Naruse Hook length formula for linear extensions of mobile posets
 GaYee Park
 UMassAmherst

University of Massachusetts Amherst
park@math.umass.edu

Objective

- Extend the Naruse Hook Length Formula to mobile posets
- Find a q-analogue of the NHLF for mobile posets

Standard Young Tableaux

- A standard Young tableau (SYT) is a filling of λ with $1, \ldots, n$ such that it is increasing in rows and columns.
- A skew shape is a pair of partitions (λ, μ) such that $\mu \subseteq \lambda$, denoted as λ / μ. A skew SYT is a filling of λ / μ with integers $1 \ldots n$ increasing in rows and columns.

Linear Extensions
A linear extension of a poset P is a linear order of elements compatible with the order P. Let $\mathcal{L}(P)$ the set of all linear extensions of P and $e(P)=|\mathcal{L}(P)|$.

$$
P=\int_{a}^{d} \begin{aligned}
& \mathcal{L}(P)=\{a b c d, a c b d\} \\
& e(P)=2
\end{aligned}
$$

From to Tableaux to Posets

$$
x \quad 1 \quad 10
$$

Hook Length Formula
Theorem 1. (Frame-Robinson-Thrall, 1954) Let λ be a partition of n. We have

$$
|\operatorname{SYT}(\lambda)|=n!\prod_{(i, j) \in\lceil\lambda} \frac{1}{h(i, j)}
$$

where $h(i, j)=\lambda_{i}-i+\lambda_{j}^{\prime}-j+1$ is the hook length of the square (i, j)

Naruse Hook Length Formula
Theorem 2. (Naruse, 2014) For a skew shape λ / μ, we have

$$
|\operatorname{SYT}(\lambda / \mu)|=|\lambda / \mu|!\sum_{D \in \mathcal{E}(\lambda / \mu)} \prod_{u \in[\lambda] \backslash D} \frac{1}{h(u)} .
$$

Question: Are there other posets with Naruse hook length formula, generalizing formula for $e(P)$?

$$
\mathrm{d} \text {-complete posets }
$$

border strips

$$
e(\text { 为 })=n!\Pi \frac{1}{h(u)}
$$

$$
e(N)=n!\sum_{\varepsilon} \Pi \frac{1}{h(u)}
$$

mobiles!
(Proctor) d-complete posets are a large class

- (Garver-Grosser-Matherne-Morales, 2020) A (free-standing) mobile poset P is poset obtained from a border strip λ / μ by hanging from it d-complete posets.

Determinant Formula
Theorem 3. (G-G-M-M, 2020) Let P be a mobile tree poset with n elements then

$$
e(P)=n!\operatorname{det}\left(M_{i, j},\right.
$$

where $M_{i, j}=0$ if $j<i-1, M_{i, j}=1$ if $=<i-1, M_{i, j}=1 / \prod_{x \in P_{i, j}} h_{P i, j}(x)$

NHLF for Mobiles

Theorem 4. (P, 2020+) Let $P_{\lambda / \mu}(\mathbf{p})$ be a free-standing mobile poset of size n then

$$
e\left(P_{\lambda / \mu}(\mathbf{p})\right)=\frac{n!}{\prod_{u \in \mathbf{p}} h(u)} \sum_{D \in \mathcal{E}(\lambda / \mu)} \prod_{(i, j) \in \bar{D}} \frac{1}{h^{\prime}(i, j)}
$$

where $p_{a, b}$ is the size of a d-complete poset hanging on (a, b)

$h^{\prime}(u)=3+4$
$\begin{aligned} e(P) & =\frac{81}{1.13}\left(\frac{1}{1.1356}+\frac{1}{1.3 .567}+\frac{1}{1.3678}\right) \\ & =184\end{aligned}$

Method of Proof
The case of Border Strips (Morales-Pak-Panova, 2019)

$$
\begin{gathered}
F_{\lambda / \mu}(\mathbf{x} \mid \mathbf{y}):=\sum_{D \in \mathcal{E}(\lambda / \mu)} \prod_{(i, j) \in[\lambda] \backslash D} \frac{1}{x_{i}-y_{j}} \\
\text { Let } x_{i}=\lambda_{i}-i+1-\sum_{a<i} p_{a, b} \text {, and } y_{j}=j-\lambda_{j}^{\prime}-\sum_{b \geq j} p_{a, b} \\
e(P(\lambda / \mu))=\sum_{\mu \rightarrow \nu} e(P(\lambda / \nu))
\end{gathered}
$$

where Let ν is the shape obtained by adding an inner corner of λ / μ. Lemma 1. Pieri-Chevalley formula for border strips

$$
F_{\lambda / \mu}(\mathbf{x} \mid \mathbf{y})=\frac{1}{x_{1}-y_{1}} \sum_{\mu \rightarrow \nu} F_{\lambda / \nu}(\mathbf{x} \mid \mathbf{y})
$$

Skewed d-complete Poset (RPP)
Theorem 5. (Naruse-Okada, 2019) Let P be a d-complete poset and F an order filter of P. Then the multivariate generating function of $(P \backslash F)$-partition is

$$
\sum_{D \in \mathcal{E}_{(F)}} \frac{\prod_{v \in B(D)} \mathbf{z}\left[H_{P}(v)\right]}{\prod_{v \in P \backslash D}\left(1-z\left[H_{(v)}\right]\right)}
$$

where $B(D)$ is a set of excited peaks.

A SSYT q-analogue

Theorem 6. (Morales, Pak, Panova 15)

$$
s_{\lambda / \mu}\left(1, q, q^{2}, \ldots\right)=\sum_{S \in \mathcal{E}(\lambda / \mu)} q^{a(D)} \prod_{(i, j) \in[\lambda \backslash S} \frac{1}{1-q^{h(i, j)}}
$$

where $a(D)=\sum_{u \in \operatorname{Br}(D)} h(u)$ is the sum of hook-lengths of the supports of broken diagonals.

Current/Future Work

For a labeled free-standing mobile $\left(P_{\lambda / \mu}, \omega\right)$, we have

$$
\frac{e_{q}\left(P_{\lambda / \mu}, \omega\right)}{\prod_{i=1}^{n}\left(1-q^{i}\right)}=\prod_{v \in \mathbf{p}} \frac{1}{1-q^{h(v)}} \sum_{D \in \mathcal{E}(\lambda / \mu)} q^{a^{\prime}(D)} \prod_{u \in \lambda D} \frac{1}{1-q^{h^{\prime}(u)}}
$$

and $a^{\prime}(D)=\sum_{u \in \operatorname{Br}(D)} h^{\prime}(u)$ is the sum of hook-lengths of the supports of broken diagonals.

References

- Alexander Garerer Stefang Giones

