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Abstract

The poset V× [n], the Cartesian product of a three-element ∨-shaped poset with a chain of
length [n] has recently emerged as an example of interest in Dynamical Algebraic Combi-
natorics. Most posets that are known to have “nice” small-order periodicity for rowmotion
arise either from representation theory as root or minuscule posets, or are built up induc-
tively in a simple way (“skeletal posets” as defined by Grinberg & Roby). Here we show
that the order of rowmotion of V× [n] is 2(n+2), and prove several general homomesies for
it.

Rowmotion on V × [n]
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V × [n]

• Let V be the three-element poset
• The poset of interest is V (n) = V × [n]
• Let Jn denote the set of order ideals of V (n). That is, for I ⊆ V (n),
I ∈ Jn⇐⇒ x ∈ I =⇒ y ∈ I for all y < x.
• Denote rowmotion on order ideals by Row. We compose Row on order
ideals by taking the minimal elements of the complement and saturating
down.

comp.−−−→ min−−→ sat. down−−−−−−→

Row

Example Orbit of Length 2(n + 2)

Theorem 1. Order ideals of V (n) are reflected about the center chain after n + 2
iterations of Row, and furthermore, the order of Row on order ideals of V (n) is 2(n+2).
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Homomesy for V × [n]

Definition 1 (PR15, Def. 1.1). If S is a set and τ an invertible action on S
then we say a statistic f : S → K is homomesic if there exists c ∈ K such
that

∑
s∈O f (s)

#O = c for all orbits O of τ . When this holds, we also say f is
c-mesic.
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we get the following theorem.
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Theorem 2.For Jn with Row, χ`1 +χr1−χcn is 2(n−1)
n+2 -mesic and χri−χ`i

is 0-mesic
+1

0
−1

, for each i ∈ [n], where χx is the indicator function.

Bijecting to Triples

Definition 2. 1. Denote Tn = {(a, b, c) ∈ {0, . . . , n + 1}3 : a, c < b}.

2. Define φ : Jn→ Tn by φ(I) = (∑
χ`i, 1 + ∑

χci,
∑
χri).

Definition 3.Define the action ω on (a, b, c) ∈ Tn as the process:
1. a→ a + 1 unless b = a + 1, then a→ 0.
2. Repeat step 1 with c instead of a.
3. b→ b + 1 unless b = n + 1, then b→ max(a, c) + 1.

Proposition 1.The map φ is an equivariant bijection that sends Row to ω.
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Sketch of Proof of Periodicity

One Case: Iterate ω on an element of the form (0, k, j), with j ≥ 1, and k−j ≥ 3.

0 k j
... ... ... ωn−k+1

n− k + 1 n + 1 n− k + j + 1
n− k + 2 n− k + j + 3 n− k + j + 2
n− k + 3 n− k + j + 4 0

... ... ... ωk−j−3

n− j n + 1 k − j − 3
n− j + 1 n− j + 2 k − j − 2

0 n− j + 3 k − j − 1
... ... ... ωj−2

j − 2 n + 1 k − 3
j − 1 k − 1 k − 2
j k 0

Counting the number of times we iterated ω we get

(n− k + 1) + (2) + (k − j − 3) + (2) + (j − 2) + (2) = n + 2.

Other cases are similar. After iterating ω on all elements of the form (0, k, j) for
any j and k we verify ωn+2(0, k, j) = (j, k, 0). Since ω−a(a, b, c) = (0, k, j), we
can compose ωaωn+2ω−a(a, b, c) = (c, b, a).

Center-Seeking Snakes

Here we see a decomposition of the orbit board of (1, 3, 2) ∈ T4 into 6 snakes
0, 1, . . . , n + 1. These snakes start on the left and/or right lanes and “move” into
the center lane. We call these snakes, center-seeking snakes.

1 3 2
2 4 0
3 5 1
4 5 2
0 4 3
1 5 0
2 3 1
0 4 2
1 5 3
2 5 4
3 4 0
0 5 1

0 3 0
1 4 1
2 5 2
3 4 3
0 5 0
1 2 1

Similarly we get 2 two-tailed center-seeking snakes in the orbit board of
(0, 3, 0) ∈ T4. This phenomenon is typical of symmetric triples.

For (a, b, c) if a > 0 then χ`1 = 1 and if c > 0 then χr1 = 1. Also the only time
χcn = 1 is when b = n + 1. Since there are 6 snakes that start with 0 and end
with n+ 1 we get χ`1 +χr1−χcn = 4(n+ 2)− 6− 6; or there are 2 snakes with
4 tails so χ`1 + χr1 − χcn = 2(n + 2)− 4− 2 and thus

4(n + 2)− 12
2(n + 2)

= 2(n + 2)− 6
n + 2

= 2n− 2
n + 2

.
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