Generalized braid group actions

 (joint work with Timothy Logvinenko)Rina Anno

Kansas State University

Weak braid group actions

A weak action of a group G on a triangulated category T is an assignment of an exact functor $\Phi(g): T \rightarrow T$ to every $g \in G$ so that $\Phi\left(g_{1}\right) \Phi\left(g_{2}\right) \simeq g_{1} g_{2}$.

Examples of braid group actions on $D^{b}(\operatorname{Coh} X)$:

- $X=\mathbb{C}^{2}$ with the action of S_{3}, and therefore Br_{3}. The action on $D^{b}(\operatorname{Coh} X)$ is induced by the automorphisms of X.
- X is the minimal resolution of a Kleinian singularity (of type A_{n} for $B r_{n}$). The braid group action is generated by spherical twists in the structure sheaves of the exceptional curves. (Seidel-Thomas'00)
- $X=T^{*} F L_{n}$. The braid group action is induced by spherical twists in certain functors from $D^{b}\left(T^{*} P_{k, n}\right)$, where $P_{k, n}$ is the variety of partial flags missing the space of dimension k. (Khovanov-Thomas'06)

Generalized braid category $F G B r_{n}$

Objects: $\left(k_{1}, \ldots, k_{m}\right)$ with $k_{1}+\ldots+k_{m}=n$.
Morphisms:

Generators:

Skein triangulated representations of $F G B r_{n}$

We would like to consider weak triangulated representations of $G B r_{n}$ st.:

- Merge and fork generators are adjoint;
- With a set of adjoint merge and fork generators satisfying the multiform relation we can construct complexes $L_{p, q}^{r, s}$ where $p+q=r+s$ generalizing Rickard complexes. We need $L_{p, q}^{r, s}$ to be equivalences when $p-s \equiv 0 \bmod (p+q)$ and acyclic otherwise.
- Moreover, the convolution of $L_{p, q}^{q, p}$ must be isomorphic to the (p, q) crossing, and the convolution of $L_{m, 0}^{m, 0}$, to the twisting of the multiplicity m strand.
- The twists of single strands are trivial.

The complexes
The terms of the complex $L_{p, q}^{r, s}$ are enumerated by all $k_{1}+\ldots+k_{m}=n$.

differential:

Example: $L_{3,1}^{1,3}$

DG enhancements

A DG category \mathcal{A} is an enhancement of the triangulated category T if $H^{0}(\mathcal{A}) \simeq T$ and a standard (resp. large) Morita enhancement if $H^{0}\left(\mathcal{P}^{\text {Perf }}(\mathcal{A})\right) \simeq T,\left(\right.$ resp. $\left.H^{0}(\mathcal{P}(\mathcal{A})) \simeq T\right)$ where $\mathcal{P}^{\text {Perf }}(\mathcal{A})($ resp. $\mathcal{P}(\mathcal{A}))$ is the category of h-projective perfect (resp. h-projective) \mathcal{A}-modules.

For a quasi-compact, quasi-separated scheme X, the category $D_{q c}(X)$ has a large Morita enhancement $\mathcal{A}=\operatorname{End}(I)$, where I is the h-injective resolution of the compact generator. Any continuous functor $D_{q c}(X) \rightarrow D_{q c}(Y)$ can be represented by a bimodule in $\mathcal{P}(\mathcal{A}-\mathcal{B})$.

Similarly, for a separated scheme of finite type $D^{b}(\operatorname{Coh} X)$ has a Morita enhancement and every continuous functor can be represented by a \mathcal{B}-perfect bimodule in $\mathcal{P}(\mathcal{A}-\mathcal{B})$.

Nil Hecke algebras

Let $W=S_{n}$ (full generality for this slide: W is a Coxeter group). The nil Hecke algebra $\mathcal{H}(W)$ is the complex algebra with generators h_{1}, \ldots, h_{n-1} and relations

$$
\begin{aligned}
h_{i} h_{j} & =h_{j} h_{i} \quad \text { for }|i-j|>1 ; \\
h_{i} h_{j} h_{i} & =h_{j} h_{i} h_{j} \quad \text { for }|i-j|=1 ; \\
h_{i}^{2} & =0 .
\end{aligned}
$$

Alternative description: let $s_{i} \in W$ permute i and $i+1$. Denote by $I(w)$ the length of each $w \in W$: the length of the minimal presentation $w=s_{i_{1}} \ldots s_{i_{N}}$. Then $I\left(w_{1} w_{2}\right) \leq I\left(w_{1}\right)+I\left(w_{2}\right)$.

The monomial basis

$\mathcal{H}(W)$ has a basis $h_{w}, w \in W$, with $h_{w_{1}} h_{w_{2}}=h_{w_{1} w_{2}}$ if $I\left(w_{1} w_{2}\right)=I\left(w_{1}\right)+I\left(w_{2}\right)$ and $h_{w_{1}} h_{w_{2}}=0$ otherwise. For $w=s_{i_{1}} \ldots s_{i_{N}}$,

$$
h_{w}=h_{i_{1}} \ldots h_{i_{N}}
$$

Nil Hecke bimodules

Now let \mathcal{A} be a small DG category. Suppose there are $\operatorname{DG} \mathcal{A}$ - \mathcal{A}-bimodules H_{1}, \ldots, H_{n-1} such that

$$
\begin{array}{rlrl}
H_{i} \otimes_{\mathcal{A}} H_{j} & \sim H_{j} \otimes_{\mathcal{A}} H_{i} & \text { for }|i-j|>1 ; \\
H_{i} \otimes_{\mathcal{A}} H_{j} \otimes_{\mathcal{A}} H_{i} & \sim H_{j} \otimes_{\mathcal{A}} H_{i} \otimes_{\mathcal{A}} H_{j} & & \text { for }|i-j|=1
\end{array}
$$

To each basic monomial $h_{\sigma}=h_{i_{1}} \ldots h_{i_{m}}$ in $\mathcal{H}(W)$ we assign a twisted complex \mathcal{H}_{σ} of \mathcal{A} - \mathcal{A}-bimodules homotopy equivalent to $H_{i_{1}} \otimes_{\mathcal{A}} \ldots \otimes_{\mathcal{A}} H_{i_{m}}$. We define a structure of an algebra in the category of \mathcal{A} - \mathcal{A}-bimodules on $\mathcal{H}=\bigoplus \mathcal{H}_{\sigma}$ by sending $\mathcal{H}_{\sigma_{1}} \otimes_{\mathcal{A}} \mathcal{H}_{\sigma_{2}}$ to zero or to a subcomplex of $\mathcal{H}_{\sigma_{1} \sigma_{2}}$.

Example: for $n=3$, the bimodule \mathcal{H} will be
$\mathcal{A} \oplus H_{1} \oplus H_{2} \oplus H_{1} \otimes H_{2} \oplus H_{2} \otimes H_{1}$
$\oplus\left\{H_{1} \otimes H_{2} \otimes H_{1} \xrightarrow{\mathrm{Id} \oplus \sim} H_{1} \otimes H_{2} \otimes H_{1} \oplus H_{2} \otimes H_{1} \otimes H_{2}\right\}$.

The block subalgebras

For each subset $I \subset\{1, \ldots, n-1\}$ of generators (or even for any subgroup of W) let \mathcal{H}_{I} be the direct sum of the "monomials" in \mathcal{H} generated by H_{i}, $i \in I$. This is an algebra object in \mathcal{A} - $\operatorname{Mod}-\mathcal{A}$ as well.
\mathcal{H}, or each of its "block subalgebras" $\mathcal{H}_{\text {I }}$ can be viewed as a DG category with $\mathrm{Ob} \mathcal{H}=\operatorname{Ob} \mathcal{A}$. There are natural functors $\mathcal{H}_{I} \rightarrow \mathcal{H}_{J}$ when $I \subset J$. Each \mathcal{H}_{I} can be viewed as an $\mathcal{H}_{J}-\mathcal{H}_{K}$-bimodule if $J, K \subseteq I$.

Restriction and induction

The functors $\mathcal{H}_{J} \rightarrow \mathcal{H}_{l}$ for $J \subset I$ induce adjoint pairs of functors $\left((-) \otimes_{\mathcal{H}}, \mathcal{H}_{1},(-) \otimes_{\mathcal{H}_{l}} \mathcal{H}_{l}\right)$ between the categories Mod $-\mathcal{H}_{J}$ and Mod $-\mathcal{H}_{1}$, where \mathcal{H}_{l} is viewed as a $\mathcal{H}_{J}-\mathcal{H}_{1}$ and $\mathcal{H}_{1}-\mathcal{H}_{J}$-bimodule respectively. In particular, the monad algebra of this adjunction is \mathcal{H}_{I} viewed as an algebra over \mathcal{H}_{J}.

Expanding the braid group action

Let $(-) \otimes H_{i}$ generate a weak braid group action on $H^{0}(\operatorname{Mod}-\mathcal{A})$.

Hypothesis (A.-Logvinenko)

The categories $H^{0}\left(\operatorname{Mod}-\mathcal{H}_{l}\right)$ form a skein triangulated representation of $F G B r_{n}$. The forks correspond to induction functors, the merges to restriction functors, and the crossings are induced by convolutions of the complexes $L_{p, q}^{q, p}$ and their right adjoints.

- Theorem for $n=3$ and partially for general n
- Twists are not shifts
- ($1, k$) forks are not \mathbb{P}^{n} functors (there still are twists)
- fork-merge "bubbles" don't split, but merge-fork compositions do

Thank you!

