Tensor categories arising from the Virasoro algebra. Florencia Orosz Hunziker, University of Colorado Boulder. Joint work with T. Creutzig, C. Jiang, D. Ridout and J.Yang

The Virasoro Lie algebra and its representations:

The Virasoro algebra has generators $\{L_n\}_{n\in\mathbb{Z}}, C$ with C central and commutator

 $[L_n, L_m] = (n - m)L_{n+m} + \frac{n^3 - n}{12}\delta_{n, -m}C$

Verma modules and irreducible quotients: Let $Vir^+ := \bigoplus_{n>0} \mathbb{C}L_n \oplus \mathbb{C}C$ and for $c, h \in \mathbb{C}$ let $\mathbb{C}\mathbf{1}^h_c$ be the Vir^+ - module such that

 $L_n \mathbf{1}_c^h = 0, n > 0$ $L_0 \mathbf{1}^h_c = h \mathbf{1}^h_c$ $C\mathbf{1}_{c}^{h} = c\mathbf{1}_{c}^{h}$

The Verma module of central charge c and conformal weight h is the induced module

 $M(c,h) := U(Vir) \otimes_{U(Vir^+)} \mathbb{C}\mathbf{1}_c^h$ and it can be represented as

The irreducible lowest weight module L(c, h), is defined

as the irreducible quotient

of the Verma by its maximal submodule L(c,h) := M(c,h)/J(c,h)

The Virasoro Vertex operator algebras:

 $M_c = M(c,0) / < L_{-1}$ **1** > is a VOA for any central charge $c \in \mathbb{C}$. Vermas and irreducibles are VOA modules for M_c . (Frenkel and Zhu, 92).

MAIN RESULT:

The category of finite length generalized M_c -modules with composition factors non-Verma irreducibles $L(c, h_i)$ has a braided tensor category structure.

Moreover, for generic central charges $c = 13 - 6t - 6t^{-1}, t \notin \mathbb{Q}$ this braided tensor category is rigid.

Choosing the candidate category to apply the logarithmic tensor product of Huang, Lepowsky and Zhang:

We define O_c^{fin} to be the category of finite length generalized M_c - modules with composition factors isomorphic to L(c,h)

product theory)

cofinite.

(Miyamoto, 2014)

Theorem: These categories coincide. Namely,

 O_c^{fin}

Sketch of proof:

The inclusion $O_c^{fin} \subset C_1^l$ is straightforward.

Given a C_1 -cofinite lower bounded module we can build successive lowest weight sumodules that must also be C_1 -cofinite. This produces a resolution with irreducibles isomorphic to L(c, h)non-Vermas and we obtain $C_1^l \subset O_c^{fin}$.

Therefore

```
O_c^{fin} is closed under taking submodules,
direct sums, quotients and contragredient
duals (all necessary to apply the tensor
```

```
We define C_1^l to be the category of lower
bounded generalized M_c-modules which are C_1-
```

C_1^l is closed under P(z)- tensor product

$$= C_1^l$$

 $C_1^l = O_c^{fin}$