Classification of irreducible modules for Bershadsky-Polyakov algebra at certain levels

Ana Kontrec

joint work with D. Adamović
Department of Mathematics, University of Zagreb, Croatia Supported by ZCI QuantiXlie akontrec@gmail.com

Vertex algebras

Vertex algebra is a triple $(V, Y, \mathbb{1})$, where V is a vector space over $\mathbb{C}, \mathbb{1} \in V$ is the vacuum vector and Y is an operator

$$
Y: V \longrightarrow(E n d V)\left[\left[z, z^{-1}\right]\right], \quad Y(v, z)=\sum_{n \in \mathbb{Z}} v_{n} z^{-n-1}
$$

satisfying following axioms:

1. $Y(a, z) b=\sum_{n \in \mathbb{Z}} a_{n} b z^{-n-1}$ has finitely many negative powers,
2. $Y(\mathbb{1}, z)=I d$,
3. $Y(a, z) \mathbb{1} \in V[[z]]$ and $\lim _{z \rightarrow 0} Y(a, z) \mathbb{1}=a$
4. $\left.[D, Y(a, z)]=\frac{d}{d z} Y(a, z)\right)$, where $D \in E n d V$ is given by $D a=a_{-2} \mathbb{1}$,
5. $\forall a, b \in V, \exists N$ such that
$\left(z_{1}-z_{2}\right)^{N}\left[Y\left(a, z_{1}\right), Y\left(b, z_{2}\right)\right]=0$.

Zhu algebra

Let $V=\bigoplus_{n=0}^{\infty} V(n)$ be a \mathbb{Z}-graded $V O A$, and let deg $a=n$, for $a \in V(n)$.
Define bilinear mappings $*: V \times V \longrightarrow V, \circ: V \times V \longrightarrow V$:

$$
\begin{aligned}
& a * b=\operatorname{Res}_{Z}\left(Y(a, z) \frac{(1+z)^{\operatorname{deg} a} b}{z} b\right) \\
& a \circ b=\operatorname{Res}_{Z}\left(Y(a, z) \frac{(1+z)^{\operatorname{deg} a}}{z^{2}} b\right)
\end{aligned}
$$

for $a \in V(n), b \in V$.
Let $O(V) \subset V$ be the linear span of the elements $a \circ b$. The quotient space

$$
A(V)=\frac{V}{O(V)}
$$

is an associative algebra called the Zhu algebra of the VOA V

Let $A\left(\mathcal{W}^{k}\right)$ denote the Zhu algebra of \mathcal{W}^{k}. Let $[v]$ be the image of $v \in \mathcal{W}^{k}$ under the mapping $\mathcal{W}^{k} \mapsto A\left(\mathcal{W}^{k}\right)$

- $A\left(\mathcal{W}^{k}\right)$ is generated by $\left[G^{+}\right],\left[G^{-}\right],[J],[\omega]$
- Zhu algebra $A\left(\mathcal{W}^{k}\right)$ is actually a quotient of another associative algebra, called Smith algebra

Classification of irreducible $\mathcal{W}_{-5 / 3}$-modules

- Define functions

$$
h_{i}(x, y)=\frac{1}{i}(g(x, y)+g(x+1, y)+\ldots+g(x+i-1, y))
$$

- (Ar2013) If the top level $L(x, y)(0)$ is n-dimensional, then $h_{n}(x, y)=0$.
- We will need the following Δ-operator

$$
\Delta(-J, z)=z^{-J(0)} \exp \left(\sum_{k=1}^{\infty}(-1)^{k+1} \frac{-J(k)}{k z^{k}}\right)
$$

such that

$$
\sum_{n \in \mathbb{Z}} \Psi\left(a_{n}\right) z^{-n-1}=Y(\Delta(-J, z) a, z)
$$

- $(\operatorname{Ar} 2013)$ Let $\operatorname{dim}(L(x, y)(0))=i$. Then

$$
\Psi(L(x, y)) \cong L\left(x+i-1-\frac{2 k+3}{3}, y-x-i+1+\frac{2 k+3}{3}\right) .
$$

Theorem

Define

$$
\mathcal{R}_{k}=\left\{\left(-\frac{1}{9}, 0\right),(0,0),\left(\frac{1}{3}, \frac{1}{3}\right),\left(-\frac{1}{3}, \frac{2}{3}\right),\left(-\frac{4}{9}, \frac{1}{3}\right),\left(-\frac{7}{9}, \frac{2}{3}\right)\right\}
$$

$$
\widetilde{\mathcal{R}_{k}}=\left\{\left(\frac{1}{9},-\frac{1}{9}\right),\left(\frac{4}{9},-\frac{1}{9}\right),\left(\frac{7}{9},-\frac{1}{9}\right)\right\} .
$$

Let $k=-5 / 3$. The set
$\left\{L(x, y) \mid(x, y) \in \mathcal{R}_{k} \cup \widetilde{\mathcal{R}_{k}}\right\}$,
gives a complete list of irreducible \mathcal{W}_{k}-modules from the category \mathcal{O}

Sketch of proof

- first we compute an explicit formula for the singular vector in $\mathcal{W}_{-5 / 3}$ at level 4
- from this formula, we obtain a relation in the Zhu algebra $A\left(\mathcal{W}_{k}\right)$:

$$
\left[G^{+}\right]^{2}\left([\omega]+\frac{1}{9}\right)=0
$$

- using this relation (and applying the above Δ-operator), we get candidates for highest weight $\mathcal{W}_{k}-$ modules
- in order to obtain a realization of those modules, we show that \mathcal{W}_{k} can be realized as a \mathbb{Z}_{3}-orbifold (fixed points subalgebra) of the Weyl vertex algebra W

Bershadsky-Polyakov vertex algebra

Minimal affine \mathcal{W}-algebra $\mathcal{W}^{k}\left(\mathfrak{g}, f_{\theta}\right)$, where f_{θ} is a minimal nilpotent element, is the vertex algebra obtained by quantum Drinfeld-Sokolov reduction from the affine vertex algebra $V^{k}(\mathfrak{g})$.

Vertex algebra $\mathcal{W}^{k}\left(\mathfrak{g}, f_{\theta}\right)$ is strongly generated by vectors

- $G\{u\}, u \in \mathfrak{g}_{-\frac{1}{2}}$, of conformal weight $\frac{3}{2}$
$\cdot J^{\{a\}}, a \in \mathfrak{g}^{\text {a }}$, of conformal weight 1
- ω is the conformal vector of central charge

$$
c(\mathfrak{g}, k)=\frac{k \operatorname{dimg}}{k+h^{\vee}}-6 k+h^{\vee}-4
$$

For $k \neq-h^{\vee}, \mathcal{W}^{k}\left(\mathfrak{g}, f_{\theta}\right)$ has a unique simple quotient $\mathcal{W}_{k}\left(\mathfrak{g}, f_{\theta}\right)$
Bershadsky-Polyakov vertex algebra $\mathcal{W}^{k}:=\mathcal{W}^{k}\left(s / 3, f_{\theta}\right)$ is the minimal affine \mathcal{W}-algebra obtained by quantum Drinfeld-Sokolov reduction from $V^{k}(s / 3)$.

- \mathcal{W}^{k} is generated by the fields T, J, G^{+}, G^{-}
- we choose a new Virasoro vector

$$
L(z)=T(z)+\frac{1}{2} D J(z)
$$

- the fields L, J, G^{+}, G^{-}satisfy commutation relations:
$[J(m), J(n)]=\frac{2 k+3}{3} m \delta_{m+n, 0}, \quad\left[J(m), G^{ \pm}(n)\right]= \pm G^{ \pm}(m+n)$,
$[L(m), J(n)]=-n J(m+n)-\frac{(2 k+3)(m+1) m}{6} \delta_{m+n, 0}$,
$\left[L(m), G^{+}(n)\right]=-n G^{+}(m+n), \quad\left[L(m), G^{-}(n)\right]=(m-n) G^{-}(m+n)$,
$\left[G^{+}(m), G^{-}(n)\right]=3\left(J^{2}\right)(m+n)+(3(k+1) m-(2 k+3)(m+n+1)) J(m+n)-(k+3) L(m+$ $n)+\frac{(k+1)(2 k+3)(m-1) m}{2} \delta_{m+n, 0}$.

Smith-type algebra

$$
\begin{aligned}
& \text { Let } g(x, y) \in \mathbb{C}[x, y] \text { be an arbitrary polynomial. Associative algebra } R(g) \text { of Smith type is generated } \\
& \text { by }\{E, F, X, Y\} \text { such that } Y \text { is a central element and the following relations hold: } \\
& \qquad X E-E X=E, X F-F X=-F, E F-F E=g(X, Y) .
\end{aligned}
$$

- $R(g)$ is a certain generalization of $U\left(s I_{2}\right)$!

Structure of the Zhu algebra $A\left(\mathcal{W}^{k}\right)$
Denote $E=\left[G^{+}\right], F=\left[G^{-}\right], X=[J], Y=[\omega]$. Let $R(g)$ be the Smith-type algebra generated by $\{E, F, X, Y\}$, with

$$
g(x, y)=-\left(3 x^{2}-(2 k+3) x-(k+3) y\right)
$$

Then the Zhu algebra $A\left(\mathcal{W}^{k}\right)$ associated to the Bershadsky-Polyakov algebra \mathcal{W}^{k} is isomorphic to a certain quotient of the Smith algebra $R(g)$.

Irreducible \mathcal{W}_{k}-modules for integer levels k

Let $L(x, y)$ be the irreducible highest weight \mathcal{W}_{k}-module of weight $(x, y) \in \mathbb{C}^{2}$.

- vectors

$$
\left(G^{+}(-1)\right)^{n} \mathbb{1},\left(G^{-}(-2)\right)^{n} \mathbb{1}
$$

are singular in \mathcal{W}^{k} for $n=k+2$, where $k \in \mathbb{Z}$.

Necessary condition for \mathcal{W}_{k}-modules

Let $k \in \mathbb{Z}, k \geq-1,(x, y) \in \mathbb{C}^{2}$. Then we have:
(i) The set of equivalency classes of irreducible ordinary \mathcal{W}_{k}-modules is contained in the set

$$
\mathcal{S}_{k}=\left\{L(x, y) \mid h_{i}(x, y)=0,1 \leq i \leq k+2\right\}
$$

(ii) Every irreducible \mathcal{W}_{k}-module in the category \mathcal{O} is an ordinary module

- question: are modules from the set \mathcal{S}_{k} indeed \mathcal{W}_{k}-modules?

Conjecture

The set $\left\{L(x, y) \mid(x, y) \in \mathcal{S}_{k}\right\}$ is the set of all irreducible ordinary \mathcal{W}_{k}-modules.
We prove this conjecture for $k=-1$ and $k=0$, and classify all modules in the category \mathcal{O}

References

1. D. Adamović and A. Kontrec, Classification of irreducible modules for Bershadsky-Polyakov algebra at certain levels, J. Algebra Appl., 20:2150102, 2021.
2. T. Arakawa, Rationality of Bershadsky-Polyakov vertex algebras, Comm. Math. Phys., 323:627-633, 2013
