
Queueing Theory in a World where
most Queueing Problems are

Solved by Simulation

Winfried Grassmann
University of Saskatchewan

• Monte Carlo simulation is one of the most
successful applications in Operations Research
and beyond.

• The bulk of queueing theory uses deterministic
methods, that is, methods not subject to
randomnes.

• Outside queueing theory, many queueing models
are solved by Monte Carlo simulation, and the
results of queueing theory are often ignored

• How can classical queueing theory be made more
successful?

Why is simulations is successful

1. For large problems, Monte Carlo simulations
are faster.

2. Simulation is mathematically easier. Most
people have no difficulty doing simulation.

3. Simulation is much more flexible.

How can queuing theory compete?

Comparison of Execution Times

• In Monte Carlo simulation, execution times
start at a high level, but they increase linearly
with model complexity.

• In deterministic methods, execution times
start at a low level, but they increase
exponentially with model complexity.
Queueing theory is at an advantage for small
models, but not for large models

Simulation versus Deterministic

0

1

2

3

4

5

6

7

8

9

1 2 3 4

Simulation
Deterministic

Complexity

Computer time

Can we simplify the mathematics?

• Stress numerical methods. People want results
rather than a formula.

• Choice: standard numerical methods versus
methods tailored to deal with probabilities?

• Standard methods:
– Software available

• Methods tailored to deal with probabilities:
– Probabilities are ≥ 0: Subtractions can be avoided,

reducing rounding errors.
– Algorithms often have probabilistic interpretation,

providing thus additional insights.

Can we Increase Flexibility?

• One simulation paradigm: Discrete Event
Simulation

• Copy this paradigm: Discrete Event Systems
(Cassandras 2008).

• Components of discrete event systems
– State: set of variables, e. g. queue lengths
– All changes occur in discrete steps.
– Every change is caused by events. Event: defined as

something that changes state.
• Queues are discrete event systems. Why not use

this paradigm in queueing theory?

State

• Physical state variables 𝑋!, 𝑋", … , 𝑋# (e. g.
queues) , 0 ≤ 𝑋$ ≤ 𝑁$.

• Supplementary state variables:
– Keep track of the schedule for future events, or
– record when past events have happened.

• Enough supplementary variables must be added
such that the distributions of future state
variables can be calculated.

• System becomes a Markov chain, with state space
S, consisting of physical and supplementary state
variables.

Events

• Events come of different types, such as arrivals to a
waiting line, switch from line 1 to line 2, and so on.

• Each event 𝑘 is characterized by
– An event function 𝑓! 𝑋 : If the state before event 𝑘 is
𝑋, the state after event 𝑘 is 𝑓! 𝑋 .
Example: state: 𝑋 = [𝑋", 𝑋#].

𝑓! 𝑋", 𝑋# = [𝑋"+1, 𝑋#].
– An event condition 𝐶! 𝑋 : Event prevented if event

condition is not met.
– An event process for each event:

Poisson process , renewal process, PH process, ...

Example
There are two bins, 1 and 2.
Arrivals to bin 1 (2) : λ!, (λ")
Repair: always 1 unit from bin 1, 2 from bin 2: μ
State: 𝑋! , # in bin 1, 𝑋": # in bin 2.

Create Transition Matrix Q, Poisson
Events

Find Q = [q(i,j)] as follows

for all X𝜖𝑆,
for all events 𝑘

If 𝐶!(X) holds then Xnew = 𝑓! (X)
q(X,Xnew) = rate of event 𝑘

next k
next X

Finding state numbers

• To store transition matrix, each state must be
given a state number 𝑛, which is in a one-to-one
relation with the state.

• This number is used to find row of the state, as
well as the column.

• State Space:
[𝑋!, 𝑋", ... 𝑋#], 0 ≤ 𝑋$ ≤ 𝑁$, 𝑖 = 1,2, … , 𝑑

• For example, use alphanumerical order:
𝑛 = ∑$%!# 𝑢$ 𝑋$
𝑢$ = ∏&%$'!

𝑁& + 1 , 𝑖 = 1,2, … , 𝑑

Events Generated by Renewal
Processes

• Times between events often iid random variables.
• We must add supplementary variables
– Time since previous event of the same type
– Time the next event of the same type is scheduled.

• Need to discretize, or use phase-type variables.
• Discretization forces us to deal with multiple events

occurring simultaneously, increasing complexity.
• For equilibrium solutions, one can save computer time

by embedding the system at the points where events
occur.

Transient and equilibrium probabilities

• Wanted: 𝜋" 𝑡 , prob. to be in 𝑗 at 𝑡

• Discrete: 𝑃 = 𝑝#,"
𝜋# 𝑡 + 1 = ∑$%!& 𝜋$ 𝑡 𝑝$,# , 𝑗 = 1:𝑁

𝜋# = ∑$%!& 𝜋$𝑝$,#
• Continuous: 𝑄 = 𝑞#,"

𝜋# ′ 𝑡 = ∑$%!& 𝜋$ 𝑡 𝑞$,#, 𝑗 = 1:𝑁

0 = ∑$%!& 𝜋$𝑞$,#

Properties of Matrices

• Matrices huge, but sparse
– All event processes Poisson

• Matrix size: 𝑁 = ∏!"#
$ 𝑁! + 1

• Entries per row = number of events (𝑒)
• Density: %

&
– Event processes renewal, 0 ≤ 𝑌! < 𝑀!, 𝑖 = 1,2, … , 𝑒

• Matrix size: 𝑁 = ∏!"#
$ 𝑁! + 1 ∏!"#

% 𝑀!
• Density: 2%/𝑁 for 𝑀! not too small

• Matrix banded (alphanumerical order, Poisson)
– if 𝑋" changes by at most 1, the state number changes

by 𝑢" = ∏!#$
% 𝑁! + 1 .

Examples

• System state: 𝑋%, 𝑋&, 𝑋' 𝑋(, 0 ≤ 𝑋# ≤ 9.
(e. g. queues) , all events Poisson

10(= 10,000 states
– Transition matrix: 10("= 100,000,000 entries.
– Assume: 5 events (tandem queue): Only 50,000

non-zero entries.
• Small densities for events generated by

renewal processes.
• Store only non-zero entries

Storing only non-zero Elements
3 arrays: row, col, prob. Apply to finding 𝜋! 𝑡 + 1

𝜋! 𝑡 + 1 = ∑"#$% 𝜋" 𝑡 𝑝",!
Assume: mtot non-zero entries.

pit(i) = 0, i = 1:N; pit(1)=1; pinew(i) =0, i=1:N
for t = 1:ttot

for m = 1:mtot
i = row(m)
j = col(m)
pinew(j) = pinew(j) + pit(i) * prob(m)

next m
pit(i) = pinew(i), i = 1:N; pinew(i) =0, i=2:N

next t

Transient Solutions, Continuous-time

𝑃 = 1
2
+ 𝐼, 𝑓 ≥ −𝑞$,$ for all 𝑖

𝑃 = 𝑝$,& is a stochastic matrix
𝜋&4'! = ∑$%!5 𝜋$4𝑝$,&

𝜋& 𝑡 = ∑4%67 𝜋&4 𝑝(𝑛; 𝑓𝑡)

𝑝 𝑛; 𝑓𝑡 = 𝑒829(𝑓𝑡)4
1
𝑛!

Time between changes not 1, but exponential with
rate 𝑓.

Randomization or Uniformization

Objection from Mathematicians
• This is essentially a Taylor expansion of the matrix

exponential.
• Taylor expansions tend to be numerically unstable.
• Therefore, this method is potentially unstable.

Not true
• Reason: no subtractions! If there are no subtractions,

rounding errors increase very slowly. If there are
subtraction, they magnify earlier errors.

• Randomization/Uniformization works for millions of states.
• Performs much better than the standard algorithm for

solving differential equations.

Steady State Solutions

• Only discrete-time Markov chains discussed.
𝜋& =∑$%!5 𝜋$𝑝$,&

• Gaussian elimination. Mathematical Opinion:
unstable if number of states large.

• Reformulate such that subtractions are avoided.
• The resulting algorithm has a probabilistic

interpretation.
• Rule in numerical mathematics: start with

smallest entities → Eliminate 𝜋5 first!

Gaussian Elimination

𝜋& =∑$%!5 𝜋$𝑝$,&, 𝑗 = 1:𝑁
Set 𝑗 = 𝑁, solve for 𝜋5
𝜋5 =∑$%!58!𝜋$

:$,&
!8:&,&

Substitute:
𝜋& =∑$%!58!𝜋$𝑝$,&+ 𝜋5𝑝5,&

= ∑$%!58!𝜋$𝑝$,&+ ∑$%!58!𝜋$
:$,&

!8:&,&
𝑝5,&

𝜋& = ∑$%!58!𝜋$ 𝑝$,& +
:$,&:&,'
!8:&,&

, 𝑗 = 1:𝑁 − 1

Let 𝑝$,#&/! = 𝑝$,# +
0!,#0#,$
!/0#,#

, 𝑖, 𝑗 < 𝑁

We now have a new system of equations, from
which we can eliminate 𝜋)*%, which yields a
system of equations involving only 𝜋)*&, 𝜋)*',
... 𝜋%. The coefficients of the resulting systems
will be denoted by 𝑝#,"+. One has

𝑝#,"+*% = 𝑝#,"+ +
𝑝#,++𝑝+,"+

1 − 𝑝+,++

𝜋+ =:
#,%

+*%
𝜋# 𝑝#,++/ 1 − 𝑝+,++

Elimination = Embedding
Given: sequence 𝑋 1 , 𝑋 2 , 𝑋 3 ,⋯ , set 𝐶: Create
subsequence: 𝑋(𝑡) included only if 𝑋(𝑡) ∈ 𝐶.
Example 𝐶 = 1,2,3
𝑋 𝑡 : 1,3,5,2,4,2
𝑋1 𝑡 : 1,3,2,2
Embedding into an embedded sequence:
Embed 𝑋1 𝑡 into 𝐷 = 1,2
𝑋2 𝑡 : 1,2,2
Equivalent to embedding original sequence into 𝐷!
Reduce state space S successively by 1 state, until only
one state left. State reduction.

Embedded Markov Chain

• If 𝑋%, 𝑋&, … is a DTMC, so is any subsequence
obtained by using embedding set 𝐶.

• Problem: find transition matrix 𝑝#,"{.}

• Solution: add the probabilities of all paths that
start in 𝑖, end in 𝑗, and avoid any state of 𝐶 in
between.

Elimination = Embedding
Original sequence includes states 1,2, ... 𝑁.
Embed into 𝐶 = 1,2,⋯ ,𝑁 − 1
Find 𝑝(,) * . Add probabilities of possible sequences:

𝑖, 𝑗: 𝑝(,)
𝑖, 𝑁, 𝑗: 𝑝(,+ 𝑝+,)

𝑖, 𝑁, 𝑁, 𝑗: 𝑝(,+𝑝+,+𝑝+,)
𝑖, 𝑁, 𝑁, 𝑁, 𝑗: 𝑝(,+ 𝑝+,+# 𝑝+,)

𝑝(,) * = 𝑝(,) + ∑!,-. 𝑝(,+ 𝑝+,+! 𝑝+,) = 𝑝(,)+
/',(/(,)
"0/(,(

This, however, is 𝑝(,)+0". The rest follows.
Reduce state space 1 by 1: State reduction

Remove Subtraction from State
Reduction

𝜋&=∑$%!58!𝜋$ 𝑝$,& +
:$,&:&,'
!8:&,&

1 − 𝑝5,5 = L
&%!

58!

𝑝5,&

It follows that

𝑝$,&48! = 𝑝$,&4 +
:$,11:1,'1

∑'23
&43 :1,'

GTH method: Grassmann/Taksar/Heyman.
Very stable!

Problems with State Reduction

• If matrix dense:
"55

<
floating point operations (flops)

• In the example, we had 𝑁 = 10= states:
"
<
10!" flops, which requires around 100,000

seconds computer time ≈ 1 day on a laptop!

• Bandedness helps somewhat. ≈ 55

53'! 6

• Note: Computer time to calculate transient
solutions increases, per iteration, with 𝑁𝑒.
Linear with 𝑁. Faster!

Iterative Methods

• Calculate transient solutions
• Improve convergence by using the jump

matrix.
• Gauss-Seidel. Order of states is important for

convergence. Typically, order in the opposite
direction of the flow (e.g. tandem queues: last
queue first, first queue last). (Mitra and
Tsoucas)

Theoretical Uses of State Reduction

• Dealing with infinite state spaces.
• Dealing with matrices having repeated

structure.
• Reducing state space through embedding.

Time does not permit to deal with this issue.

Infinite state spaces
If states below 𝑛 recurrent, then the state space can be cut
without changing the 𝑝(,)7by more than ε. Consider the paths
𝑋 𝑡 = 𝑖, 𝑋 𝑡 + 1 > 𝑛, 𝑋 𝑡 + 2 > 𝑛,…𝑋(𝑡 + 𝑅 − 1) > 𝑛,
𝑋 𝑡 + 𝑅 ≤ 𝑛
𝑝(,)7can be found by adding all the probabilities of all these
paths.
If system recurrent, then for each ε > 0, there exits a 𝑣 such
that Prob{𝑅 > 𝑣} < ε.
If one considers only paths with 𝑅 ≤ 𝑣, then you cannot reach
states above 𝑣𝑑 , where 𝑑 is the largest possible value
𝑋 𝑡 + 1 − 𝑋 𝑡 can assume, that is, the largest jump up.
Consequently, cutting all states > 𝑣𝑑 will not change 𝑝(,77 by
more than ε.

Transition Matrices with Repeating
Columns

For models with 𝑝$,# = 𝑝$34,#34, 𝑖, 𝑗 > 𝑐, we have
𝑝$,#5 = 𝑝$34,#34534.

Proof: Any path
𝑋 𝑡 = 𝑖, 𝑋 𝑡 + 1 > 𝑛, 𝑋 𝑡 + 2 > 𝑛,…𝑋 𝑡 + 𝑚 − 1
> 𝑛, 𝑋 𝑡 + 𝑚 ≤ 𝑛

can be matched with
𝑋 𝑡 = 𝑖 + 𝑘, 𝑋 𝑡 + 1 > 𝑛 + 𝑘, 𝑋 𝑡 + 2 > 𝑛 +
𝑘,…𝑋 𝑡 + 𝑚 − 1 > 𝑛 + 𝑘, 𝑋 𝑡 + 𝑚 ≤ 𝑛+k
This path obviously has the same stochastic structure as
the original path, completing the proof.
Allows to reduce MAM methods to state reduction.

Conclusions

To increase the flexibility
use event-based approaches.

To reduce computer time
try to reduce number of state variables.

To make the mathematics easier
use numerical methods, modified to deal
with probabilities.

Literature
• C.G. Cassandras and S. Lafortune, 2008, Introduction to Discrete Event Systems,

Springer Verlag.
• W. K. Grassmann, 2000, Computational Probability, Kluwer Academic Publishers.
• W. K. Grassmann, M. Taksar and D. P. Heyman, 1993, Regenerative Analysis and

Steady State Distributions for Markov Chains, Operations Research 33, 1107—
1117.

• W. K. Grassmann and D. P. Heyman", 1990, Equilibrium Distribution of Block-
Structured Markov Chains with Repeating Rows, Journal of Applied Probability 27,
557—576.

• W. K. Grassmann, 1985, The Factorization of Queueing Equations and Their
Interpretation, J. Opl. Res. Soc. 36, 1041—1050.

• W. K. Grassmann, 1977, Transient Solutions in Markovian Queueing Systems,
Computers and Operations Research 4, 47—56.

• D. Mitra and P. Tsoucas, 1987, Convergence of Relaxations for Numerical Solutions
of Stochastic Problems}, in “Computer Performance and Reliability”.

• W. J. Stewart, 1994, An Introduction to the Numerical Solution of Markov Chains,
Princeton University Press.

