcal{U}$$

Markings
$$\Sigma = \underbrace{P}_{heavy} \sqcup \underbrace{Q}_{light}, |P| = p, |Q| = q$$

Markings
$$\Sigma = \underbrace{P}_{heavy} \sqcup \underbrace{Q}_{light}, |P| = p, |Q| = q$$

 $E \subseteq \Sigma: \quad E = \underbrace{E_p}_{heavy} \sqcup \underbrace{E_q}_{light}, |E_p| = e_p, |E_q| = e_q, e = e_p + e_q$

Markings
$$\Sigma = \underbrace{P}_{heavy} \sqcup \underbrace{Q}_{light}, |P| = p, |Q| = q$$

 $E \subseteq \Sigma: \quad E = \underbrace{E_p}_{heavy} \sqcup \underbrace{E_q}_{light}, |E_p| = e_p, |E_q| = e_q, e = e_p + e_q$

Theorem A (p odd, any q)

For $p = 2r + 1 \ge 1$, $q \ge 0$, $\overline{M}_{p,q}$ has an $S_p \times S_q$ -invariant, full exceptional collection given by the vector bundles $F_{I,E}$ (I + e even) subject to

 $l+\min(e_p,p-e_p)\leq r-1.$

The order is by increasing e_q , increasing e_p if equal E_q .

Markings
$$\Sigma = \underbrace{P}_{heavy} \sqcup \underbrace{Q}_{light}, |P| = p, |Q| = q$$

 $E \subseteq \Sigma: \quad E = \underbrace{E_p}_{heavy} \sqcup \underbrace{E_q}_{light}, |E_p| = e_p, |E_q| = e_q, e = e_p + e_q$

Theorem A (p odd, any q)

For $p = 2r + 1 \ge 1$, $q \ge 0$, $\overline{M}_{p,q}$ has an $S_p \times S_q$ -invariant, full exceptional collection given by the vector bundles $F_{I,E}$ (I + e even) subject to

 $l + \min(e_p, p - e_p) \le r - 1.$

The order is by increasing e_q , increasing e_p if equal E_q .

EXAMPLE $(p = 5, q = 0, \overline{M}_5 \cong \overline{\mathcal{M}}_{0.5})$

• $l = 0, e_p = 0$: one line bundle $\rightsquigarrow O$

► I = 0, $e_p = 4$: five line bundles $\rightsquigarrow \{\pi_i^* \mathcal{O}(1)\}_{i=1,2,3,4,5}$

▶ I = 1, $e_p = 5$: one rank 2 bundle $\rightsquigarrow \Omega_{\overline{M}_{0,5}}(\log)$

Markings
$$\Sigma = \underbrace{P}_{heavy} \sqcup \underbrace{Q}_{light}, |P| = p, |Q| = q$$

 $E \subseteq \Sigma: \quad E = \underbrace{E_p}_{heavy} \sqcup \underbrace{E_q}_{light}, |E_p| = e_p, |E_q| = e_q, e = e_p + e_q$

Theorem A (p odd, any q)

For $p = 2r + 1 \ge 1$, $q \ge 0$, $\overline{M}_{p,q}$ has an $S_p \times S_q$ -invariant, full exceptional collection given by the vector bundles $F_{I,E}$ (I + e even) subject to

 $l + \min(e_p, p - e_p) \le r - 1.$

The order is by increasing e_q , increasing e_p if equal E_q .

EXAMPLE $(p = 5, q = 0, \overline{M}_5 \cong \overline{\mathcal{M}}_{0.5})$

• $l = 0, e_p = 0$: one line bundle $\rightsquigarrow O$

► I = 0, $e_p = 4$: five line bundles $\rightsquigarrow \{\pi_i^* \mathcal{O}(1)\}_{i=1,2,3,4,5}$

▶ I = 1, $e_p = 5$: one rank 2 bundle $\rightsquigarrow \Omega_{\overline{M}_{0,5}}(\log)$

Markings
$$\Sigma = \underbrace{P}_{heavy} \sqcup \underbrace{Q}_{light}, |P| = p = 2r, |Q| = q \ge 0$$

Markings
$$\Sigma = \underbrace{P}_{heavy} \sqcup \underbrace{Q}_{light}, |P| = p = 2r, |Q| = q \ge 0$$

DEFINITION

For $R \subset P$, |R| = r, let $Z_R \subseteq \overline{M}_{p,q}$ locus where points in R coincide.

Markings
$$\Sigma = \underbrace{P}_{heavy} \sqcup \underbrace{Q}_{light}, |P| = p = 2r, |Q| = q \ge 0$$

DEFINITION

For $R \subset P$, |R| = r, let $Z_R \subseteq \overline{M}_{p,q}$ locus where points in R coincide.

Universal family $\pi_R : \mathcal{U}_R \to Z_R$ has a section σ_R (combined points in R)

Markings
$$\Sigma = \underbrace{P}_{heavy} \sqcup \underbrace{Q}_{light}, |P| = p = 2r, |Q| = q \ge 0$$

DEFINITION

For $R \subset P$, |R| = r, let $Z_R \subseteq \overline{M}_{p,q}$ locus where points in R coincide.

Universal family $\pi_R : \mathcal{U}_R \to Z_R$ has a section σ_R (combined points in R)

DEFINITION

For $l \ge 0$, $E \subseteq \Sigma$, |E| = e, l + e even, $E_p = R$, let

$$\mathcal{T}_{I,E} = \sigma_R^* \big(\omega_{\pi_R}^{\frac{e-I}{2}} (\sum_{i \in E} \sigma_i) \big).$$

Markings
$$\Sigma = \underbrace{P}_{heavy} \sqcup \underbrace{Q}_{light}, |P| = p = 2r, |Q| = q \ge 0$$

DEFINITION

For $R \subset P$, |R| = r, let $Z_R \subseteq \overline{M}_{p,q}$ locus where points in R coincide.

Universal family $\pi_R : \mathcal{U}_R \to Z_R$ has a section σ_R (combined points in R)

DEFINITION

For $l \ge 0$, $E \subseteq \Sigma$, |E| = e, l + e even, $E_p = R$, let

$$\mathcal{T}_{I,E} = \sigma_R^* \big(\omega_{\pi_R}^{\frac{e-I}{2}} (\sum_{i \in E} \sigma_i) \big).$$

 $\mathcal{T}_{I,E}$ has a Koszul resolution by $F_{I,E}$'s

Markings
$$\Sigma = \underbrace{P}_{heavy} \sqcup \underbrace{Q}_{light}, |P| = p = 2r, |Q| = q \ge 0$$

DEFINITION

For $R \subset P$, |R| = r, let $Z_R \subseteq \overline{M}_{p,q}$ locus where points in R coincide.

Universal family $\pi_R : \mathcal{U}_R \to Z_R$ has a section σ_R (combined points in R)

DEFINITION

For $l \ge 0$, $E \subseteq \Sigma$, |E| = e, l + e even, $E_p = R$, let

$$\mathcal{T}_{I,E} = \sigma_R^* \big(\omega_{\pi_R}^{\frac{e-I}{2}} (\sum_{i \in E} \sigma_i) \big).$$

 $\mathcal{T}_{I,E}$ has a Koszul resolution by $F_{I,E}$'s
$$E \subseteq \Sigma: \quad E = \underbrace{E_p}_{heavy} \sqcup \underbrace{E_q}_{light}, \ |E_p| = e_p, \ |E_q| = e_q, \ e = e_p + e_q$$

$$E \subseteq \Sigma$$
: $E = \underbrace{E_p}_{heavy} \sqcup \underbrace{E_q}_{light}, \ |E_p| = e_p, \ |E_q| = e_q, \ e = e_p + e_q$

Let $p = 2r \ge 4$, $q = 2s + 1 \ge 1$. For $l \ge 0$, l + e is even, consider: The vector bundles $F_{l,E}$ on $\overline{M}_{p,q}$ for

$$I + \min(e_p, p + 1 - e_p) \le r - 1$$
 (group 1A)

$$I + \min(e_p + 1, p - e_p) \le r - 1 \qquad (\text{group } 1B)$$

• The torsion sheaves $\mathcal{T}_{I,E}$ on $\overline{M}_{p,q}$ for

$$e_p = r$$
, $l + \min(e_q, q - e_q) \le s - 1$ (group 2)

$$E \subseteq \Sigma$$
: $E = \underbrace{E_p}_{heavy} \sqcup \underbrace{E_q}_{light}, \ |E_p| = e_p, \ |E_q| = e_q, \ e = e_p + e_q$

Let $p = 2r \ge 4$, $q = 2s + 1 \ge 1$. For $l \ge 0$, l + e is even, consider: The vector bundles $F_{l,E}$ on $\overline{M}_{p,q}$ for

$$l + \min(e_p, p + 1 - e_p) \le r - 1$$
 (group 1A)

$$I + \min(e_p + 1, p - e_p) \le r - 1$$
 (group 1B)

• The torsion sheaves $\mathcal{T}_{I,E}$ on $M_{p,q}$ for

$$e_p = r$$
, $l + \min(e_q, q - e_q) \le s - 1$ (group 2)

There are 2 full $S_p \times S_q$ -invariant exceptional collections on $\overline{M}_{p,q}$ obtained by combining group 1A (resp., 1B) with group 2.

$$E \subseteq \Sigma: \quad E = \underbrace{E_p}_{heavy} \sqcup \underbrace{E_q}_{light}, \ |E_p| = e_p, \ |E_q| = e_q, \ e = e_p + e_q$$

Let $p = 2r \ge 4$, $q = 2s + 1 \ge 1$. For $l \ge 0$, l + e is even, consider: The vector bundles $F_{l,E}$ on $\overline{M}_{p,q}$ for

$$l + \min(e_p, p + 1 - e_p) \le r - 1$$
 (group 1A)

$$I + \min(e_p + 1, p - e_p) \le r - 1$$
 (group 1B)

• The torsion sheaves $\mathcal{T}_{I,E}$ on $\overline{M}_{p,q}$ for

$$e_p = r$$
, $l + \min(e_q, q - e_q) \le s - 1$ (group 2)

There are 2 full $S_p \times S_q$ -invariant exceptional collections on $\overline{M}_{p,q}$ obtained by combining group 1A (resp., 1B) with group 2.

Not an exceptional collection if replacing $T_{I,E}$ with $F_{I,E}$

$$E \subseteq \Sigma: \quad E = \underbrace{E_p}_{heavy} \sqcup \underbrace{E_q}_{light}, \ |E_p| = e_p, \ |E_q| = e_q, \ e = e_p + e_q$$

Let $p = 2r \ge 4$, $q = 2s + 1 \ge 1$. For $l \ge 0$, l + e is even, consider: The vector bundles $F_{l,E}$ on $\overline{M}_{p,q}$ for

$$l + \min(e_p, p + 1 - e_p) \le r - 1$$
 (group 1A)

$$I + \min(e_p + 1, p - e_p) \le r - 1$$
 (group 1B)

• The torsion sheaves $\mathcal{T}_{I,E}$ on $\overline{M}_{p,q}$ for

$$e_p = r$$
, $l + \min(e_q, q - e_q) \le s - 1$ (group 2)

There are 2 full $S_p \times S_q$ -invariant exceptional collections on $\overline{M}_{p,q}$ obtained by combining group 1A (resp., 1B) with group 2.

Not an exceptional collection if replacing $T_{I,E}$ with $F_{I,E}$

The complexes $\tilde{\mathcal{T}}_{l,E}$ (p and q even)

The complexes $\tilde{\mathcal{T}}_{l,E}$ (p and q even)

$$\Sigma = \underbrace{P}_{heavy} \sqcup \underbrace{Q}_{light}, \ |P| = p = 2r \ge 4, \ |Q| = q + 1 = 2s + 2 \ge 0$$

The complexes $\tilde{\mathcal{T}}_{l,E}$ (*p* and *q* even)

$$\Sigma = \underbrace{P}_{heavy} \sqcup \underbrace{Q}_{light}, \ |P| = p = 2r \ge 4, \ |Q| = q + 1 = 2s + 2 \ge 0$$

Kirwan resolution $\overline{\mathsf{M}}_{p,q+1} o (\mathbb{P}^1)^{(p+q+1)} /\!\!/ \operatorname{PGL}_2$

The complexes $\tilde{\mathcal{T}}_{I,E}$ (*p* and *q* even)

$$\Sigma = \underbrace{P}_{heavy} \sqcup \underbrace{Q}_{light}, \ |P| = p = 2r \ge 4, \ |Q| = q + 1 = 2s + 2 \ge 0$$

Kirwan resolution $\overline{\mathsf{M}}_{p,q+1}
ightarrow (\mathbb{P}^1)^{(p+q+1)} /\!\!/ \operatorname{PGL}_2$

 $\mathcal{A} \subset \mathsf{D}^b(\overline{\mathsf{M}}_{p,q+1})$ triangulated subcategory generated by torsion sheaves

 $\mathcal{O}_{\mathbb{P}^{r+s-1}\times\mathbb{P}^{r+s-1}}(-a,-b)$

where

• either
$$1 \le a, b \le r + s - 1$$
 or
• $a = 0$ and $1 \le b \le \frac{r+s-1}{2}$ or
• $b = 0$ and $1 \le a \le \frac{r+s-1}{2}$.

The complexes $\tilde{\mathcal{T}}_{I,E}$ (*p* and *q* even)

$$\Sigma = \underbrace{P}_{heavy} \sqcup \underbrace{Q}_{light}, \ |P| = p = 2r \ge 4, \ |Q| = q + 1 = 2s + 2 \ge 0$$

Kirwan resolution $\overline{\mathsf{M}}_{p,q+1}
ightarrow (\mathbb{P}^1)^{(p+q+1)} /\!\!/ \operatorname{PGL}_2$

 $\mathcal{A} \subset \mathsf{D}^{b}(\overline{\mathsf{M}}_{p,q+1})$ triangulated subcategory generated by torsion sheaves

 $\mathcal{O}_{\mathbb{P}^{r+s-1}\times\mathbb{P}^{r+s-1}}(-a,-b)$

where

• either
$$1 \le a, b \le r + s - 1$$
 or
• $a = 0$ and $1 \le b \le \frac{r+s-1}{2}$ or
• $b = 0$ and $1 \le a \le \frac{r+s-1}{2}$.

 $ilde{\mathcal{T}}_{l,E}=$ projection in $\mathcal{A}^{\perp}\subset\mathsf{D}^{b}(\overline{\mathsf{M}}_{p,q+1})$ of the torsion sheaf $\mathcal{T}_{l,E}$

The complexes $\tilde{\mathcal{T}}_{I,E}$ (*p* and *q* even)

$$\Sigma = \underbrace{P}_{heavy} \sqcup \underbrace{Q}_{light}, \ |P| = p = 2r \ge 4, \ |Q| = q + 1 = 2s + 2 \ge 0$$

Kirwan resolution $\overline{\mathsf{M}}_{p,q+1}
ightarrow (\mathbb{P}^1)^{(p+q+1)} /\!\!/ \operatorname{PGL}_2$

 $\mathcal{A} \subset \mathsf{D}^{b}(\overline{\mathsf{M}}_{p,q+1})$ triangulated subcategory generated by torsion sheaves

 $\mathcal{O}_{\mathbb{P}^{r+s-1}\times\mathbb{P}^{r+s-1}}(-a,-b)$

where

• either
$$1 \le a, b \le r + s - 1$$
 or
• $a = 0$ and $1 \le b \le \frac{r+s-1}{2}$ or
• $b = 0$ and $1 \le a \le \frac{r+s-1}{2}$.

 $ilde{\mathcal{T}}_{l,E}=$ projection in $\mathcal{A}^{\perp}\subset\mathsf{D}^{b}(\overline{\mathsf{M}}_{p,q+1})$ of the torsion sheaf $\mathcal{T}_{l,E}$

THEOREM C

Let $p = 2r \ge 4$, $q + 1 = 2s + 2 \ge 0$. Consider the following objects:

• The vector bundles $F_{I,E}$ on $\overline{M}_{p,q+1}$ for

$$I + \min(e_p, p+1-e_p) \leq r-1 \qquad (\text{group } 1A),$$

$$I + \min(e_p + 1, p - e_p) \le r - 1 \qquad (\text{group } 1B),$$

• The complexes $\tilde{\mathcal{T}}_{l,E}$ on $\overline{M}_{p,q+1}$ for

$$e_p = r$$
, $l + \min(e_q, q + 2 - e_q) \leq s$ (group 2B).

THEOREM C

Let $p = 2r \ge 4$, $q + 1 = 2s + 2 \ge 0$. Consider the following objects:

• The vector bundles $F_{I,E}$ on $\overline{M}_{p,q+1}$ for

$$I + \min(e_p, p+1-e_p) \leq r-1 \qquad (\text{group } 1A),$$

$$I + \min(e_p + 1, p - e_p) \le r - 1$$
 (group 1B),

• The complexes $\tilde{\mathcal{T}}_{l,E}$ on $\overline{M}_{p,q+1}$ for

$$e_p = r$$
, $l + \min(e_q, q + 2 - e_q) \le s$ (group 2B).

Then $M_{p,q+1}$ has two $S_p imes S_{q+1}$ -invariant full exceptional collections of

- The torsion sheaves $\mathcal{O}(-a, -b)$ in subcategory \mathcal{A} ;
- The bundles $F_{I,E}$ for pairs (I, E) in group 1A (alternatively 1B),
- The complexes $\tilde{\mathcal{T}}_{I,E}$ for pairs (I, E) in group 2B.

Example: p = 6, q = 0 in Theorem C

 S_6 -invariant full, exceptional collection on $\overline{\mathsf{M}}_6 \cong \overline{\mathcal{M}}_{0,6}$:

Example: p = 6, q = 0 in Theorem C

 ${\it S}_6\mbox{-invariant}$ full, exceptional collection on $\overline{\sf M}_6\cong\overline{\mathcal M}_{0,6}$:

- The torsion sheaves $\mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(-1,-1)$
- The vector bundles $F_{l,E}$ with $l + \min(e_p + 1, 6 e_p) \le 2$

EXAMPLE: p = 6, q = 0 in Theorem C

 S_6 -invariant full, exceptional collection on $\overline{M}_6 \cong \overline{\mathcal{M}}_{0,6}$:

- The torsion sheaves $\mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(-1,-1)$
- The vector bundles $F_{l,E}$ with $l + \min(e_p + 1, 6 e_p) \le 2$
 - $l = 0, e_p = 0$: one line bundle $\rightsquigarrow O$

• $I = 0, e_p = 4$: $\binom{6}{2}$ line bundles $\rightsquigarrow \{\pi_{ij}^* \mathcal{O}(1)\}_{i,j}$

 $\pi_{ij}: \overline{\mathcal{M}}_{0,6} \to \overline{\mathcal{M}}_{0,4} = \mathbb{P}^1 \quad \text{forget markings} \quad i,j$

• l = 1, $e_p = 5$: 6 rank 2 vector bundles $\rightsquigarrow \{\pi_i^* \Omega_{\overline{\mathcal{M}}_{0.5}}(\log)\}_{i,j}$

$$\pi_i: \overline{\mathcal{M}}_{0,6} o \overline{\mathcal{M}}_{0,5}$$
 forget marking *i*

• $l = 2, e_p = 6$: one rank 3 vector bundle $\rightsquigarrow \Omega_{\overline{\mathcal{M}}_{0,6}}(\log)$

Map of Proof

Exceptionality of $F_{I,E}$'s:

- Theorem A for p odd, q = 0: window calculation
- Theorem A for p odd, q > 0: forgetful maps

$$\overline{\mathsf{M}}_{
ho,q} o \overline{\mathsf{M}}_{
ho,q-1}$$
 is a \mathbb{P}^1 bundle

- ► Theorem B for $\overline{\mathsf{M}}_{p,q} \Rightarrow$ Theorem C for $\overline{\mathsf{M}}_{p,q+1}$ (*p* even, *q* odd) Compare $R \operatorname{Hom}(F_{l,E}, F_{l',E'})$'s via forgetful maps $\overline{\mathsf{M}}_{p,q+1} \to \overline{\mathsf{M}}_{p,q}$
- ► Theorem C for $\overline{M}_{p,q-1} \Rightarrow$ Theorem B for $\overline{M}_{p,q}$ (*p* even, *q* odd) There is no forgetful map $\overline{M}_{p,q} \rightarrow \overline{M}_{p,q-1}$. Use instead: universal family $\mathcal{U} \rightarrow \overline{M}_{p,q-1}$ + a new reduction map $\mathcal{U} \rightarrow \overline{M}_{p,q}$

Map of Proof

Exceptionality of $\mathcal{T}_{l,E}$'s with $F_{l,E}$'s, $\mathcal{T}_{l,E}$'s (p even, any q)

• window calculation on Z_R (support of torsion sheaf $\mathcal{T}_{I,E}$)

MAP OF PROOF

Exceptionality of $\mathcal{T}_{l,E}$'s with $F_{l,E}$'s, $\mathcal{T}_{l,E}$'s (p even, any q)

• window calculation on Z_R (support of torsion sheaf $T_{I,E}$)

Fullness (all p, all q)

- Prove that all $F_{I,E}$'s generate $D^b(\overline{M}_{p,q})$
- Generate all vector bundles $F_{I,E}$ with the given collection:
- Use forgetful maps+ universal families+ new reduction map
- Use Koszul resolutions of $\mathcal{T}_{I,E}$'s by $F_{I,E}$'s