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Eigenfunction asymptotics

On a compact, Riemannian manifold (M, g) consider u
—Agu = Ay
How does u behave as A — 00?

More localised in frequency

More localised in space

Can u display concentrations?
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Why to do we care?

Laplacian eigenfunctions are useful building blocks. One important way
they come up is as the stationary states of a quantum system.

W(t,x) = eu(x)

satisfies Schrodinger’s equation with E = )\2.
@ E is interpreted as the energy of the system
@ Concentration of u implies concentration of 1

@ Concentration of v is interpreted as a high probability that the
system is found in the concentration region.
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Measuring Concentration

There are many ways to measure eigenfunction concentration. We will
focus on LP estimates

Point
e High L°° norm
@ Sharp change in LP norm when
p < oo
Tube

@ Lower L°° norm

@ Change in LP norm more gentle
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LP Estimates for Eigenfunctions

Let X be some subset (not necessarily of full dimension) of M. Seek
estimates of the form

”u”LP(X) g f(n’pv )‘) ||u||L2(M)

o For what f is the inequality valid?
@ Are there sharp examples?
@ Does f depend on the geometry of X7

e What about concentration of g(x, hD)u where g(x, hD) is the
quantisation of a dynamical quantity.
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Heuristic - Concentration/

Heuristically think of eigenfunction as being made of of wave packets
tracking the classical flow.

@ Packets are localised both physically and in momentum
@ Concentration in a region is related to time packets spend there

@ Heuristic breaks down in time due to dispersion
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LP concentration on manifolds

Sogge 1988
”X)\UHLP(M) S () ull 2

X a spectral cluster operator.

@ Two different regimes for sharp
results.

@ On the sphere sharp for actual
eigenfunctions.

@ Can be extended to semiclassical
results for quasimodes
— e (Koch-Tataru-Zworski 2007).

2(n+1) 2
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Improvements with negative curvature

e Bérard (1977)
n—1

A2
Uljoo $———|u
ull, 1022 (V) lull 2

@ Hassell-Tacy (2015)

4(n,p)
il S 2ol P> pe= —
~ log'/?()) n—1

e Blair-Sogge (2017)

A&(n,pc)
lulee S 7o vl
(log(A))
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LP estimates on submanifolds

< X(mpk) |

”U”Lp(x) ~ U”B(M)

Hypersurfaces Low dimensional submanifolds

¢}
n-1
2

o =

N}
3
N|=

N[ =

Established by Burg-Gerard-Tvetkov 2005 for eigenfunctions of A and by
Tacy 2010 for semiclassical quaismodes.
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Concentration of dynamical quantities

Classical flow defined by

{x‘_(t) = ep(x.€)
£(t) = —0up(x,€)

The function p(x, ) is the classical energy function. Other observables
q(x, &) evolve under

q(x, &) = {p(x, &), a(x, &)}

Quantum analogue, semiclassical pseudo

q(x, hD)u = (27r1h)” /e;;<x_y’§>q(xaf)u(}/)dfdy
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Concentration of normal velocity

Let H be a hypersurface in M, normal v.

e Normal velocity v(x, &) = O¢, p(x,§)
e Quantisation of normal velocity v(x, hD)u

N

O,

N | velocity is | b K Packets spend a long time near the
ormal velocity Is large but packets o e (high concentration) but the
spend only a short time near the oo
normal velocity is small so v(x, hD)u

surface.
decays.
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Theorem (T 17)

Suppose u is an approximate solution to p(x, hD)u = 0 then

[v(x, AD)ul 21y S Nl 2y -

and
HV1/2(X, hD)u

o S lull 2y

where vY/2(X, hD) is the quatisation of a suitable regularisation of

v12(x, €).

e Can allow error up to O;2(h).

e Estimate only require p(x, &) is smooth, other semiclassical estimates
require Laplace like condition.
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Flat Models

Gain insight into behaviour by considering approximate eigenfunctions on
R". Rescale the problem, setting h = A~ look for u so that

(—h?A —1)u = Op2(h)
Exploit constant coefficients to use the (scaled) Fourier transform

Fof = oy }7)” e / e 8 £ (x)dx
m

th,- — f,'
[Fafliz = lul 2
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Solving on the Fourier side

We require

(I€]> = 1)Fpu = O(h)

@ Must place the support of Fru
close to |{| =1

@ By spreading Fjpu as much as
possible can make u large at a
point

@ On the other hand to spread u
out we concentrate Fpu.
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Point and tube revisited

Spread Fpu evenly throughout Concentrate Fpu around one point

annular region \
P \\\

\ 112
h

/4—>
h
What about intermediate spread?
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Family of examples

Let
1 if|r—1| < h,|w — wo| < h*,
Xa(r,w) = =1 <Al |
0 otherwise.

Then set
£h(r,w) = 1272012y (¢ ).

Note that £/ is L2 normalised.

=

Ta(x) = Fy ()
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h71/27a(n71)/27n/2e?';x1 i (6 e
(2m)n/2 /neh( HEmDHED  (€) de.

If [x1] < eh?=2@ and |x/| < eh!~@ the factor

Ta(x) =
e%(x1(£1_1)+<xlvgl>)

does not oscillate so in this region

‘ TO’Z(X)‘ > Chf(nfl)/2+a(n71)/2
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Connections to spherical harmonics

For each o we can produce an exact eigenfunction on the sphere S"~1
which has the same size properties as T”. Build them out of highest

weight harmonics.
P(x) =j % (xa+ ixz)

is a solution to the spherical Laplacian eigenfunction equation with
JG+n—-1)=X=h"2

Further if x = (x1, x2, X) then

.n—1 _ . n—1 lo Iz
()R =T (1— [g]2Y = "7 el eI

Resembles the tube
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Rotations of highest weight harmonics

Can think of T/ as a sum of
Tlh/2 with the principal
direction rotated.

So produce a function u, where

o =y d(Rj(x))
j

where R; is a rotation. Since u has same concentration properties as To’}
we can use the flat model examples to test for saturation and know how to

produce an exact eigenfunction example.
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Uses of the family T

@ Checking sharpness for linear estimates, what kind of cross sections
do we expect?

@ Analysing bilinear estimates for sharpness. Here we estimate

luvle < GOA ) lul 2 vl 2

where u and v are eigenfunctions with eigenvalues A\? and ;2. Can
find all sharp examples by considering combinations of the T(i’.

@ Understanding the effect of geometry on LP estimates. Negative
curvature improves the estimates in a logarithmic fashion. These
examples allow us to see exactly what sort of concentrations need to
be considered.
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Inverse problems?

Consider the hypersurface estimates. If we know [uf 2, what can we say
about u? If H is a hyperplane in R"

lul 2ty = Ria(lul?)

where Ry is the Radon transform evaluated at H. Therefore we could in
fact reproduce |u(x)|? via

u(x)? = ca(—A)"Z R* o R[|ul?]

What if we only know estimates for ||uHL2(H can we hope to say anything
about |u(x)[2 or |ul s
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Why do we want to do this anyway?

Eigenfunctions (and quasimodes) oscillate very rapidly. Taking L? norms
allows us to take advantage of that. Consider e5 € and e M where

&mneS™land € -1 >e
/ eil‘7<X’£7n>dX
H

(E=n)—v-(E—nv|>c
we can integrate by parts in the hypersurface variables to show the
contribution is O(h*°).

@ Even if

o If

(E=m)—v-(E=nv|>ch® a<l
can still get O(h>) decay.

@ Means we can restrict our attention to contributions to [, |u(x)
that are bilinear combinations with £ — 1 being exactly in direction v.

| 2

M. Tacy (Univesity of Otago) 22/30



What do the flat models tell us?

The a = 0 case. B
Produces the highest L> norm, a peak h™ 2 concentrated on an O(h)
set.

Therefore
6]

C1 < H Té’

<
12(H)

So this concentration is ‘invisible’ to hypersurfaces.
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The o« > 0 cases

Depends how H is aligned.
@ Let v be the unit norm of H.
o Let ¢ be the long direction of T/

(v,€) #0 {v,§) =0

Greater concentration on H when (v, &) =0
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The case (v,£) #0

T~ b

and is supported on a region of measure approximately h(1=)(n=1)

hlaI

< c
12(H) —

a< ‘ Th

So similar to the o = 0 case these hypersurfaces don't 'see’ the
concentration.
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The case (v,§) =

T~ b

and is supported on a region of measure approximately h(1—a)(n=1)+1-2a

—
B e —

h172a

h < C2h_7

Clh_% < ‘ T,
L2(H)

So these hypersurfaces do ‘see’ the concentration.
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What does this tell us about LP estimates?

@ Estimates for high p, that is p > 2("+11) saturated by the e = 0 cases.
So we can't recover information about these from [u| 2(4).

@ Reversing the information from the examples suggests that if there is
a hypersurface with

ah™2 < ulpgy <h 72

then
Clh—#(n,p,a) <|ul» < Czh—u(n,p,a)

o) == (- 3) <0 (51 2)

o Difficult to prove without a stability condition.
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Need to have control on near hypersurfaces as well.
@ This allows us to create a thickened region around the hypersurface

@ Fix a point xg and associate the set of hypersurfaces through x with

Snfl

@ Then condition is that there is some xg so that
{H|x€H,ulz~h2}cst

contains a ball of radius A®
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Connection with Kakeya tubes

@ Sogge and Blair-Sogge show that growth in LP for p < p. depends on
growth in Kakeya tubes.

@ In two dimensions these Kakeya tubes are just thickened
hypersurfaces and are associated with the & = 1/2 case of T(i’.

@ Similar sorts of ideas, also based on bilinear estimates and exploiting
the relationship between dimension and p value.
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@ Could we work with a weaker stability condition. For instance one
that only gave a lower bound on the measure of

{H|x € H Julz~h"?}

rather than requiring it to contain a ball.

o Can we get the other direction. That is can we say that the |u|,,
ONLY grows if the [u[ 2(;y) grows for some collection of H.

@ If we can obtain such a result for a range of p can we apply it to
situations where we expect better LP norms.
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