An Introduction to Homomesy through Promotion and Rowmotion on Order Ideals

Corey Vorland

Marian University

October 19, 2020

This talk is being recorded.

Main Topics

(1) Posets and toggles
(2) Homomesy on order ideals of $[a] \times[b]$
(3) Homomesy on order ideals of $[2] \times[b] \times[c]$
(4) Refined homomesy
(5) Homomesy for actions with infinite orbits

Main Topics

(1) Posets and toggles
(2) Homomesy on order ideals of $[a] \times[b]$
(3) Homomesy on order ideals of $[2] \times[b] \times[c]$
(4) Refined homomesy
(5) Homomesy for actions with infinite orbits

What is a toggle?

Define a toggle t_{e} for each e in P.

What is a toggle?

Define a toggle t_{e} for each e in P.

If an element is not in an order ideal, toggling that element adds it to the order ideal, if possible.

What is a toggle?

Define a toggle t_{e} for each e in P.

If an element is not in an order ideal, toggling that element adds it to the order ideal, if possible.

What is a toggle?

Define a toggle t_{e} for each e in P.

If an element is in an order ideal, toggling that element removes it from the order ideal, if possible.

What is a toggle?

Define a toggle t_{e} for each e in P.

If an element is in an order ideal, toggling that element removes it from the order ideal, if possible.

What is a toggle?

Define a toggle t_{e} for each e in P.

If an element cannot be toggled in (or out) of an order ideal, nothing happens.

What is a toggle?

Define a toggle t_{e} for each e in P.

If an element cannot be toggled in (or out) of an order ideal, nothing happens.

What is a toggle?

Define a toggle t_{e} for each e in P.

If an element cannot be toggled in (or out) of an order ideal, nothing happens.

The rowmotion action

We can define an action rowmotion in two ways.

Definition

Let P be a poset and I an order ideal of P. Row (I) is the order ideal generated by the minimal elements of P not in I.

Theorem (Cameron and Fon-der-Flaass, 1995)
Rowmotion can be performed on a finite poset by toggling from top to bottom.

Rowmotion example

Rowmotion example

Rowmotion example

Rowmotion example

Rowmotion example

Rowmotion example

Promotion

- Rowmotion toggles our poset from top to bottom.
- We can define, analogously, promotion which toggles our poset from left to right.

Promotion

- Rowmotion toggles our poset from top to bottom.
- We can define, analogously, promotion which toggles our poset from left to right.

Promotion

- Rowmotion toggles our poset from top to bottom.
- We can define, analogously, promotion which toggles our poset from left to right.

Promotion

- Rowmotion toggles our poset from top to bottom.
- We can define, analogously, promotion which toggles our poset from left to right.

Promotion

- Rowmotion toggles our poset from top to bottom.
- We can define, analogously, promotion which toggles our poset from left to right.

Promotion

- Rowmotion toggles our poset from top to bottom.
- We can define, analogously, promotion which toggles our poset from left to right.

An orbit under promotion

If we continue to apply promotion, we eventually return to the order ideal at which we started, giving us an orbit of order ideals under the action.

Main Topics

(1) Posets and toggles
(2) Homomesy on order ideals of $[a] \times[b]$
(3) Homomesy on order ideals of $[2] \times[b] \times[c]$
(4) Refined homomesy
(5) Homomesy for actions with infinite orbits

What is homomesy?

Observe: the average cardinality of our example orbit under promotion is 3 .

$$
\frac{2+5+3+1+4}{5}=3
$$

What is homomesy?

If we check another orbit, the average cardinality is also 3 .

$$
\frac{0+3+6+4+2}{5}=3
$$

Notice that for the poset [3] $\times[2]$, the average cardinality of an order ideal over all order ideals is 3 .

Homomesy in the two-dimensional product of chains

If every orbit average of a statistic is the same as the global average of that statistic, we say we have homomesy.

Theorem (Propp and Roby, 2015)
Order ideals of $[a] \times[b]$ under promotion with cardinality statistic exhibit homomesy with average value $a b / 2$.

What about rowmotion?

Recombination

These are two partial orbits, the top is under rowmotion, the bottom is under promotion.

Recombination

Recombination

Recombination

Recombination

The previous proof technique is called recombination.

Theorem (Einstein and Propp, 2014)

Recombination gives a bijection between order ideals of a product of chains poset under rowmotion and promotion.

Because recombination preserves cardinality, this gives a slick proof for the following result.

Theorem (Propp and Roby, 2015)

Order ideals of $[a] \times[b]$ under rowmotion with cardinality statistic exhibit homomesy with average value $a b / 2$.

Main Topics

(1) Posets and toggles
(2) Homomesy on order ideals of $[a] \times[b]$
(3) Homomesy on order ideals of $[2] \times[b] \times[c]$
(4) Refined homomesy
(5) Homomesy for actions with infinite orbits

Promotion on a higher dimensional product of chains

Definition (Dilks, Pechenik, Striker, 2017)

Let $P=\left[a_{1}\right] \times \cdots \times\left[a_{n}\right]$ and let $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ where $v_{j} \in\{ \pm 1\}$. Instead of toggling from left to right, we sweep through P with a hyperplane in a direction given by v. We call this Pro_{v}.

Example: Toggle order of $\operatorname{Pro}_{(1,1,1)}$

Promotion on a higher dimensional product of chains

Definition (Dilks, Pechenik, Striker, 2017)

Let $P=\left[a_{1}\right] \times \cdots \times\left[a_{n}\right]$ and let $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ where $v_{j} \in\{ \pm 1\}$. Instead of toggling from left to right, we sweep through P with a hyperplane in a direction given by v. We call this Pro_{v}.

Example: Toggle order of $\operatorname{Pro}_{(1,1,1)}$

Promotion on a higher dimensional product of chains

Definition (Dilks, Pechenik, Striker, 2017)

Let $P=\left[a_{1}\right] \times \cdots \times\left[a_{n}\right]$ and let $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ where $v_{j} \in\{ \pm 1\}$. Instead of toggling from left to right, we sweep through P with a hyperplane in a direction given by v. We call this Pro_{v}.

Example: Toggle order of $\operatorname{Pro}_{(1,1,1)}$

Promotion on a higher dimensional product of chains

Definition (Dilks, Pechenik, Striker, 2017)

Let $P=\left[a_{1}\right] \times \cdots \times\left[a_{n}\right]$ and let $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ where $v_{j} \in\{ \pm 1\}$. Instead of toggling from left to right, we sweep through P with a hyperplane in a direction given by v. We call this Pro_{v}.

Example: Toggle order of $\operatorname{Pro}_{(1,1,1)}$

Promotion on a higher dimensional product of chains

Definition (Dilks, Pechenik, Striker, 2017)

Let $P=\left[a_{1}\right] \times \cdots \times\left[a_{n}\right]$ and let $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ where $v_{j} \in\{ \pm 1\}$. Instead of toggling from left to right, we sweep through P with a hyperplane in a direction given by v. We call this Pro_{v}.

Example: Toggle order of $\operatorname{Pro}_{(1,1,1)}$

Promotion on a higher dimensional product of chains

Definition (Dilks, Pechenik, Striker, 2017)

Let $P=\left[a_{1}\right] \times \cdots \times\left[a_{n}\right]$ and let $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ where $v_{j} \in\{ \pm 1\}$. Instead of toggling from left to right, we sweep through P with a hyperplane in a direction given by v. We call this Pro_{v}.

Observe: $\operatorname{Pro}_{(1,1,1)}$ is Row.

Another Example: Toggle order of $\operatorname{Pro}_{(1,1,-1)}$

Toggling elements on the hyperplane $x+y-z=4$

Another Example: Toggle order of $\operatorname{Pro}_{(1,1,-1)}$

Toggling elements on the hyperplane $x+y-z=3$

Another Example: Toggle order of $\operatorname{Pro}_{(1,1,-1)}$

Toggling elements on the hyperplane $x+y-z=2$

Another Example: Toggle order of $\operatorname{Pro}_{(1,1,-1)}$

Toggling elements on the hyperplane $x+y-z=1$

Another Example: Toggle order of $\operatorname{Pro}_{(1,1,-1)}$

Toggling elements on the hyperplane $x+y-z=0$

Homomesy in the product of three chains

We will start by focusing on one particular Pro_{v}.

Theorem (V., 2019)

Let $v=(1,1,-1)$. Order ideals of $[2] \times[b] \times[c]$ under Pro_{v} with cardinality statistic exhibit homomesy with average value bc.

$$
\frac{0+2+6+8+4}{5}=4
$$

Homomesy in the product of three chains

We will start by focusing on one particular Pro_{v}.

Theorem (V., 2019)

Let $v=(1,1,-1)$. Order ideals of $[2] \times[b] \times[c]$ under Pro_{v} with cardinality statistic exhibit homomesy with average value bc.

$$
\frac{2+3+4+5+6}{5}=4
$$

Homomesy in the product of three chains

We will start by focusing on one particular Pro_{v}.

Theorem (V., 2019)

Let $v=(1,1,-1)$. Order ideals of $[2] \times[b] \times[c]$ under Pro_{v} with cardinality statistic exhibit homomesy with average value bc.

To prove this result on $v=(1,1,-1)$, we use increasing tableaux.

Increasing tableaux

Definition

An increasing tableau is a filling of a partition shape with positive integers such that the rows and columns are strictly increasing.

Example:

1	2	4
2	4	5
6		

A useful bijection

Theorem (Dilks, Pechenik, Striker, 2017)

There exists a bijection between order ideals of
$[a] \times[b] \times[c]$ and increasing tableaux of shape $a \times b$ and entries at most $a+b+c-1$.

Corollary

There exists a bijection between order ideals of $[2] \times[b] \times[c]$ and increasing tableaux of shape $2 \times b$ and entries at most $b+c+1$.

Bijection example

0	1	2				
2	2	2	\longleftrightarrow	1	3	5
:---	:---	:---				
4	5	6				

Pro $_{(1,1,-1)}$ on order ideals of $[a] \times[b] \times[c]$ corresponds to an action K-promotion on increasing tableaux.

K-promotion

Switch 1's to 2's and 2's to 1's, if possible.

K-promotion

Switch 2's to 3's and 3's to 2's, if possible.

K-promotion

Switch 2's to 3's and 3's to 2's, if possible.

K-promotion

Switch 3's to 4's and 4's to 3's, if possible.

K-promotion

Switch 3's to 4's and 4's to 3's, if possible.

K-promotion

Switch 4's to 5's and 5's to 4's, if possible.

K-promotion

Switch 4's to 5's and 5's to 4's, if possible.

K-promotion

Switch 5's to 6's and 6's to 5's, if possible.

K-promotion

Switch 6's to 7's and 7's to 6's, if possible.

K-promotion

The result is $K-\operatorname{Pro}(T)$.

A K-Promotion result

Abstract

Theorem (Bloom, Pechenik, Saracino, 2016) Increasing tableaux of shape $2 \times n$ and entries at most q under K-promotion with statistic the sum of the entries exhibits homomesy.

Theorem (V., 2019)
Let $v=(1,1,-1)$. Order ideals of $[2] \times[b] \times[c]$ under Pro_{v} with cardinality statistic exhibit homomesy with average value bc.

Recombination

Does recombination work in higher dimensions? We'll look at an example. Below is a partial orbit under $\operatorname{Pro}_{(1,1,1)}$.

Recombination

Recombination

Recombination

General recombination result

Theorem (V., 2019)

Let v and u be n-dimensional vectors with entries ± 1 such that v and u differ in one component. Then we can perform recombination to get from Pro_{v} to Pro_{u}.

Homomesy in the product of three chains

Theorem (V., 2019)

Let $v=(1,1,-1)$. Order ideals of $[2] \times[b] \times[c]$ under Pro_{v} with cardinality statistic exhibit homomesy with average value bc.

Using recombination, we obtain homomesy results for all v.

Theorem (V., 2019)

Order ideals of $[2] \times[b] \times[c]$ under Pro_{v} with cardinality statistic exhibit homomesy with average value bc.

Homomesy nonexamples in the product of chains

- Order ideals of [3] $\times[3] \times[4]$ under Pro_{v} with cardinality statistic are not homomesic.
- Order ideals of [2] $\times[2] \times[2] \times[3]$ under Pro_{v} with cardinality statistic are not homomesic.
- Order ideals of [2] $\times[2] \times[2] \times[2] \times[2]$ under Pro_{v} with cardinality statistic are not homomesic.

Main Topics

(1) Posets and toggles
(2) Homomesy on order ideals of $[a] \times[b]$
(3) Homomesy on order ideals of $[2] \times[b] \times[c]$
(4) Refined homomesy
(5) Homomesy for actions with infinite orbits

Refined homomesy example on [3] $\times[2]$

Refined homomesy on $[a] \times[b]$

- In a product of chains, x and y are antipodal if x can be obtained from y by rotating 180° about the center.
- The $x-y$ file contains all elements (x, y) with constant value $x-y$.

x and y are antipodal, w and z are in the same file.

Refined homomesy on $[a] \times[b]$

Theorem (Propp and Roby, 2015)

Let g denote the cardinality of two antipodal elements in $[a] \times[b]$. Order ideals of $[a] \times[b]$ under rowmotion (or promotion) with statistic g exhibit homomesy.

Theorem (Propp and Roby, 2015)

Let h denote the cardinality of elements in a file of $[a] \times[b]$. Order ideals of $[a] \times[b]$ under rowmotion (or promotion) with statistic h exhibit homomesy.

Antipodal refined homomesy on $[2] \times[b] \times[c]$

Theorem (V., 2019)
Let g denote the cardinality of two antipodal elements in $[2] \times[b] \times[c]$. Order ideals of $[2] \times[b] \times[c]$ under Pro ${ }_{v}$ with statistic g exhibit homomesy.

Tableaux result

- Let $T \in \operatorname{Inc}^{q}(\lambda)$ with fixed box B. Let $\operatorname{Dist}(B)$ denote the set of values box B attains in an orbit of K-Pro.
- Let $\operatorname{arDist}(B)$ denote the alphabet reversal of $\operatorname{Dist}(B)$, the set of values $q+1-b$ for every $b \in \operatorname{Dist}(B)$.

Theorem (Pechenik)

Let $T \in \operatorname{lnc}^{q}(2 \times a)$, fix B and B^{*} such that B^{*} is the box 180° rotated from B. Then $\operatorname{Dist}(B)=\operatorname{arDist}\left(B^{*}\right)$.

We will look at an example orbit of order ideals of $[2] \times[2] \times[2]$ under Pro $_{(1,1,-1)}$ and the corresponding orbit of $\operatorname{Inc}^{5}(2 \times 2)$ under K-promotion.

Example

$\operatorname{Dist}(B)=\{1,1,1,3,2\}, \operatorname{Dist}\left(B^{*}\right)=\{3,5,5,5,4\}$, $\operatorname{arDist}\left(B^{*}\right)=\{3,1,1,1,2\}$

Example

$\operatorname{Dist}(B)=\{1,1,1,3,2\}, \operatorname{Dist}\left(B^{*}\right)=\{3,5,5,5,4\}$, $\operatorname{arDist}\left(B^{*}\right)=\{3,1,1,1,2\}$

Main Topics

(1) Posets and toggles
(2) Homomesy on order ideals of $[a] \times[b]$
(3) Homomesy on order ideals of $[2] \times[b] \times[c]$
(4) Refined homomesy
(5) Homomesy for actions with infinite orbits

A more general homomesy definition

Rowmotion on a finite poset is a bijective action with finite orbits. With infinite posets, this is not necessarily the case. We need to modify the previous definition of homomesy.

Definition (Roby)

Given a set S, an action $\tau: S \rightarrow S$, and a statistic f, then (S, τ, f) exhibits homomesy if there exists c such that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=0}^{N-1} f\left(\tau^{i}(x)\right)=c
$$

is independent of the starting point $x \in S$.

Ordinal sums of antichains

Definition

Let P_{n} denote the n-element antichain.
We consider ordinal sums of P_{n}. For example, the following is the poset $\bigoplus_{i=1}^{4} P_{3}=P_{3} \bigoplus P_{3} \bigoplus P_{3} \bigoplus P_{3}$.

Ordinal sums of antichains

We have a homomesy result for finite ordinal sums and for infinite ordinal sums.
Theorem (V.)
If k is odd, order ideals of $\bigoplus_{i=1}^{k} P_{n}$ under rowmotion with signed cardinality statistic are n/2-mesic.

Theorem (V.)
Order ideals of $\bigoplus_{i \in \mathbb{N}} P_{n}$ under rowmotion with signed cardinality statistic are n/2-mesic.

Ordinal sums of antichains example

Consider $\bigoplus_{i \in \mathbb{N}} P_{n}$. If we start with an order ideal that is not generated by n elements of the same rank, we obtain an orbit of size two under rowmotion.

Ordinal sums of antichains example

The order ideal on the left has signed cardinality $3-1=2$, whereas the order ideal on the right has signed cardinality $3-2=1$. Therefore, the average over the orbit is $3 / 2$.

Ordinal sums of antichains example

If we start with an order ideal that is generated by n elements of rank k, applying rowmotion results in the order ideal generated by n elements of rank $k+1$.

Ordinal sums of antichains example

The signed cardinalities of the order ideals are 3, 0, 3, and 0 respectively.

Ordinal sums of antichains example

If f is the signed cardinality statistic and N is even,

$$
\frac{1}{N} \sum_{j=0}^{N-1} f\left(\operatorname{Row}^{j}(I)\right)=\frac{3 N}{2 N}=\frac{3}{2}
$$

Ordinal sums of antichains example

If f is the signed cardinality statistic and N is odd,

$$
\frac{1}{N} \sum_{j=0}^{N-1} f\left(\operatorname{Row}^{j}(I)\right)=\frac{3+0+3+\cdots+0+3}{N}=\frac{3(N+1)}{2 N}
$$

Thanks!

- J. Bloom, O. Pechenik, and D. Saracino. Proofs and generalizations of a homomesy conjecture of Propp and Roby. Discrete Math., 339(1):194-206, 2016.
- K. Dilks, O. Pechenik, and J. Striker, Resonance in orbits of plane partitions and increasing tableaux. J. Combin. Theory Ser. A, 148:244-274, 2017.
- D. Einstein and J. Propp, Combinatorial, piecewise-linear, and birational homomesy for products of two chains, https://arxiv.org/abs/1310.5294.
- J. Propp and T. Roby, Homomesy in products of two chains. Electron. J. Combin., 22(3):Paper 3.4, 29, 2015.
- C. Vorland, Homomesy in products of three chains and multidimensional recombination, Electron. J. Combin., 26(4):Paper 4.30, 26, 2019.

