Abstract

The poset $V \times [n]$, the Cartesian product of a three-element \vee -shaped poset with a chain of length [n] has recently emerged as an example of interest in Dynamical Algebraic Combinatorics. Most posets that are known to have "nice" small-order periodicity for rowmotion arise either from representation theory as root or minuscule posets, or are built up inductively in a simple way ("skeletal posets" as defined by Grinberg & Roby). Here we show that the order of rowmotion of $V \times [n]$ is 2(n+2), and prove several general homomesies for it.

Rowmotion on $V \times [n]$

- Let V be the three-element poset
- The poset of interest is $V(n) = V \times [n]$
- Let \mathcal{J}_n denote the set of order ideals of V(n). That is, for $I \subseteq V(n)$, $I \in \mathcal{J}_n \iff x \in I \Longrightarrow y \in I \text{ for all } y < x.$

• Denote *rowmotion* on order ideals by Row. We compose Row on order ideals by taking the minimal elements of the complement and saturating down.

Example Orbit of Length 2(n+2)

Theorem 1. Order ideals of V(n) are reflected about the center chain after n+2iterations of Row, and furthermore, the order of Row on order ideals of V(n) is 2(n+2).

Periodicity and Homomesy for the $V \times [n]$ poset

Matthew Plante

Department of Mathematics, University of Connecticut

(2, 4, 3)

(3, 4, 2)

Homomesy for $V \times [n]$

Definition 1 (PR15, Def. 1.1). If S is a set and τ an invertible action on S then we say a statistic $f: S \to K$ is homomesic if there exists $c \in K$ such that $\frac{\sum_{s \in O} f(s)}{\# O} = c$ for all orbits O of τ . When this holds, we also say f is *c*-mesic.

Using this labeling ℓ_2 : r_2 we get the following theorem. $\ell_1 c_2 r_1$

Theorem 2. For \mathcal{J}_n with Row, $\chi_{\ell_1} + \chi_{r_1} - \chi_{c_n}$ is $\frac{2(n-1)}{n+2}$ -mesic and $\chi_{r_i} - \chi_{\ell_i}$

-1, +1, for each $i \in [n]$, where χ_x is the indicator function. is 0-mesic

Bijecting to Triples

Definition 2. 1. Denote $T_n = \{(a, b, c) \in \{0, \dots, n+1\}^3 : a, c < b\}$.

2. Define $\phi : \mathcal{J}_n \to T_n$ by $\phi(I) = (\Sigma \chi_{\ell_i}, 1 + \Sigma \chi_{c_i}, \Sigma \chi_{r_i}).$

Definition 3. Define the action ω on $(a, b, c) \in T_n$ as the process: 1. $a \rightarrow a+1$ unless b = a+1, then $a \rightarrow 0$.

2. Repeat step 1 with c instead of a.

3. $b \rightarrow b+1$ unless b = n+1, then $b \rightarrow \max(a, c) + 1$.

Proposition 1. The map ϕ is an equivariant bijection that sends Row to ω .

References

[SW11] Jessica Striker and Nathan Williams, *Promotion and Rowmotion*, Europ. J. of Combin. **33** (2012), 1919–1942,

[PR15] James Propp and Tom Roby, Homomesy in products of two chains, Electronic J. Combin. 22(3) (2015), #P3.4, http://www.combinatorics. org/ojs/index.php/eljc/article/view/v22i3p4.

[R16] Tom Roby, Dynamical algebraic combinatorics and the homomesy phenomenon in A. Beveridge, et. al., Recent Trends in Combinatorics, IMA Volumes in Math. and its Appl., **159** (2016), 619–652.

[HRu20] Sam Hopkins and Martin Rubey, Promotion of Kreweras words, 2020. https://arxiv.org/abs/2005.14031

Sketch of Proof of Periodicity

One Case: Iterate ω on an element of the form (0, k, j), with $j \ge 1$, and $k - j \ge 3$.

0	k	j	
:	:	:	ω^{n-k+1}
n - k + 1	n + 1	n-k+j+1	
n - k + 2	n - k + j + 3	n-k+j+2	
n - k + 3	n - k + j + 4	0	
:	:	:	ω^{k-j-3}
n-j	n + 1	k - j - 3	
n - j + 1	n - j + 2	k - j - 2	
0	n - j + 3	k-j-1	
÷	:	•	ω^{j-2}
j - 2	n+1	k-3	
j-1	k-1	k-2	
j	k	0	

Counting the number of times we iterated ω we get

$$(n - k + 1) + (2) + (k - j - 3) + (2) + (j - 2) + (2) = n + (2) + (2) = n + (2) + (2) = n + (2) + (2$$

Other cases are similar. After iterating ω on all elements of the form (0, k, j) for any j and k we verify $\omega^{n+2}(0,k,j) = (j,k,0)$. Since $\omega^{-a}(a,b,c) = (0,k,j)$, we can compose $\omega^a \omega^{n+2} \omega^{-a}(a, b, c) = (c, b, a).$

Center-Seeking Snakes

Here we see a decomposition of the orbit board of $(1,3,2) \in T_4$ into 6 snakes $0, 1, \ldots, n+1$. These snakes start on the left and/or right lanes and "move" into the center lane. We call these snakes, *center-seeking snakes*.

1 3 2	
$2 \ 4 \ 0$	
3 5 1	
4 5 2	$0 \ 3 \ 0$
0 4 3	1 4 1
1 5 0	2 5 2
2 3 1	$3 \ 4 \ 3$
0 4 2	$0 \ 5 \ 0$
1 5 3	$1 \ 2 \ 1$
$2\ 5\ 4$	
3 4 0	
0 5 1	

Similarly we get 2 two-tailed center-seeking snakes in the orbit board of $(0,3,0) \in T_4$. This phenomenon is typical of symmetric triples.

For (a, b, c) if a > 0 then $\chi_{\ell_1} = 1$ and if c > 0 then $\chi_{r_1} = 1$. Also the only time $\chi_{c_n} = 1$ is when b = n + 1. Since there are 6 snakes that start with 0 and end with n + 1 we get $\chi_{\ell_1} + \chi_{r_1} - \chi_{c_n} = 4(n+2) - 6 - 6$; or there are 2 snakes with 4 tails so $\chi_{\ell_1} + \chi_{r_1} - \chi_{c_n} = 2(n+2) - 4 - 2$ and thus

$$\frac{4(n+2)-12}{2(n+2)} = \frac{2(n+2)-6}{n+2} = \frac{2n-2}{n+2}.$$

Poster PDF at https://matthewplante.com

