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Let α = (a, b, . . .) be a composition.
A fence is a poset F = F (α) with elements x1, . . . , xn and covers

x1 � x2 � . . .� xa+1 � xa+2 � . . .� xa+b+1 � xa+b+2 � . . . .

Ex.

F (2, 3, 1) =

x1

x2

x3

x4

x5

x6

x7

The maximal chains of F are called segments.
Note that if α = (α1, α2, . . .) then

n = #F (α) = 1 +
∑
i

αi .



Let L = L(α) be the distributive lattice of order ideals of F (α).
These lattices can be used to compute mutations in a cluster
algebra on a surface with marked points.

Who When What

Propp 2005 perfect mathings on snake graphs
Yurikusa 2019 perfect matchings of angles
Schiffler 2008, 2010 T -paths
Schiffler

and Thomas 2009 T -paths
Propp 2005 lattice paths on snake graphs
Claussen 2020 lattice paths of angles
Claussen 2020 S-paths
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Lattice L(α) is ranked with rank function rk I = #I .
We let

Rk(α) = {I ∈ L(α) | rk I = k} and rk(α) = #Rk(α).

We will also use the rank generating function

r(q;α) =
∑
k

rk(α)qk .

This generating function was used by Morier-Genoud and Ovsienko
to define q-analogues of rational numbers.
Call a sequence a0, a1, . . . or its generating function unimodal if
there is an index m with

a0 ≤ a1 ≤ . . . ≤ am ≥ am+1 ≥ . . . .

Conjecture (Morier-Genoud and Ovsienko, 2020)

For any α we have that r(q;α) is unimodal.

Previous work: Gansner (1982), Munarini and Salvi (2002),
Claussen (2020).



Call sequence a0, a1, . . . , an symmetric if, for all k ≤ n/2,

ak = an−k .

Call the sequence top heavy or bottom heavy if, for all k ≤ n/2,

ak ≤ an−k or ak ≥ an−k , respectively.

Call the sequence top interlacing (TI) if

a0 ≤ an ≤ a1 ≤ an−1 ≤ a2 ≤ . . . ≤ adn/2e

or bottom interlacing (BI) if

an ≤ a0 ≤ an−1 ≤ a1 ≤ an−2 ≤ . . . ≤ abn/2c.

Note that interlacing implies unimodality and heaviness.

Conjecture (MSS)

Suppose α = (α1, . . . , αs).

(a) If s is even, then r(q;α) is BI.

(b) Suppose s ≥ 3 is odd and let α′ = (α2, . . . , αs−1).

(i) If α1 > αs or α1 < αs then r(q;α) is BI or TI, respectively.
(iii) If α1 = αs then r(q;α) is symmetric, BI, or TI depending on

whether r(q;α′) is symmetric, TI, or BI, respectively.



A chain decomposition (CD) of a poset P is a partition of P into
disjoint saturated chains.
If P is ranked then the center of a chain C is

cenC =
rk(minC ) + rk(maxC )

2
.

If rkP = n then a CD is symmetric (SCD) if for all chains C in the
CD

cenC =
n

2
.

A CD is top centered (TCD) if for all chains C in the CD

cenC =
n

2
or

n + 1

2
.

A bottom centered CD (BCD) has cenC = n/2 or (n− 1)/2 for all
chains C .
If P has an SCD, TCD, or BCD then its rank sequence is
symmetric, top, or bottom interlacing, respectively.

Conjecture (MSS)

For any α, the lattice L(α) admits an SCD, TCD, or BCD
consistent with the previous conjecture.



Theorem (MSS)

Let α = (α1, . . . , αs) and suppose that for some t we have

αt >
∑
i 6=t

αi .

Then r(q;α) is unimodal.

Theorem (MSS)

Let α = (α1, . . . , αs) where for some t

αt = 1 +
∑
i 6=t

αi .

If L(α) has an SCD, TCD, or BCD then so does L(β) where

β = (α1, . . . , αt−1, αt + a, αt+1, . . . , αs)

for any a ≥ 1.

Theorem (MMS)

If α has at most three parts then L(α) has an SCD, TCD, or BCD.
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Let λ = (λ1, . . . , λk) be an integer partition with all parts at least
two. The extended star , S = S(λ), consists of k chains with λi
elements in chain i where the maximum elements of the chains
have been identified.
Ex.

S(3, 3, 2) =

Note that S(a, b) = F (a− 1, b − 1).

Theorem (S)

Rowmotion on the antichains of S(λ) has the following properties.

1. All orbits have size ` = lcm(λ1, λ2, . . . , λk) except for one
which has size `+ 1.

2. The number of orbits is
∏

i λi/`.

3. The number of antichain elements in the orbit of size `+ 1 is
m where m is a multiple of #S(λ) = λ1 + · · ·+ λk − k + 1.
The number of antichain elements in the other orbits is m− 1.



For fences with more that two segments, the picture is less clear.
Let (1s) denote the composition consisting of s ones.

Theorem (S)

Consider F = F (1s).

1. F always has an orbit of length 3.

2. F has an orbit of size 3(s − 2) + 2 for s ≥ 2.

3. F has an orbit of size 3(s − 3) + 1 for s ≥ 5.
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