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Moduli spaces of stable rational curves
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M0.5

M0,n =
{

(P1, p1, . . . , pn)|pi 6= pj
}
/PGL2

M0,n ⊆M0,n = functorial compactification

M0,n = {(C , p1, . . . , pn)} / ∼ where:

I C is a tree of P1’s

I p1, . . . , pn distinct, smooth points

I ωC (p1 + . . .+ pn) ample

Sn acts on M0,n by permuting p1, . . . , pn



Moduli spaces of stable rational curves

1

3

5

2

4

1

2

3

4

5

1

2

3

4

5

M0.5

M0,n =
{

(P1, p1, . . . , pn)|pi 6= pj
}
/PGL2

M0,n ⊆M0,n = functorial compactification

M0,n = {(C , p1, . . . , pn)} / ∼ where:

I C is a tree of P1’s

I p1, . . . , pn distinct, smooth points

I ωC (p1 + . . .+ pn) ample

Sn acts on M0,n by permuting p1, . . . , pn



Moduli spaces of stable rational curves

1

3

5

2

4

1

2

3

4

5

1

2

3

4

5

M0.5

M0,n =
{

(P1, p1, . . . , pn)|pi 6= pj
}
/PGL2

M0,n ⊆M0,n = functorial compactification

M0,n = {(C , p1, . . . , pn)} / ∼ where:

I C is a tree of P1’s

I p1, . . . , pn distinct, smooth points

I ωC (p1 + . . .+ pn) ample

Sn acts on M0,n by permuting p1, . . . , pn



Asymmetry

p1, p2, p3 7→ 0, 1,∞ ⇒ M0,4 = P1 \ {0, 1,∞}, M0,4 = P1

Kapranov: M0,n = . . .Bl(n−1
3 ) Bl(n−1

2 ) Bln−1 Pn−3

(blow-up n − 1 points, all lines, planes,... spanned by them)

Kapranov blow-up map Ψi :M0,n → Pn−3 is not Sn-invariant:

M0,n

Pn−3 Pn−3
Cremona

ΨjΨi

Ψi given by the complete linear system of the line bundle ψi on M0,n:

ψi |(C ,p1,...,pn) = (TpiC )∗
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A question of Orlov and Manin

Theorem (C.-Tevelev, 2020)

M0,n has a full, exceptional collection that is Sn-invariant.

Corollary

The K-group K(M0,n) is a permutation Sn-lattice. In particular, the
cohomology group H∗(M0,n,Q) has a basis permuted by Sn.

Getzler 1994, Bergstrom-Minabe 2013:

character/length of the Sn-representation H∗(M0,n,Q) recursively

Example

S = del Pezzo dP2, | − KS | : S → P2 degree 2  involution σ

σ y H∗(S ;Q) signature (3, 7) =⇒ H∗(S ;Q) has no basis permuted by σ
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Exceptional collections

X smooth, projective variety over C

Definition

I E ∈ Db(X ) is exceptional if R Hom(E ,E ) = C
I An ordered collection E1, . . . ,Er is an exceptional collection if

R Hom(Ei ,Ej) = 0 for all i > j

I A collection E1, . . . ,Er is full if Db(X ) = 〈E1, . . . ,Er 〉.

Remark

If a full, exceptional collection E1, . . . ,Er exists, then the Grothendieck
group K (X ) is a free abelian group of rank r .

Example (Beilinson)

A full, exceptional collection on Pn: O, O(1), . . . , O(n)
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Exceptional Collections on Blow-ups

Y ⊆ X smooth subvariety, codimension n + 1

q : BlY X → X blow-up of X along Y , E ⊆ X exceptional divisor

Theorem (Orlov)

{Fβ}β is a full, exceptional collection on Y and {Gα}α is a full,
exceptional collection on X , ⇒ full, exceptional collection on BlY X :

{(q|E )∗Fβ ⊗OE (−n)}β, . . . , {(q|E )∗Fβ ⊗OE (−1)}β, {q∗Gα}α.

Remark

Kapranov’s description of M0,n + Orlov’s theorem ⇒

⇒ full, exceptional collection on M0,n (only Sn−1-invariant)
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Exceptional Collections on M0,5

Example (Orlov collection)

Ψ5 :M0,5 → P2 blow-up points p1, p2, p3, p4 in P2

Exceptional divisors = boundary divisors δ15, δ25, δ35, δ45

δi5  reducible curves with (only) i , 5 on one component

An S4-invariant, full, exceptional collection on M0,5:

{Oδi5(−1)}i=1,2,3,4, O, ψ5, 2ψ5

Example (S5-invariant collection)

O, {π∗i O(1)}i=1,2,3,4,5, ΩM0,5
(log)

ΩM0,5
(log) = sheaf of log-differentials with poles along boundary

πi :M0,5 →M0,4 = P1  forget marking i + stabilize
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Hassett Spaces

A = (a1, . . . , an), ai ∈ Q,
∑

ai > 2

Definition

(C , p1, . . . , pn) is an A-stable rational curve if

I C is a tree of P1’s, p1, . . . , pn smooth points on C ,

I ωC (a1p1 + . . .+ anpn) is ample,

I If {pi}i∈I coincide, then
∑

i∈I ai ≤ 1.

Properties:

I Fine moduli space MA of A-stable rational curves

I M0,n ⊆MA dense open set

I Reduction maps: MA →MB whenever ai ≥ bi ∀i
(contract only some boundary divisors)

I M0,n =M(1,...,1) →MA iterated blow-up

I Walls of chamber decomposition in [0, 1]n given by
∑

i∈I ai = 1
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Losev-Manin spaces

LMn :=MA, A =
(

1, 1,︸︷︷︸
2 heavy

ε, . . . , ε︸ ︷︷ ︸
n−2 light

)
, 0 < ε� 1

I all light points may coincide, but not with the heavy points p1, p2

I A-stable curve ⇔ chain of P1’s with heavy points at the end

I LMn = . . .Bl(n−2
3 ) Bl(n−2

2 ) Bln−2 Pn−3 blow-up n − 2 points, all lines,...

LMn

Pn−3 Pn−3
Cremona

Ψ2Ψ1

Example: An S2 × S3-invariant full, exceptional collection on LM5

−ψ1, −ψ2, {π∗i O(−1)}i=3,4,5, O.
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The Mp,q spaces

Mp,q :=MA, A =
(
a + η, . . . , a + η,︸ ︷︷ ︸

p heavy

ε, . . . , ε︸ ︷︷ ︸
q light

)

p ≥ 2, q ≥ 0, pa + qε = 2, 0 < ε, η � 1

There is a birational morphism

φ : Mp,q → (P1)(p+q) //O(a,...,a,ε,...,ε) PGL2

I If p or q is odd, φ is an isomorphism; C is A-stable ⇔ C = P1

I If p and q are even, φ is the Kirwan desingularization:

δT ,T c = Pk × Pk 7→ pt, k =
p + q

2
− 2

A-stable, reducible ⇔ two components, marked by partition T t T c
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The Mp,q spaces when q = 0

Mp :=MA, A =
(
a, . . . , a︸ ︷︷ ︸

p heavy

)
, a =

{
1
r if p = 2r + 1

1
r−1 if p = 2r

I If p odd, Mp = (P1)p //O(a,...,a) PGL2

I If p even, Mp → (P1)p //O(a,...,a) PGL2 blows-up 1
2

(p
2

)
singular points

Example (The space M6
∼=M0,6)

φ :M0,6 → (P1)6 //O(a,...,a) PGL2 = X ⊆ P4 Segre cubic

δT ,T c = P1 × P1 7→ pt (blow-up the 10 nodes of X )

An S6-invariant full, exceptional collection on M0,6:

{OδT ,Tc (−1,−1)}, O, {π∗ijO(1)}, {π∗i ΩM0,5
(log)}, φ∗OX (1), ΩM0,6

(log)
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Theorem (C.-Tevelev, 2017)

It suffices to find full, invariant, exceptional collections on:

I Kapranov models Pm−3, for all m (S1 × Sm−1-invariant),

I Losev-Manin spaces LMm, for all m (S2 × Sm−2-invariant),

I Mp,q spaces, for all p ≥ 2, q ≥ 0 (Sp × Sq-invariant).

Idea of proof: as Bergstrom-Minabe, use reduction maps

M0,n =M(1,...,1) →M( 1
2
,..., 1

2
) → . . .→M( 1

r
,..., 1

r
) = Mn

(at each step, blow-up loci M(1,...,1,a...,a) intersecting transversely)

M(1, . . . , 1︸ ︷︷ ︸
p

,a . . . , a︸ ︷︷ ︸
q

) → . . .→M(1,...,1,ε...,ε) → . . .→M(a,...,a,ε...,ε)

Reduce weights until M(a,...,a,ε...,ε) is one of Pm−3, LMm, Mp,q
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Example: an invariant version of Orlov

Y1,Y2 ⊆ X codimension n + 1, intersecting transversely

q : X̃ → X blow-up along Y1, Y2 (any order)

Ei = p−1(Yi ), E12 = p−1(Y12), Y12 := Y1 ∩ Y2, Y∅ := X

G finite group, G y X permutes Y1,Y2

I = ∅, {1}, {2}, {1, 2}: GI ⊆ G the stabilizer of YI

{F I
β}β = GI -invariant, full, exceptional collection on YI

⇒ G -invariant, full, exceptional collection on X̃ :

I {q∗F 12
β ⊗OE12(j1E1 + j2E2)}β,ji , decreasing j1 + j2 (0 < j1, j2 ≤ n)

I {q∗F i
β ⊗OEi

(jEi )}β,j , decreasing j (0 < j ≤ n)

I {q∗F ∅β}β
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Theorem (C.-Tevelev, 2017)

LMn, M2,n−2 have S2× Sn−2-invariant, full exceptional collections for all n.

Theorem (C.-Tevelev, 2020)

Mp,q has an Sp × Sq-invariant, full exceptional collection for all p, q.

Different types of objects on Mp,q:

I p odd: vector bundles {Fl ,E}
I p even, q odd: vector bundles {Fl ,E}, torsion sheaves {Tl ,E}
I p, q even: three types

{OδT ,Tc (−a,−b)}, vector bundles {Fl ,E}, complexes {T̃l ,E}

Here l ≥ 0 integer, E = set of markings (for an appropriate range)
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The vector bundles Fl ,E

Universal family π : U → Mp,q, with sections σi

i ∈ Σ := P︸︷︷︸
heavy

t Q︸︷︷︸
light

, |P| = p, |Q| = q

If p or q is odd, then π is a P1-bundle

Definition (p or q odd)

For l ≥ 0, E ⊆ Σ, |E | = e, l + e even, let

Fl ,E = Rπ∗
(
ω

e−l
2
π (

∑
i∈E

σi )
)

(vector bundle of rank l + 1)

If p and q even, U is also a Hassett space. Define vector bundles

Fl ,E = Rπ∗
(
ω

e−l
2
π (

∑
i∈E

σi )(. . . boundary)
)

on Mp,q, U
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Markings Σ = P︸︷︷︸
heavy

t Q︸︷︷︸
light

, |P| = p, |Q| = q

E ⊆ Σ : E = Ep︸︷︷︸
heavy

t Eq︸︷︷︸
light

, |Ep| = ep, |Eq| = eq, e = ep + eq

Theorem A (p odd, any q)

For p = 2r + 1 ≥ 1, q ≥ 0, Mp,q has an Sp × Sq-invariant, full exceptional
collection given by the vector bundles Fl ,E (l + e even) subject to

l + min(ep, p − ep) ≤ r − 1.

The order is by increasing eq, increasing ep if equal Eq.

Example (p = 5,q = 0, M5
∼=M0,5)

I l = 0, ep = 0: one line bundle  O
I l = 0, ep = 4: five line bundles  {π∗i O(1)}i=1,2,3,4,5

I l = 1, ep = 5: one rank 2 bundle  ΩM0,5
(log)
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The torsion sheaves Tl ,E (p even)

Markings Σ = P︸︷︷︸
heavy

t Q︸︷︷︸
light

, |P| = p = 2r , |Q| = q ≥ 0

Definition

For R ⊂ P, |R| = r , let ZR ⊆ Mp,q locus where points in R coincide.

Universal family πR : UR → ZR has a section σR (combined points in R)

Definition

For l ≥ 0, E ⊆ Σ, |E | = e, l + e even, Ep = R, let

Tl ,E = σ∗R
(
ω

e−l
2
πR (

∑
i∈E

σi )
)
.

Tl ,E has a Koszul resolution by Fl ,E ’s
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E ⊆ Σ : E = Ep︸︷︷︸
heavy

t Eq︸︷︷︸
light

, |Ep| = ep, |Eq| = eq, e = ep + eq

Theorem B (p even, any odd q)

Let p = 2r ≥ 4, q = 2s + 1 ≥ 1. For l ≥ 0, l + e is even, consider:

I The vector bundles Fl ,E on Mp,q for

l + min(ep, p + 1− ep) ≤ r − 1 (group 1A)

l + min(ep + 1, p − ep) ≤ r − 1 (group 1B)

I The torsion sheaves Tl ,E on Mp,q for

ep = r , l + min(eq, q − eq) ≤ s − 1 (group 2)

There are 2 full Sp × Sq-invariant exceptional collections on Mp,q obtained
by combining group 1A (resp., 1B) with group 2.

Not an exceptional collection if replacing Tl ,E with Fl ,E
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The complexes T̃l ,E (p and q even)

Σ = P︸︷︷︸
heavy

t Q︸︷︷︸
light

, |P| = p = 2r ≥ 4, |Q| = q + 1 = 2s + 2 ≥ 0

Kirwan resolution Mp,q+1 → (P1)(p+q+1) // PGL2

A ⊂ Db(Mp,q+1) triangulated subcategory generated by torsion sheaves

OPr+s−1×Pr+s−1(−a,−b)

where

I either 1 ≤ a, b ≤ r + s − 1 or

I a = 0 and 1 ≤ b ≤ r+s−1
2 or

I b = 0 and 1 ≤ a ≤ r+s−1
2 .

T̃l ,E = projection in A⊥ ⊂ Db(Mp,q+1) of the torsion sheaf Tl ,E
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Theorem C

Let p = 2r ≥ 4, q + 1 = 2s + 2 ≥ 0. Consider the following objects:

I The vector bundles Fl ,E on Mp,q+1 for

l + min(ep, p + 1− ep) ≤ r − 1 (group 1A),

l + min(ep + 1, p − ep) ≤ r − 1 (group 1B),

I The complexes T̃l ,E on Mp,q+1 for

ep = r , l + min(eq, q + 2− eq) ≤ s (group 2B).

Then Mp,q+1 has two Sp × Sq+1-invariant full exceptional collections of

I The torsion sheaves O(−a,−b) in subcategory A;

I The bundles Fl ,E for pairs (l ,E ) in group 1A (alternatively 1B),

I The complexes T̃l ,E for pairs (l ,E ) in group 2B.
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Example: p = 6, q = 0 in Theorem C

S6-invariant full, exceptional collection on M6
∼=M0,6 :

I The torsion sheaves OP1×P1(−1,−1)

I The vector bundles Fl ,E with l + min(ep + 1, 6− ep) ≤ 2

l = 0, ep = 0: one line bundle  O

l = 0, ep = 4:
(

6
2

)
line bundles  {π∗ijO(1)}i,j

πij :M0,6 →M0,4 = P1 forget markings i , j

l = 1, ep = 5: 6 rank 2 vector bundles  {π∗i ΩM0,5
(log)}i,

πi :M0,6 →M0,5 forget marking i

l = 2, ep = 6: one rank 3 vector bundle  ΩM0,6
(log)
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Map of Proof

Exceptionality of Fl ,E ’s:

I Theorem A for p odd, q = 0: window calculation

I Theorem A for p odd, q > 0: forgetful maps

Mp,q → Mp,q−1 is a P1 bundle

I Theorem B for Mp,q ⇒ Theorem C for Mp,q+1 (p even, q odd)

Compare R Hom(Fl ,E ,Fl ′,E ′)’s via forgetful maps

Mp,q+1 → Mp,q

I Theorem C for Mp,q−1 ⇒ Theorem B for Mp,q (p even, q odd)

There is no forgetful map Mp,q → Mp,q−1. Use instead:

universal family U → Mp,q−1 + a new reduction map U → Mp,q



Map of Proof

Exceptionality of Tl ,E ’s with Fl ,E ’s, Tl ,E ’s (p even, any q)

I window calculation on ZR (support of torsion sheaf Tl ,E )

Fullness (all p, all q)

I Prove that all Fl ,E ’s generate Db(Mp,q)

I Generate all vector bundles Fl ,E with the given collection:

I Use forgetful maps+ universal families+ new reduction map

I Use Koszul resolutions of Tl ,E ’s by Fl ,E ’s
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