Dynamics of plane partitions

Oliver Pechenik University of Waterloo

21 Oct 2020

Based on joint work with Becky Patrias (St. Thomas) arXiv:2003.13152 This talk is being recorded

(4月) トイヨト イヨト

- Let P be a finite poset and J(P) its set of order ideals.
- Rowmotion is the permutation ψ: J(P) → J(P) sending an order ideal I to the smallest order ideal ψ(I) containing the minimal elements of P \ I.

イロト イヨト イヨト イヨト

- Let P be a finite poset and J(P) its set of order ideals.
- Rowmotion is the permutation ψ: J(P) → J(P) sending an order ideal I to the smallest order ideal ψ(I) containing the minimal elements of P \ I.
- **Q**: What is the orbit structure of J(P) under iterating ψ ?
- For general *P*, it's a mess!
- But for your favorite P, there is probably a lot of structure

向下 イヨト イヨト

- Let P be a finite poset and J(P) its set of order ideals.
- Rowmotion is the permutation ψ: J(P) → J(P) sending an order ideal I to the smallest order ideal ψ(I) containing the minimal elements of P \ I.
- **Q**: What is the orbit structure of J(P) under iterating ψ ?
- For general *P*, it's a mess!
- But for your favorite *P*, there is probably a lot of structure
- This morning: $P = \mathbf{a} \times \mathbf{b} \times \mathbf{c}$, a product of three chain posets.

イロト イヨト イヨト イヨト

Theorem (Brouwer+Schrijver 1974)

The order of ψ on $J(\mathbf{a} \times \mathbf{b} \times \mathbf{1})$ is a + b. More precisely, for $I \in J(\mathbf{a} \times \mathbf{b} \times \mathbf{1})$, $|\mathbb{O}(I)|$ divides a + b and $|\mathbb{O}(\emptyset)| = a + b$.

Theorem (Striker+Williams 2012)

 $(J(\mathbf{a} \times \mathbf{b} \times \mathbf{1}), \psi, f(q))$ exhibits cyclic sieving, where f(q) is the *q*-enumerator for order ideals by cardinality.

Theorem (Propp+Roby 2015, Buch+Wang 2019)

For each orbit O(I), the average order ideal size is $\frac{ab}{2}$.

ヘロト ヘヨト ヘヨト ヘヨト

Theorem (Cameron+Fon Der Flaass 1995)

The order of ψ on $J(\mathbf{a} \times \mathbf{b} \times \mathbf{2})$ is a + b + 1. More precisely, for $I \in J(\mathbf{a} \times \mathbf{b} \times \mathbf{2})$, $|\mathbb{O}(I)|$ divides a + b + 1 and $|\mathbb{O}(\emptyset)| = a + b + 1$.

Theorem (Striker+Williams 2012, Rush+Shi 2013)

 $(J(\mathbf{a} \times \mathbf{b} \times \mathbf{2}), \psi, f(q))$ exhibits cyclic sieving, where f(q) is the *q*-enumerator for order ideals by cardinality.

Theorem (Vorland 2019)

For each orbit $\mathcal{O}(I)$, the average order ideal size is $\frac{ab}{1}$.

ヘロト ヘヨト ヘヨト ヘヨト

Conjecture (Dilks+P+Striker 2017)

The order of ψ on $J(\mathbf{a} \times \mathbf{b} \times \mathbf{3})$ is $\mathbf{a} + \mathbf{b} + \mathbf{2}$.

No obvious CSP

No obvious homomesy

イロト イヨト イヨト イヨト

臣

Order of ψ generally greater than a + b + c - 1 but unknown.

No good bounds on order known. (For a = b = c = 4, order is 11 · 3; for a = 4, b = c = 11, order is $\geq 309 \cdot 25$.)

No obvious CSP

No obvious homomesy

Conjecture (Cameron+Fon-der-Flaass 1995)

If $\mathbf{a} + \mathbf{b} + \mathbf{c} - 1$ is prime, then $\mathbf{a} + \mathbf{b} + \mathbf{c} - 1$ divides every ψ -orbit size on $J(\mathbf{a} \times \mathbf{b} \times \mathbf{c})$.

Conjecture (Cameron+Fon-der-Flaass 1995)

If $\mathbf{a} + \mathbf{b} + \mathbf{c} - 1$ is prime, then $\mathbf{a} + \mathbf{b} + \mathbf{c} - 1$ divides every ψ -orbit size on $J(\mathbf{a} \times \mathbf{b} \times \mathbf{c})$.

Theorem (Cameron+Fon-der-Flaass 1995)

The conjecture holds when c > ab - a - b + 1.

伺 ト イヨト イヨト

Conjecture (Cameron+Fon-der-Flaass 1995)

If $\mathbf{a} + \mathbf{b} + \mathbf{c} - 1$ is prime, then $\mathbf{a} + \mathbf{b} + \mathbf{c} - 1$ divides every ψ -orbit size on $J(\mathbf{a} \times \mathbf{b} \times \mathbf{c})$.

Theorem (Cameron+Fon-der-Flaass 1995)

The conjecture holds when c > ab - a - b + 1.

Theorem (Dilks+P+Striker 2017)

The conjecture holds when
$$c > \frac{2ab-2}{3} - a - b + 2$$
.

・ 同 ト ・ ヨ ト ・ ヨ ト

Conjecture (Cameron+Fon-der-Flaass 1995)

If $\mathbf{a} + \mathbf{b} + \mathbf{c} - 1$ is prime, then $\mathbf{a} + \mathbf{b} + \mathbf{c} - 1$ divides every ψ -orbit size on $J(\mathbf{a} \times \mathbf{b} \times \mathbf{c})$.

Theorem (Cameron+Fon-der-Flaass 1995)

The conjecture holds when c > ab - a - b + 1.

Theorem (Dilks+P+Striker 2017)

The conjecture holds when
$$c > \frac{2ab-2}{3} - a - b + 2$$
.

Theorem (Patrias+P 2020)

The conjecture is true. More generally, with no primality condition, we have

$$gcd(a+b+c-1,|O(I)|) > 1$$

Let $\lambda \subseteq \nu$ be partitions. An **increasing tableau** of shape $\nu \setminus \lambda$ is a filling of the skew Young diagram $\nu \setminus \lambda$ by positive integers with strictly increasing rows and columns.

$$\lambda = (3, 2, 1), \nu = (4, 4, 3), T = \boxed{\begin{array}{c|c} & 1 \\ & 2 & 3 \\ & 2 & 4 \end{array}}$$

K-theoretic jeu de taquin (Thomas+Yong 2009) rectifies this to an increasing tableau of partition shape (computing K-theoretic Schubert structure coefficients).

(4月) トイヨト イヨト

		1
	2	3
2	4	

K-rectification recipe (Thomas+Yong 2009, Buch+Samuel 2016):

「ママ・ドレート」

æ

		•	1
	٠	2	3
•	2	4	

K-rectification recipe (Thomas+Yong 2009, Buch+Samuel 2016):

● Fill all inner corners with ●.

.

		•	1
	•	2	3
٠	2	4	

K-rectification recipe (Thomas+Yong 2009, Buch+Samuel 2016):

- Fill all inner corners with •.
- 2 Apply \uparrow^1_{\bullet}

K-rectification recipe (Thomas+Yong 2009, Buch+Samuel 2016):

- Fill all inner corners with ●.
- 2 Apply \uparrow^1_{\bullet}
- 3 Apply \uparrow^2_{\bullet} , \uparrow^3_{\bullet} , ...

K-rectification recipe (Thomas+Yong 2009, Buch+Samuel 2016):

- Fill all inner corners with ●.
- 2 Apply \uparrow^1_{\bullet}
- 3 Apply \uparrow^2_{\bullet} , \uparrow^3_{\bullet} , ...

		1	3
	2	3	•
2	•	4	

K-rectification recipe (Thomas+Yong 2009, Buch+Samuel 2016):

- Fill all inner corners with •.
- **2** Apply \uparrow^1_{\bullet}
- 3 Apply \uparrow^2_{\bullet} , \uparrow^3_{\bullet} , ...

K-rectification recipe (Thomas+Yong 2009, Buch+Samuel 2016):

- Fill all inner corners with •.
- 2 Apply \uparrow^1_{\bullet}
- **3** Apply \uparrow^2_{\bullet} , \uparrow^3_{\bullet} , ...
- Oelete outer •s.

K-rectification recipe (Thomas+Yong 2009, Buch+Samuel 2016):

- Fill all inner corners with •.
- 2 Apply \uparrow^1_{\bullet}
- 3 Apply \uparrow^2_{\bullet} , \uparrow^3_{\bullet} , ...
- Oelete outer •s.
- 6 Repeat with new inner corners!

K-promotion of increasing tableaux

 $\operatorname{Inc}^{q}(\lambda) = \{ \text{increasing tableaux of shape } \lambda \text{ with entries in } [q] \}$

$$\operatorname{Inc}^{5}(2\times 3) \ni T = \boxed{\begin{array}{c|c}1 & 2 & 4\\\hline 3 & 4 & 5\end{array}}$$

K-promotion recipe (P 2014):

1 Delete 1

通 と く ヨ と く ヨ と

K-promotion of increasing tableaux

 $\operatorname{Inc}^{q}(\lambda) = \{ \text{increasing tableaux of shape } \lambda \text{ with entries in } [q] \}$

$$\operatorname{Inc}^{5}(2\times 3) \ni T \quad \begin{array}{c|c} 2 & 4 \\ \hline 3 & 4 & 5 \end{array}$$

K-promotion recipe (P 2014):

- 1 Delete 1
- 2 Decrement each letter

Image: A Image: A

K-promotion of increasing tableaux

 $\operatorname{Inc}^{q}(\lambda) = \{ \text{increasing tableaux of shape } \lambda \text{ with entries in } [q] \}$

$$\operatorname{Inc}^{5}(2\times 3) \ni T \begin{array}{|c|c|c|c|c|c|} 1 & 3 \\ \hline 2 & 3 & 4 \end{array}$$

K-promotion recipe (P 2014):

- 1 Delete 1
- 2 Decrement each letter
- 3 K-rectify

Image: A Image: A

$$\operatorname{Inc}^{5}(2\times 3) \ni T \quad \bullet \quad 1 \quad 3 \\ 2 \quad 3 \quad 4 \\ \end{array}$$

K-promotion recipe (P 2014):

- 1 Delete 1
- 2 Decrement each letter
- 3 K-rectify

$$\operatorname{Inc}^{5}(2\times 3) \ni T \quad \begin{array}{c|c} 1 & \bullet & 3 \\ \hline 2 & 3 & 4 \end{array}$$

K-promotion recipe (P 2014):

- 1 Delete 1
- 2 Decrement each letter
- 3 K-rectify

$$\operatorname{Inc}^{5}(2\times 3) \ni T \begin{array}{c|c} 1 & 3 & \bullet \\ \hline 2 & \bullet & 4 \end{array}$$

K-promotion recipe (P 2014):

- 1 Delete 1
- 2 Decrement each letter
- 3 K-rectify

$$\operatorname{Inc}^{5}(2\times 3) \ni T \begin{array}{c|c} 1 & 3 & 4 \\ 2 & 4 & \bullet \end{array}$$

K-promotion recipe (P 2014):

- 1 Delete 1
- 2 Decrement each letter
- 3 K-rectify

$$\operatorname{Inc}^{5}(2\times 3) \ni T \begin{array}{c|c} 1 & 3 & 4 \\ \hline 2 & 4 \end{array}$$

K-promotion recipe (P 2014):

- 1 Delete 1
- 2 Decrement each letter
- 3 K-rectify
- Fill empty cells with q

• • = • • = •

$$\operatorname{Inc}^{5}(2 \times 3) \ni T \quad \boxed{\begin{array}{c}1 & 3 & 4\\2 & 4 & 5\end{array}} = \psi(T)$$

K-promotion recipe (P 2014):

- 1 Delete 1
- 2 Decrement each letter
- 3 K-rectify
- Fill empty cells with q

• • = • • = •

Equivariant bijection

Theorem (Dilks+P+Striker 2017)

There is an equivariant bijection between

 $(J(\mathbf{a} \times \mathbf{b} \times \mathbf{c}), \psi)$

and

$$(\operatorname{Inc}^{a+b+c-1}(a \times b), \psi)$$

Why does this help?

イロト イヨト イヨト イヨト

Why does this help?

1	2	5
3	5	7

- Easier to compute by hand
- Tools from K-theoretic Schubert calculus
- Can focus on gapless tableaux (all elements of [q] appear)
 - If *T* ∈ Inc^q(λ) has q' distinct labels, its deflation
 T' ∈ Inc^{q'}(λ) is obtained by replacing the *i*th smallest entries of *T* with *i*.
 - The **content** of *T* is the binary string of length *q* recording which elements of [*q*] appear in *T*.

白 ト イ ヨ ト イ ヨ ト

Theorem (Mandel+P 2018)

Let $T \in \text{Inc}^{q}(\lambda)$ and let $T' \in \text{Inc}^{q'}(\lambda)$ be its deflation. Suppose ψ has order τ' on T' and cyclic shift has order ℓ on the content of T. Then on T, ψ has order

$$\tau = \frac{\ell \tau'}{\gcd(\ell q'/q, \tau')}$$

Example:

$$J(\mathbf{8} \times \mathbf{8} \times \mathbf{c}) \xrightarrow{\sim} \operatorname{Inc}^{15+c}(\mathbf{8} \times \mathbf{8}) \twoheadrightarrow \operatorname{Inc}_{\operatorname{gl}}(\mathbf{8} \times \mathbf{8})$$

$$J(\mathbf{a} \times \mathbf{b} \times \mathbf{1}) \xrightarrow{\sim} \operatorname{Inc}^{a+b}(1 \times a) \twoheadrightarrow \operatorname{Inc}_{gl}(1 \times a)$$

1 2 3 4 5 6 7

For each a, there is a unique such tableau. It is fixed by ψ .

Theorem

The order of ψ on $\operatorname{Inc}^q(1 \times a)$ is q.

$$J(\mathbf{a} \times \mathbf{b} \times \mathbf{1}) \xrightarrow{\sim} \operatorname{Inc}^{a+b}(a \times b)$$

Theorem (Dilks+P+Striker 2017)

The order of ψ on $\operatorname{Inc}^{a+b}(a \times b)$ is a + b.

c = 2

$$\mathrm{Inc}^{a+b+1}(a \times b) \xleftarrow{\sim} J(\mathbf{a} \times \mathbf{b} \times \mathbf{2}) \xrightarrow{\sim} \mathrm{Inc}^{a+b+1}(2 \times a)$$

Theorem (P 2014, Dilks+P+Striker 2017)

The order of ψ on $\operatorname{Inc}^q(2 \times a)$ is q.

Theorem (Dilks+P+Striker 2017)

The order of ψ on $\operatorname{Inc}^{a+b+1}(a \times b)$ is a+b+1.

Theorem (P 2014, Rhoades 2017)

 $(\operatorname{Inc}_{\mathrm{gl}}^{q}(2 \times a), \psi, f(t))$ exhibits cyclic sieving, where f(t) is the t-enumerator for $\operatorname{Inc}_{\mathrm{gl}}^{q}(2 \times a)$ by major index.

Theorem (Bloom+P+Saracino 2016)

Fix $S \subseteq 2 \times a$, fixed by 180° rotation. For each orbit $\mathfrak{O}(T)$ in $\operatorname{Inc}^{q}(2 \times a)$, the average sum of the entries of S is $(q+1)\frac{|S|}{2}$.

Frames of increasing tableaux

The **frame** of $T \in Inc^{q}(a \times b)$ is the union of the boxes in the first/last row and the first/last column.

Example

If
$$T = \begin{bmatrix} 1 & 2 & 4 & 7 \\ 3 & 5 & 6 & 8 \\ 5 & 7 & 8 & 10 \\ 7 & 9 & 10 & 11 \end{bmatrix}$$
, then $\psi^{11}(T) = \begin{bmatrix} 1 & 2 & 4 & 7 \\ 3 & 4 & 6 & 8 \\ 5 & 6 & 8 & 10 \\ 7 & 9 & 10 & 11 \end{bmatrix}$.
The least k such that $\psi^{k}(T) = T$ is $k = 33$.

Theorem (P 2017)

For $T \in \text{Inc}^q(m \times n)$, we have $\text{Frame}(\psi^q(T)) = \text{Frame}(T)$.

Theorem (P 2017)

Fix $S \subseteq$ Frame $(a \times b)$, fixed by 180° rotation. For each orbit $\mathfrak{O}(T)$ in $\mathrm{Inc}^{q}(a \times b)$, the average sum of the entries of S is $(q+1)\frac{|S|}{2}$.

Theorem (Patrias+P 2020)

Suppose the ψ -orbit of $T \in \text{Inc}^q(a \times b)$ has cardinality k. Then k shares a prime divisor with q. (Unless q = a + b - 1, in which case k = 1.)

Theorem (Patrias+P 2020)

Suppose the ψ -orbit of $T \in \text{Inc}^q(a \times b)$ has cardinality k. Then k shares a prime divisor with q. (Unless q = a + b - 1, in which case k = 1.)

Proof.

Suppose gcd(k, q) = 1. Then by the frame theorem, Frame(T) = Frame($\psi(T)$). By analysis of the promotion operator, every frame box of such a tableau must participate in a swap, so the frame entries increase consecutively from upper-left to lower-right. So T is the unique element of $Inc^{a+b-1}(a \times b)$.

▲冊▶ ▲臣▶ ▲臣▶

Theorem (Patrias+P 2020)

Suppose the ψ -orbit of $T \in \text{Inc}^q(a \times b)$ has cardinality k. Then k shares a prime divisor with q. (Unless q = a + b - 1, in which case k = 1.)

Proof.

Suppose gcd(k, q) = 1. Then by the frame theorem, Frame(T) = Frame($\psi(T)$). By analysis of the promotion operator, every frame box of such a tableau must participate in a swap, so the frame entries increase consecutively from upper-left to lower-right. So T is the unique element of $Inc^{a+b-1}(a \times b)$.

Corollary (Patrias+P 2020, Conj: Cameron+Fon-der-Flaass 1995)

If p = a + b + c - 1 is prime, then the length of every ψ -orbit on $J(\mathbf{a} \times \mathbf{b} \times \mathbf{c})$ is a multiple of p.

Question

What multiples occur?

ヘロト 人間 とくほど 人間とう

æ

Question

What multiples occur?

Question

Can we bound the orbit sizes?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

æ

Question

What multiples occur?

Question

Can we bound the orbit sizes?

Question

Why are some multiples more common than others? There seems to be an odd preference for odd multiples. Is this a real phenomenon?

イロト イヨト イヨト イヨト

Question

What multiples occur?

Question

Can we bound the orbit sizes?

Question

Why are some multiples more common than others? There seems to be an odd preference for odd multiples. Is this a real phenomenon?

Question

For standard tableaux, promotion orbits carry information about the geometry of Grassmannians. What is the more general geometry for plane partitions?

Other posets

- One can also consider plane partitions over bases other than rectangles.
- Especially interesting are the **minuscule** cases:

Theorem (P 2020+)

The analogue of the Cameron+Fon-Der-Flaass Conjecture holds for $M \times c$, M minuscule.

Thanks!

ヘロン 人間 とくほど くほどう

æ