Conformal flows on spheres

Piotr Bizoń
Jagiellonian University
Kraków

Based on joint works with: A. Biasi, B. Craps, O. Evnin, D. Hunik, M. Maliborski, D. Pelinovsky, A. Rostworowski

Banff, 4 July 2019

System settles down to equilibrium via dissipation of energy by dispersion

Waves keep interacting for all times, generating out-of-equilibrium dynamics

Understanding of long-time behavior of nonlinear waves in spatially confined systems is challenging. Key questions:

- How the energy injected into the system gets distributed over the degrees of freedom during the evolution?
- Can the energy flow to arbitrarily small spatial scales (wave turbulence)?

Examples of spatially confined systems

- Nonlinear string

$$
\phi_{t t}-\phi_{x x}+\phi^{3}=0, \quad \phi(t, 0)=\phi(t, \pi)=0
$$

- Cubic Klein-Gordon equation on the d-dimensional sphere

$$
\phi_{t t}-\Delta_{\mathbb{S}^{d}} \phi+m^{2} \phi+\phi^{3}=0
$$

- Gross-Pitaevskii equation with isotropic harmonic potential

$$
i \partial_{t} \psi=-\Delta \psi+|x|^{2} \psi+|\psi|^{2} \psi
$$

- Vacuum Einstein equation with negative cosmological constant λ

$$
R_{\mu v}=\lambda g_{\mu v}
$$

General strategy

- For a spatially confined system, the associated linearized system has a purely discrete spectrum of frequencies
- Expanding solutions in the basis of linear eigenstates one transforms the original PDE into an infinite-dimensional dynamical system with discrete degrees of freedom ('modes').
- The nonlinearity generates new frequencies that may lead to resonances between the modes. The resonances dominate the transfer of energy.
- Dropping all nonresonant terms from the Hamiltonian one obtains a simplified infinite-dimensional dynamical system, called the resonant system, which accurately approximates the dynamics of small amplitude solutions of the original PDE on long time scales
- Strategy: try to understand the dynamics of the resonant system and then export this knowledge back to the original PDE.

Conformally invariant wave equations

- Consider a $(d+1)$-dimensional manifold \mathscr{M} with Lorentzian metric g
- On (\mathscr{M}, g) we put a real scalar field ϕ satisfying

$$
\left(\square_{g}-\frac{d-1}{4 d} R(g)\right) \phi-\gamma|\phi|^{\frac{4}{d-1}} \phi=0
$$

where $\square_{g}=g^{\mu \nu} \nabla_{\mu} \nabla_{v}$ and $R(g)$ is the Ricci scalar

- This equation is invariant under conformal transformations

$$
g \mapsto \Omega^{2} g, \quad \phi \mapsto \Omega^{\frac{1-d}{2}} \phi
$$

- We restrict to analytic nonlinearities: cubic $(d=3)$ and quintic $(d=2)$
- For small amplitude solutions the sign of γ is irrelevant. We set $\gamma=1$

Conformally invariant cubic wave equation on \mathbb{S}^{3}

- Let $\mathscr{M}=\mathbb{R} \times \mathbb{S}^{3}$ (Einstein cylinder) with the metric

$$
g=-d t^{2}+d x^{2}+\sin ^{2} x d \omega^{2}, \quad(t, x, \omega) \in \mathbb{R} \times[0, \pi] \times \mathbb{S}^{2}
$$

This spacetime has constant scalar curvature $R(g)=6$

- The conformally invariant cubic wave equation

$$
\phi_{t t}-\Delta_{\mathbb{S}^{3}} \phi+\phi+\phi^{3}=0
$$

- Remark: eigenvalues of $-\Delta_{\mathbb{S}^{d-1}}+m^{2}$ are $\omega_{n}^{2}=n(n+d-2)+m^{2}$
- Almost global existence for small smooth initial data for almost all values of m^{2} (Bambusi-Delort-Grébert-Szeftel, 2005)
- We assume that $\phi=\phi(t, x)$. Then $u(t, x)=\sin (x) \phi(t, x)$ satisfies

$$
u_{t t}-u_{x x}+\frac{u^{3}}{\sin ^{2} x}=0, \quad u(t, 0)=u(t, \pi)=0
$$

- Linear eigenstates: $e_{n}(x)=\sqrt{\frac{2}{\pi}} \sin \left(\omega_{n} x\right)$ with $\omega_{n}=n+1(n=0,1,2, \ldots)$

Time averaging

- Expanding $u(t, x)=\varepsilon \sum_{n=0}^{\infty} c_{n}(t) e_{n}(x)$ we get

$$
\frac{d^{2} c_{n}}{d t^{2}}+\omega_{n}^{2} c_{n}=\varepsilon^{2} \sum_{j, k, l \geq 0} S_{n j k l} c_{j} c_{k} c_{l}, \quad S_{j k l n}=\int_{0}^{\pi} \frac{d x}{\sin ^{2} x} e_{n}(x) e_{j}(x) e_{k}(x) e_{l}(x)
$$

- Using variation of constants

$$
c_{n}=\alpha_{n} e^{i \omega_{n} t}+\bar{\alpha}_{n} e^{-i \omega_{n} t}, \quad \frac{d c_{n}}{d t}=i \omega_{n}\left(\alpha_{n} e^{i \omega_{n} t}-\bar{\alpha}_{n} e^{-i \omega_{n} t}\right)
$$

we factor out fast oscillations

$$
2 i \omega_{n} \frac{d \alpha_{n}}{d t}=\varepsilon^{2} \sum_{j, k, l \geq 0} S_{n j k l} c_{j} c_{k} c_{l} e^{-i \omega_{n} t}
$$

- Each term in the sum has a factor $e^{-i \Omega_{n j k} t}$, where

$$
\Omega_{n j k l}=\omega_{n} \pm \omega_{j} \pm \omega_{k} \pm \omega_{l}
$$

The terms with $\Omega_{n j k l}=0$ correspond to resonant interactions

- Let $\tau=\varepsilon^{2} t$. For $\varepsilon \rightarrow 0$ the non-resonant terms $\propto e^{-i \Omega_{n j k} \tau / \varepsilon^{2}}$ are highly oscillatory and therefore negligible.

Cubic conformal flow

- Keeping only the resonant terms we obtain the cubic conformal flow (B-Craps-Evnin-Hunik-Luyten-Maliborski, 2016)

$$
i(n+1) \frac{d \alpha_{n}}{d \tau}=\sum_{\substack{j, k, l \geq 0 \\ n+j=k+l}} S_{n j k l} \bar{\alpha}_{j} \alpha_{k} \alpha_{l}
$$

where $S_{n j k l}=\min \{n, j, k, l\}+1$

- This system provides an accurate approximation to the conformally invariant cubic wave equation on the timescale $\sim \varepsilon^{-2}$
- This is a Hamiltonian system

$$
i(n+1) \frac{d \alpha_{n}}{d \tau}=\frac{\partial H}{\partial \bar{\alpha}_{n}}
$$

with

$$
H=\frac{1}{2} \sum_{\substack{n, j, k, l \geq 0 \\ n+j=k+l}} S_{n j k l} \bar{\alpha}_{n} \bar{\alpha}_{j} \alpha_{k} \alpha_{l}
$$

Quintic conformal flow

- Conformally invariant quintic wave equation on \mathbb{S}^{2}

$$
\phi_{t t}-\Delta_{\mathbb{S}^{2}} \phi+\frac{1}{4} \phi+\phi^{5}=0
$$

- Assuming that $\phi=u(t, x)$, where $x=\cos \vartheta$, we get

$$
u_{t t}-\partial_{x}\left(\left(1-x^{2}\right) u_{x}\right)+\frac{1}{4} u+u^{5}=0
$$

- Linear eigenstates: $e_{n}(x)=P_{n}(x)$ with $\omega_{n}=n+\frac{1}{2}(n=0,1,2, \ldots)$
- Time-averaging gives the quintic conformal flow (for slow time $\tau=\varepsilon^{4} t$) (Biasi-B-Evnin, 2019)

$$
\begin{gathered}
i \frac{d \alpha_{n}}{d \tau}=\sum_{n+j+k=l+m+i} S_{n j k l m i} \bar{\alpha}_{j} \bar{\alpha}_{k} \alpha_{l} \alpha_{m} \alpha_{i} \\
S_{n j k l m i}=\int_{-1}^{1} P_{n}(x) P_{j}(x) P_{k}(x) P_{l}(x) P_{m}(x) P_{i}(x) d x
\end{gathered}
$$

Other Hamiltonian systems of the form

$$
i \frac{d \alpha_{n}}{d \tau}=\sum_{\substack{j, k, l \geq 0 \\ n+j=k+l}} S_{n j k l} \bar{\alpha}_{j} \alpha_{k} \alpha_{l}
$$

- Cubic Szegő equation $S_{n j k l}=1$ (Gérard-Grellier, 2010)
- Lowest Landau Level (LLL) equation: resonant system for the maximally rotating Bose-Einstein condensate (Germain-Hani-Thomann, 2015)

$$
S_{n j k l}=\frac{(n+j)!}{2^{n+j} \sqrt{n!j!k!l!}}
$$

- Resonant system for radial scalar perturbations of AdS $_{d+1}$ spacetime (Balasubramanian et al., Craps-Evnin-Vanhoof, 2014)
- Schrödinger-Newton-Hooke (SNH) system: resonant system for a non-relativistic self-gravitating condensate (B-Evnin-Ficek, 2018)

Aside on anti-de Sitter space

- Anti-de Sitter (AdS) metric in d spatial dimensions

$$
g=\frac{l^{2}}{\cos ^{2} x}\left(-d t^{2}+d x^{2}+\sin ^{2} x d \omega_{S^{d-1}}^{2}\right)
$$

- AdS metric is the unique globally regular static solution of the vacuum Einstein equations $R_{\alpha \beta}=\lambda g_{\alpha \beta}$ with $\lambda=-d / l^{2}$.
- AdS space is the ground state among spacetimes with negative λ (much as Minkowski space is the ground state among spacetimes with $\lambda=0$)
- Conjecture: AdS space is unstable under arbitrarily small perturbations
- Mechanism of instability: transfer of energy from low to high frequencies (due to the fully resonant spectrum of linearized perturbations)
- For $d \geq 3$ the resonant flow becomes singular in finite time (for some initial data). For $d=2$ the dynamics appears weakly turbulent.

Back to the cubic conformal flow

$$
i(n+1) \frac{d \alpha_{n}}{d \tau}=\sum_{\substack{j, k, l \geq 0 \\ n+j=k+l}}(\min \{n, j, k, l\}+1) \bar{\alpha}_{j} \alpha_{k} \alpha_{l}
$$

- Symmetries

Scaling: $\quad \alpha_{n}(\tau) \rightarrow \lambda \alpha_{n}\left(\lambda^{2} \tau\right)$
Global phase rotation: $\quad \alpha_{n}(\tau) \rightarrow e^{i \theta} \alpha_{n}(\tau)$
Local phase rotation: $\quad \alpha_{n}(\tau) \rightarrow e^{i n \theta} \alpha_{n}(\tau)$

- Conserved quantities due to the phase rotation symmetries

$$
Q=\sum_{n=0}^{\infty}(n+1)\left|\alpha_{n}\right|^{2}, \quad E=\sum_{n=0}^{\infty}(n+1)^{2}\left|\alpha_{n}\right|^{2}
$$

- Additional (complex) conserved quantity

$$
Z=\sum_{n=0}^{\infty}(n+1)(n+2) \bar{\alpha}_{n} \alpha_{n+1}
$$

Energy transfer

- Key question: how the energy of initial data gets distributed over the modes during evolution? Does energy flow from low to high modes?
- Given a sequence $\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots\right)$, we define the norm

$$
\|\alpha\|_{s}^{2}=\sum_{n=0}^{\infty}(n+1)^{2 s}\left|\alpha_{n}\right|^{2}
$$

- Do there exist weakly turbulent solutions, i.e. global solutions $\alpha(\tau)$ s.t.

$$
\limsup _{\tau \rightarrow \infty}\|\alpha(\tau)\|_{s}=+\infty \quad \text { for some } s>1
$$

- Such solutions exist for the cubic Szegő equation (Gérard-Grellier, 2017)
- Ultraviolet asymptotics of the interaction coefficients for the cubic conformal flow suggests that the transfer of energy to high frequencies is less efficient than for the cubic Szegő equation

Finite-dimensional invariant manifolds

- For one-mode initial data $\alpha_{n}(0)=\delta_{n N}$ the solution is $\alpha_{n}(\tau)=\delta_{n N} e^{-i \tau}$
- Three-dimensional invariant manifold

$$
\alpha_{n}=(b+a n) p^{n}
$$

with complex-valued functions $a(\tau), b(\tau), p(\tau)$

- The dynamics of the invariant manifold is described by a reduced Hamiltonian system

$$
\frac{d a}{d \tau}=f_{1}(a, b, p), \quad \frac{d b}{d \tau}=f_{2}(a, b, p), \quad \frac{d p}{d \tau}=f_{3}(a, b, p)
$$

- The reduced system is completely integrable thanks to the three conserved quantities Q, E, and H (that are in involution)
- The reduced system (here $y=\frac{|p|^{2}}{1-|p|^{2}}$)

$$
\begin{aligned}
& \frac{\ddot{i}}{(1+y)^{2}}=\frac{p}{6}\left(2 y|a|^{2}+\bar{b} a\right) \\
& \frac{i \ddot{a}}{(1+y)^{2}}=\frac{a}{6}\left(5|b|^{2}+\left(18 y^{2}+4 y\right)|a|^{2}+(6 y-1) \bar{b} a+10 y \bar{a} b\right) \\
& \frac{i \dot{b}}{(1+y)^{2}}=b\left(|b|^{2}+\left(6 y^{2}+2 y\right)|a|^{2}+2 y b \bar{a}\right)+a\left(2 y|b|^{2}+(4 y+2)^{2}|a|^{2}+y^{2} \bar{b} a\right)
\end{aligned}
$$

- This can be solved exactly, in particular

$$
y(\tau)=B+A \cos (\Omega \tau)
$$

where the constants A, B, Ω are determined by initial data

- The turning points $y_{ \pm}=B \pm A$ provide lower and upper bounds for the inverse and direct cascades of energy
- Here y_{+}is uniformly bounded from above (in contrast to the cubic Szegő)

Complex-plane representation

- In terms of the generating function $u(\tau, z)=\sum_{n=0}^{\infty} \alpha_{n}(\tau) z^{n}$, the cubic conformal flow is equivalent to

$$
i \partial_{\tau} \partial_{z}(z u)=\frac{1}{2 \pi i} \oint_{|\zeta|=1} \frac{d \zeta}{\zeta} \overline{u(\tau, \zeta)}\left(\frac{\zeta u(\tau, \zeta)-z u(\tau, z)}{\zeta-z}\right)^{2}
$$

- This formulation is convenient in some calculations
- On the three-dimensional invariant subspace

$$
u(t, z)=\frac{b(t)}{1-p(t) z}+\frac{a(t) p(t) z}{(1-p(t) z)^{2}}
$$

the radius of analyticity (the distance of the closest pole to the unit circle) is uniformly bounded from below

Stationary states

- Solutions of the form $\alpha_{n}(t)=A_{n} e^{-i(\lambda-n \omega) t}$ are called stationary states.
- Stationary states are the critical points of the functional

$$
K=\frac{1}{2} H-\lambda Q+\omega(E-Q)
$$

- The conformal flow has a variety of stationary states. Examples:
- Single-mode states $u(t, z)=c z^{N} e^{-i|c|^{2} t}$
- "Ground state"

$$
u(t, z)=\frac{c}{1-p z} \exp \left(-\frac{i|c|^{2} t}{\left(1-|p|^{2}\right)^{2}}\right), \quad|p|<1
$$

This state saturates the inequality $H \leq Q^{2}$ which plays a key role in the proof of its orbital stability (B-Hunik-Pelinovsky, 2018)

- Blaschke products

$$
u(t, z)=c \prod_{k=1}^{N} \frac{\bar{p}_{k}-z}{1-p_{k} z} e^{-i|c|^{2} t}, \quad\left|p_{k}\right|<1
$$

Some open problems

- Is the cubic conformal flow integrable?
- Are there weakly turbulent solutions?
- Are there higher dimensional invariant subspaces?
- Classification of stationary states
- What are the implications for the original PDEs?
- Time-periodic solutions (Bambusi-Paleari)
- Soliton resolution?

