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Conference announcement

The annual Finnish inverse problems conference “Inverese Days” will be
organized in Jyväskylä 16–18 December, 2019.

http://r.jyu.fi/yVK

(https://www.jyu.fi/science/en/maths/research/
inverse-problems/id2019/)

All kinds of inverse problems in all fields are welcome!
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Goals

Overview of fully anisotropic linear elasticity.

How geometrization leads naturally to Finsler geometry.

Examples of geometric inverse problems in the Finsler setting.
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Outline

1 The elastic wave equation
The stiffness tensor
The elastic wave equation
The principal symbol
Polarization
Singularities and the slowness surface
Inverse problems

2 Finsler geometry

3 Examples of inverse problems in Finsler geometry
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The stiffness tensor

When something in an elastic material is displaced from equilibrium, it
tends to return back.

The restoring force (stress) depends linearly on the displacement
relative to neighboring points (strain).

The “spring constant” of Hooke’s law is the stiffness “tensor” cijkl(x).
It fully describes the springiness of the material.

The tensor is very symmetric (cijkl = cjikl = cijlk = cklij) and
positive (

∑
i,j,k,l cijklαiβjβkαl & |α|2 |β|2).

We will also encounter the density normalized stiffness tensor
aijkl(x) = cijkl(x)/ρ(x).
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The elastic wave equation

Using Newton’s second law with a restoring force given by Hooke’s
law leads to the elastic wave equation (EWE)

∂j [cijkl(x)∂kul(x, t)]− ρ(x)∂2t ui(x, t) = 0,

where u(x, t) is a small displacement field.

If the material is anisotropic (c is no more symmetric than necessary),
then the vector nature of the equation cannot be ignored.

Elastic waves arising from earthquakes (or marsquakes!) satisfy this
equation away from the focus of the event.
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The principal symbol

Suppose c and ρ are constant and let us study plane wave solutions

ui(x, t) = Aie
iω(p·x−t)

to the EWE.
Here A is the polarization vector, ω is the frequency, and p is the
slowness vector (reciprocal of phase velocity).
Plugging this into the EWE gives

(aijklpjpk − δil)Al = 0.

The matrix
Γil(x, p) = aijkl(x)pjpk

is the Christoffel matrix. It is symmetric and positive definite.
The principal symbol of the EWE is Γ(x, ξ)− ω2I, where ξ = ωp.
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Polarization

In isotropic elasticity (maximal symmetry of the stiffness tensor c) the
polarization vector is either parallel or normal to p.

The parallel polarized wave (P wave, pressure wave, primary wave) is
faster than the normally polarized one (S wave, shear wave,
secondary wave).

In anisotropic elasticity it does not work quite as nicely. The fastest
polarization is called quasi-P and the slower ones quasi-S.

Polarization vectors are eigenvectors of the Christoffel matrix Γ, so
they are orthogonal. (Recall: (Γ− I)A = 0 and Γ is homogeneous in
p.)

Decomposition to polarizations only works on the level of
singularities. The individual polarizations do not satisfy PDEs.
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Singularities and the slowness surface

We are interested in arrivals of wave fronts from a seismic event to a
detector.

Singularities follow a flow determined by the principal symbol.

The slowness vector p and the polarization A of a singularity at x
must satisfy

[Γ(x, p)− I]A = 0.

The admissible slowness vectors are on the slowness surface given
by the equation

det(Γ(x, p)− I) = 0.
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Singularities and the slowness surface

The slowness surface. Smaller slowness ⇐⇒ faster wave.

Joonas Ilmavirta (University of Jyväskylä) Elastic Finsler geometry JYU. Since 1863. | Apr 16, ’19 | 8 /∞

.



Singularities and the slowness surface

In three dimensions the slowness surface has three branches.

The innermost branch corresponds to qP waves and is often
non-degenerate.

The two outer branches intersect; there is always degeneracy in
some direction at any point.

The qS branch of the slowness surface might not be convex.

We will focus on qP waves.
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Inverse problems

Typical inverse problem: Given some boundary data, find the reduced
stiffness tensor aijkl(x) everywhere.

A more geometric formulation: Given some boundary data, find the
slowness surface at every point.

To solve the physical problem, it remains to uniquely determine the
tensor a from the slowness surface or a branch thereof.
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Finsler manifolds

A Riemannian manifold is a smooth manifold with an inner product on
every tangent space.

A Finsler manifold is a smooth manifold with a norm on every tangent
space.
More specifically, there is a Finsler function F : TM → [0,∞) so that:

1 F is continuous everywhere and smooth on TM \ 0,
2 F is positively 1-homogeneous on every fiber, and
3 F 2 is strictly convex (positive definite Hessian) on every fiber.

Lengths of curves are defined in the usual way using the (Minkowski)
norm on every tangent space.
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Elastic Finsler manifolds

Recall the Christoffel matrix

Γil(x, p) = aijkl(x)pjpk,

defined for (x, p) ∈ T ∗R3.

Let λ(x, p) be the largest eigenvalue of Γ(x, p). The largest
eigenvalue corresponds to fastest singularity (qP).

The qP singularities follow the Hamiltonian flow of λ : T ∗M → R.
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Elastic Finsler manifolds

The function λ(x, · ) : T ∗xR3 → [0,∞) is smooth outside the origin,
strictly convex, and 2-homogeneous.

Therefore fx =
√
λ(x, · ) is a Minkowski norm on T ∗xR3.

The set of admissible qP slowness vectors — the innermost branch of
the slowness surface — is the unit sphere of f .

We have described Finsler geometry on the cotangent side.
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Elastic Finsler manifolds

Let F : TR3 → R be the fiberwise Legendre transform of
f : T ∗R3 → R given by

F (x, v) = max
p∈T ∗xR3

[p · v − f(x, p)].

The maximizer p = φ(v) exists uniquely by strict convexity.

The Legendre transform φ : TM → T ∗M is a norm-preserving
bijection, but not typically linear or isometric.

The (inverse) Legendre transform of the slowness vector in T ∗R3 is
the group velocity in TR3.

We have found a Finsler manifold (R3, F ) whose geodesic flow
corresponds to the propagation of qP singularities.
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Elastic Finsler manifolds

A Riemannian metric tensor or a Finsler function on a manifold is
uniquely determined by the distance function.

In elastic Finsler geometry the distance between two points x, y ∈ R3

is the shortest time in which an elastic wave can go from x to y.

Declaring travel time as distance would have defined the same
geometry, but in a more implicit manner.
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Properties on the fiber

In general a Finsler function is not necessarily reversible
(F (x, v) 6= F (x,−v)), but in elasticity it is.

In addition, the elastic F is real-analytic on every punctured tangent
space because it is defined by a polynomial.
Other polarizations are problematic:

1 Distance corresponds to travel time of singularities, not of all solutions
to the EWE.

2 The eigenvalues of the Christoffel matrix Γ can degenerate, making
microlocal analysis and differential geometry inconvenient.

3 The flow on T ∗R3 is still given by the Hamiltonian corresponding to an
eigenvalue of Γ, but it can be non-convex. The metric on TR3 is
multiple-valued or its geodesic flow does not correspond to
singularities.

The different branches of the slowness surface are not algebraically
independent.
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Local Riemannian metric

Let (M,F ) be a Finsler manifold, elastic or otherwise.

For any x ∈M , the restricted function 1
2F

2
x : TxM → R is strictly

convex.

Let g(x, v) be its Hessian. It is a symmetric and positive definite
matrix.

We call g(x, v) the local Riemannian metric.

It gives an inner product on TxM , but now the inner product depends
on the direction of v.

If F (x, v) =
√
gij(x)vivj , then g(x, v) = g(x). In fact, g(x, v) is

independent of v if and only if F is Riemannian.

If there is a preferred direction (given e.g. by a geodesic or normals of
a hypersurface), then there is a natural Riemannian metric on (M,F ).
Connections and other objects are most convenient in this
Riemannian geometry.
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It gives an inner product on TxM , but now the inner product depends
on the direction of v.

If F (x, v) =
√
gij(x)vivj , then g(x, v) = g(x).

In fact, g(x, v) is
independent of v if and only if F is Riemannian.

If there is a preferred direction (given e.g. by a geodesic or normals of
a hypersurface), then there is a natural Riemannian metric on (M,F ).
Connections and other objects are most convenient in this
Riemannian geometry.
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Inverse problems

A typical inverse problem in Finsler geometry would be: Given some
boundary data, find (M,F ).

This is the same problem as finding the slowness surface everywhere
— modulo diffeomorphisms.

To find the whole Finsler function, one needs access to all directions
on TM , whereas in Riemannian geometry it often suffices to reach
every base point.

Finsler structures arising from elasticity resemble Riemannian metrics
in a useful way: they are fiberwise real-analytic. Therefore access to
an open subset of every fiber is enough.

Whether the elastic problem has the diffeomorphism gauge freedom
is another question; cf. András’s talk on Monday.
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Outline

1 The elastic wave equation

2 Finsler geometry

3 Examples of inverse problems in Finsler geometry
Herglotz (Mönkkönen)
Dix (de Hoop, Lassas)
Distance function (de Hoop, Lassas, Saksala)
Scattering data (de Hoop, Lassas, Saksala)
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Herglotz (Mönkkönen)

Herglotz solved an inverse problem for a spherically symmetric planet
in 1905: Assuming a natural condition, a radial isotropic wave speed
is uniquely determined by boundary distances.

A spherically symmetric non-trapping Riemannian manifold is always
of the Herglotz type. (de Hoop–I–Katsnelson, 2017)

This is not true for a spherically symmetric Finsler manifold.

There is still a Herglotz condition but it looks different.

Linearized travel time data leads to X-ray tomography. If the stiffness
tensor c is known but ρ unknown, the variations are conformal.
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Dix (de Hoop, Lassas)

Imagine that we have (virtual) point sources everywhere in the planet
and we can measure the arriving wave fronts. Does this determine
the reduced stiffness tensor a everywhere without any kind of isotropy
assumption?

To geometrize the problem, consider a Finsler manifold (M,F ).

In some measurement set U ⊂M one can see spheres with any
center. The data consists of oriented surfaces with radii.

One can follow the geodesics backwards and find the metric on a
neighborhood of the lift.

With fiberwise analyticity this information can be globalized to give the
universal cover of (M,F ).
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Distance function (de Hoop, Lassas, Saksala)

Any point x ∈M determines a boundary distance function
rx : ∂M → R.

Question: Does the set {rx;x ∈M} determine (M,F )?

One can only hope to see the Finsler function at a point v ∈ TM if the
geodesic starting at v is minimizing between its start point in M and
endpoint on ∂M .

One can reconstruct M and F on the good set G ⊂ TM , but not
outside it.

If F is fiberwise real analytic (elasticity!), then F is determined
uniquely.

Teemu will tell more on Friday.
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Scattering data (de Hoop, Lassas, Saksala)

Consider stronger data with access to directions: We know the pairs
of points on ∂inSM whose geodesics meet and the total travel time.

This broken scattering relation can see much more of TM , but the
trapped set is still invisible.

Global uniqueness is doable (done) with added assumptions:
reversibility and foliation.

Almost no assumptions are needed in the Riemannian case
(Kurylev–Lassas–Uhlmann, 2010).

Joonas Ilmavirta (University of Jyväskylä) Elastic Finsler geometry JYU. Since 1863. | Apr 16, ’19 | 24 /∞



Scattering data (de Hoop, Lassas, Saksala)

Consider stronger data with access to directions: We know the pairs
of points on ∂inSM whose geodesics meet and the total travel time.

This broken scattering relation can see much more of TM , but the
trapped set is still invisible.

Global uniqueness is doable (done) with added assumptions:
reversibility and foliation.

Almost no assumptions are needed in the Riemannian case
(Kurylev–Lassas–Uhlmann, 2010).

Joonas Ilmavirta (University of Jyväskylä) Elastic Finsler geometry JYU. Since 1863. | Apr 16, ’19 | 24 /∞



Scattering data (de Hoop, Lassas, Saksala)

Consider stronger data with access to directions: We know the pairs
of points on ∂inSM whose geodesics meet and the total travel time.

This broken scattering relation can see much more of TM , but the
trapped set is still invisible.

Global uniqueness is doable (done) with added assumptions:
reversibility and foliation.

Almost no assumptions are needed in the Riemannian case
(Kurylev–Lassas–Uhlmann, 2010).

Joonas Ilmavirta (University of Jyväskylä) Elastic Finsler geometry JYU. Since 1863. | Apr 16, ’19 | 24 /∞



Scattering data (de Hoop, Lassas, Saksala)

Consider stronger data with access to directions: We know the pairs
of points on ∂inSM whose geodesics meet and the total travel time.

This broken scattering relation can see much more of TM , but the
trapped set is still invisible.

Global uniqueness is doable (done) with added assumptions:
reversibility and foliation.

Almost no assumptions are needed in the Riemannian case
(Kurylev–Lassas–Uhlmann, 2010).

Joonas Ilmavirta (University of Jyväskylä) Elastic Finsler geometry JYU. Since 1863. | Apr 16, ’19 | 24 /∞



Scattering data (de Hoop, Lassas, Saksala)

Consider stronger data with access to directions: We know the pairs
of points on ∂inSM whose geodesics meet and the total travel time.

This broken scattering relation can see much more of TM , but the
trapped set is still invisible.

Global uniqueness is doable (done) with added assumptions:
reversibility and foliation.

Almost no assumptions are needed in the Riemannian case
(Kurylev–Lassas–Uhlmann, 2010).

Joonas Ilmavirta (University of Jyväskylä) Elastic Finsler geometry JYU. Since 1863. | Apr 16, ’19 | 24 /∞

.



And much more

Other types of data,

understanding algebraic relations between the three Finsler
geometries on a manifold,

turning geometric information into elastic information,

analysis of non-convex cases and degeneracies,

(conormally) singular medium,

surface waves, and

making it all work in real life.
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