Fences, unimodality, and rowmotion

Thomas McConville Kennesaw State University
Bruce Sagan
Michigan State University www.math.msu.edu/~sagan
Clifford Smyth
University of North Carolina, Greensboro

October 22, 2020

Fences

Unimodality

Rowmotion

Outline

Fences

Unimodality

Rowmotion

Let $\alpha=(a, b, \ldots)$ be a composition.
A fence is a poset $F=F(\alpha)$ with elements x_{1}, \ldots, x_{n} and covers

$$
x_{1} \triangleleft x_{2} \triangleleft \ldots \triangleleft x_{a+1} \triangleright x_{a+2} \triangleright \ldots \triangleright x_{a+b+1} \triangleleft x_{a+b+2} \triangleleft \ldots .
$$

Ex.

$$
F(2,3,1)=
$$

The maximal chains of F are called segments.
Note that if $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$ then

$$
n=\# F(\alpha)=1+\sum_{i} \alpha_{i}
$$

Let $L=L(\alpha)$ be the distributive lattice of order ideals of $F(\alpha)$. These lattices can be used to compute mutations in a cluster algebra on a surface with marked points.

Who	When	What
Propp	2005	perfect mathings on snake graphs
Yurikusa Schiffler	2019	perfect matchings of angles
Schiffler	2008,2010	T-paths
and Thomas 2009	T-paths	
Propp	2005	lattice paths on snake graphs
Claussen	2020	lattice paths of angles
Claussen	2020	S-paths

Outline

Fences

Unimodality

Rowmotion

Lattice $L(\alpha)$ is ranked with rank function rk $I=\# I$.
We let

$$
R_{k}(\alpha)=\{I \in L(\alpha) \mid \mathrm{rk} I=k\} \quad \text { and } \quad r_{k}(\alpha)=\# R_{k}(\alpha) .
$$

We will also use the rank generating function

$$
r(q ; \alpha)=\sum_{k} r_{k}(\alpha) q^{k}
$$

This generating function was used by Morier-Genoud and Ovsienko to define q-analogues of rational numbers.
Call a sequence a_{0}, a_{1}, \ldots or its generating function unimodal if there is an index m with

$$
a_{0} \leq a_{1} \leq \ldots \leq a_{m} \geq a_{m+1} \geq \ldots
$$

Conjecture (Morier-Genoud and Ovsienko, 2020)
For any α we have that $r(q ; \alpha)$ is unimodal.
Previous work: Gansner (1982), Munarini and Salvi (2002),
Claussen (2020).

Call sequence $a_{0}, a_{1}, \ldots, a_{n}$ symmetric if, for all $k \leq n / 2$,

$$
a_{k}=a_{n-k}
$$

Call the sequence top heavy or bottom heavy if, for all $k \leq n / 2$,

$$
a_{k} \leq a_{n-k} \quad \text { or } \quad a_{k} \geq a_{n-k}, \quad \text { respectively. }
$$

Call the sequence top interlacing (TI) if

$$
a_{0} \leq a_{n} \leq a_{1} \leq a_{n-1} \leq a_{2} \leq \ldots \leq a_{\lceil n / 2\rceil}
$$

or bottom interlacing (BI) if

$$
a_{n} \leq a_{0} \leq a_{n-1} \leq a_{1} \leq a_{n-2} \leq \ldots \leq a_{\lfloor n / 2\rfloor} .
$$

Note that interlacing implies unimodality and heaviness.
Conjecture (MSS)
Suppose $\alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right)$.
(a) If s is even, then $r(q ; \alpha)$ is $B I$.
(b) Suppose $s \geq 3$ is odd and let $\alpha^{\prime}=\left(\alpha_{2}, \ldots, \alpha_{s-1}\right)$.
(i) If $\alpha_{1}>\alpha_{s}$ or $\alpha_{1}<\alpha_{s}$ then $r(q ; \alpha)$ is BI or TI, respectively.
(iii) If $\alpha_{1}=\alpha_{s}$ then $r(q ; \alpha)$ is symmetric, B I, or TI depending on whether $r\left(q ; \alpha^{\prime}\right)$ is symmetric, TI, or BI, respectively.

A chain decomposition (CD) of a poset P is a partition of P into disjoint saturated chains.
If P is ranked then the center of a chain C is

$$
\operatorname{cen} C=\frac{\operatorname{rk}(\min C)+\operatorname{rk}(\max C)}{2}
$$

If $\mathrm{rk} P=n$ then a $C D$ is symmetric (SCD) if for all chains C in the CD

$$
\operatorname{cen} C=\frac{n}{2} .
$$

A CD is top centered (TCD) if for all chains C in the CD

$$
\text { cen } C=\frac{n}{2} \quad \text { or } \quad \frac{n+1}{2} .
$$

A bottom centered $C D(B C D)$ has cen $C=n / 2$ or $(n-1) / 2$ for all chains C.
If P has an SCD, TCD, or BCD then its rank sequence is symmetric, top, or bottom interlacing, respectively.
Conjecture (MSS)
For any α, the lattice $L(\alpha)$ admits an SCD, TCD, or BCD consistent with the previous conjecture.

Theorem (MSS)
Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ and suppose that for some t we have

$$
\alpha_{t}>\sum_{i \neq t} \alpha_{i} .
$$

Then $r(q ; \alpha)$ is unimodal.
Theorem (MSS)
Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ where for some t

$$
\alpha_{t}=1+\sum_{i \neq t} \alpha_{i}
$$

If $L(\alpha)$ has an SCD, TCD, or BCD then so does $L(\beta)$ where

$$
\beta=\left(\alpha_{1}, \ldots, \alpha_{t-1}, \alpha_{t}+a, \alpha_{t+1}, \ldots, \alpha_{s}\right)
$$

for any $a \geq 1$.
Theorem (MMS)
If α has at most three parts then $L(\alpha)$ has an SCD, TCD, or BCD.

Outline

Fences

Unimodality

Rowmotion

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ be an integer partition with all parts at least two. The extended star, $S=S(\lambda)$, consists of k chains with λ_{i} elements in chain i where the maximum elements of the chains have been identified.
Ex.

Note that $S(a, b)=F(a-1, b-1)$.
Theorem (S)
Rowmotion on the antichains of $S(\lambda)$ has the following properties.

1. All orbits have size $\ell=\operatorname{lcm}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ except for one which has size $\ell+1$.
2. The number of orbits is $\prod_{i} \lambda_{i} / \ell$.
3. The number of antichain elements in the orbit of size $\ell+1$ is m where m is a multiple of $\# S(\lambda)=\lambda_{1}+\cdots+\lambda_{k}-k+1$.
The number of antichain elements in the other orbits is $m-1$.

For fences with more that two segments, the picture is less clear. Let $\left(1^{s}\right)$ denote the composition consisting of s ones.

Theorem (S)
Consider $F=F\left(1^{s}\right)$.

1. F always has an orbit of length 3 .
2. F has an orbit of size $3(s-2)+2$ for $s \geq 2$.
3. F has an orbit of size $3(s-3)+1$ for $s \geq 5$.
