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System settles down to equilibrium
via dissipation of energy by dispersion

Waves keep interacting for all times,
generating out-of-equilibrium dynamics

Understanding of long-time behavior of nonlinear waves in spatially confined
systems is challenging. Key questions:

How the energy injected into the system gets distributed over the degrees
of freedom during the evolution?

Can the energy flow to arbitrarily small spatial scales (wave turbulence)?
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Examples of spatially confined systems

Nonlinear string

φtt−φxx +φ
3 = 0, φ(t,0) = φ(t,π) = 0

Cubic Klein-Gordon equation on the d-dimensional sphere

φtt−∆Sd φ +m2
φ +φ

3 = 0

Gross-Pitaevskii equation with isotropic harmonic potential

i∂tψ =−∆ψ + |x|2ψ + |ψ|2ψ

Vacuum Einstein equation with negative cosmological constant λ

Rµν = λgµν
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General strategy

For a spatially confined system, the associated linearized system has a
purely discrete spectrum of frequencies

Expanding solutions in the basis of linear eigenstates one transforms the
original PDE into an infinite-dimensional dynamical system with discrete
degrees of freedom (‘modes’).

The nonlinearity generates new frequencies that may lead to resonances
between the modes. The resonances dominate the transfer of energy.

Dropping all nonresonant terms from the Hamiltonian one obtains a
simplified infinite-dimensional dynamical system, called the resonant
system, which accurately approximates the dynamics of small amplitude
solutions of the original PDE on long time scales

Strategy: try to understand the dynamics of the resonant system and then
export this knowledge back to the original PDE.
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Conformally invariant wave equations

Consider a (d+1)-dimensional manifold M with Lorentzian metric g

On (M ,g) we put a real scalar field φ satisfying(
�g−

d−1
4d

R(g)
)

φ − γ|φ |
4

d−1 φ = 0,

where �g = gµν∇µ∇ν and R(g) is the Ricci scalar

This equation is invariant under conformal transformations

g 7→Ω
2g, φ 7→Ω

1−d
2 φ

We restrict to analytic nonlinearities: cubic (d = 3) and quintic (d = 2)

For small amplitude solutions the sign of γ is irrelevant. We set γ = 1
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Conformally invariant cubic wave equation on S3

Let M = R×S3 (Einstein cylinder) with the metric

g =−dt2 +dx2 + sin2xdω
2, (t,x,ω) ∈ R× [0,π]×S2

This spacetime has constant scalar curvature R(g) = 6

The conformally invariant cubic wave equation

φtt−∆S3φ +φ +φ
3 = 0

Remark: eigenvalues of −∆Sd−1 +m2 are ω2
n = n(n+d−2)+m2

Almost global existence for small smooth initial data for almost all values
of m2 (Bambusi-Delort-Grébert-Szeftel, 2005)

We assume that φ = φ(t,x). Then u(t,x) = sin(x)φ(t,x) satisfies

utt−uxx +
u3

sin2 x
= 0, u(t,0) = u(t,π) = 0

Linear eigenstates: en(x) =
√

2
π

sin(ωnx) with ωn = n+1 (n = 0,1,2, ...)
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Time averaging
Expanding u(t,x) = ε

∞

∑
n=0

cn(t)en(x) we get

d2cn

dt2 +ω
2
n cn = ε

2
∑

j,k,l≥0
Snjkl cjckcl, Sjkln =

∫
π

0

dx
sin2 x

en(x)ej(x)ek(x)el(x)

Using variation of constants

cn = αneiωnt + ᾱne−iωnt,
dcn

dt
= iωn

(
αneiωnt− ᾱne−iωnt)

we factor out fast oscillations

2iωn
dαn

dt
= ε

2
∑

j,k,l≥0
Snjkl cjckcl e−iωnt,

Each term in the sum has a factor e−iΩnjklt, where

Ωnjkl = ωn±ωj±ωk±ωl

The terms with Ωnjkl = 0 correspond to resonant interactions

Let τ = ε2t. For ε → 0 the non-resonant terms ∝ e−iΩnjklτ/ε2
are highly

oscillatory and therefore negligible.
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Cubic conformal flow
Keeping only the resonant terms we obtain the cubic conformal flow
(B-Craps-Evnin-Hunik-Luyten-Maliborski, 2016)

i(n+1)
dαn

dτ
= ∑

j,k,l≥0
n+j=k+l

Snjkl ᾱjαkαl ,

where Snjkl = min{n, j,k, l}+1

This system provides an accurate approximation to the conformally
invariant cubic wave equation on the timescale ∼ ε−2

This is a Hamiltonian system

i(n+1)
dαn

dτ
=

∂H
∂ ᾱn

with

H =
1
2 ∑

n,j,k,l≥0
n+j=k+l

Snjklᾱnᾱjαkαl
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Quintic conformal flow
Conformally invariant quintic wave equation on S2

φtt−∆S2φ +
1
4

φ +φ
5 = 0

Assuming that φ = u(t,x), where x = cosϑ , we get

utt−∂x
(
(1− x2)ux

)
+

1
4

u+u5 = 0

Linear eigenstates: en(x) = Pn(x) with ωn = n+ 1
2 (n = 0,1,2, ...)

Time-averaging gives the quintic conformal flow (for slow time τ = ε4t)
(Biasi-B-Evnin, 2019)

i
dαn

dτ
= ∑
n+j+k=l+m+i

Snjklmiᾱjᾱkαlαmαi

Snjklmi =
∫ 1

−1
Pn(x)Pj(x)Pk(x)Pl(x)Pm(x)Pi(x)dx
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Other Hamiltonian systems of the form

i
dαn

dτ
= ∑

j,k,l≥0
n+j=k+l

Snjkl ᾱjαkαl

Cubic Szegő equation Snjkl = 1 (Gérard-Grellier, 2010)

Lowest Landau Level (LLL) equation: resonant system for the maximally
rotating Bose-Einstein condensate (Germain-Hani-Thomann, 2015)

Snjkl =
(n+ j)!

2n+j
√

n!j!k!l!

Resonant system for radial scalar perturbations of AdSd+1 spacetime
(Balasubramanian et al., Craps-Evnin-Vanhoof, 2014)

Schrödinger-Newton-Hooke (SNH) system: resonant system for
a non-relativistic self-gravitating condensate (B-Evnin-Ficek, 2018)
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Aside on anti-de Sitter space

Anti-de Sitter (AdS) metric in d spatial dimensions

g =
l2

cos2x

(
−dt2 +dx2 + sin2xdω

2
Sd−1

)
AdS metric is the unique globally regular static solution of the vacuum
Einstein equations Rαβ = λgαβ with λ =−d/l2.

AdS space is the ground state among spacetimes with negative λ (much
as Minkowski space is the ground state among spacetimes with λ = 0)

Conjecture: AdS space is unstable under arbitrarily small perturbations

Mechanism of instability: transfer of energy from low to high frequencies
(due to the fully resonant spectrum of linearized perturbations)

For d ≥ 3 the resonant flow becomes singular in finite time (for some
initial data). For d = 2 the dynamics appears weakly turbulent.
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Back to the cubic conformal flow

i(n+1)
dαn

dτ
= ∑

j,k,l≥0
n+j=k+l

(min{n, j,k, l}+1) ᾱjαkαl

Symmetries

Scaling: αn(τ)→ λαn(λ
2
τ)

Global phase rotation: αn(τ)→ eiθ
αn(τ)

Local phase rotation: αn(τ)→ einθ
αn(τ)

Conserved quantities due to the phase rotation symmetries

Q =
∞

∑
n=0

(n+1)|αn|2, E =
∞

∑
n=0

(n+1)2|αn|2

Additional (complex) conserved quantity

Z =
∞

∑
n=0

(n+1)(n+2)ᾱnαn+1
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Energy transfer

Key question: how the energy of initial data gets distributed over the
modes during evolution? Does energy flow from low to high modes?

Given a sequence α = (α0,α1, ...), we define the norm

‖α‖2
s =

∞

∑
n=0

(n+1)2s|αn|2

Do there exist weakly turbulent solutions, i.e. global solutions α(τ) s.t.

limsup
τ→∞

‖α(τ)‖s =+∞ for some s > 1

Such solutions exist for the cubic Szegő equation (Gérard-Grellier, 2017)

Ultraviolet asymptotics of the interaction coefficients for the cubic
conformal flow suggests that the transfer of energy to high frequencies is
less efficient than for the cubic Szegő equation
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Finite-dimensional invariant manifolds

For one-mode initial data αn(0) = δnN the solution is αn(τ) = δnNe−iτ

Three-dimensional invariant manifold

αn = (b+an)pn

with complex-valued functions a(τ),b(τ),p(τ)

The dynamics of the invariant manifold is described by a reduced
Hamiltonian system

da
dτ

= f1(a,b,p),
db
dτ

= f2(a,b,p),
dp
dτ

= f3(a,b,p)

The reduced system is completely integrable thanks to the three
conserved quantities Q, E, and H (that are in involution)
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The reduced system (here y = |p|2
1−|p|2 )

iṗ
(1+ y)2 =

p
6

(
2y|a|2 + b̄a

)
iȧ

(1+ y)2 =
a
6

(
5|b|2 +(18y2 +4y)|a|2 +(6y−1)b̄a+10yāb

)
iḃ

(1+ y)2 = b
(
|b|2 +(6y2 +2y)|a|2 +2ybā

)
+a
(

2y|b|2 +(4y+2)2|a|2 + y2b̄a
)

This can be solved exactly, in particular

y(τ) = B+Acos(Ωτ)

where the constants A,B,Ω are determined by initial data

The turning points y± = B±A provide lower and upper bounds for the
inverse and direct cascades of energy

Here y+ is uniformly bounded from above (in contrast to the cubic Szegő)

15 / 18



Complex-plane representation

In terms of the generating function u(τ,z) =
∞

∑
n=0

αn(τ)zn, the cubic

conformal flow is equivalent to

i∂τ∂z(zu) =
1

2πi

∮
|ζ |=1

dζ

ζ
u(τ,ζ )

(
ζ u(τ,ζ )− zu(τ,z)

ζ − z

)2

This formulation is convenient in some calculations

On the three-dimensional invariant subspace

u(t,z) =
b(t)

1−p(t)z
+

a(t)p(t)z
(1−p(t)z)2

the radius of analyticity (the distance of the closest pole to the unit circle)
is uniformly bounded from below
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Stationary states
Solutions of the form αn(t) = Ane−i(λ−nω)t are called stationary states.

Stationary states are the critical points of the functional

K =
1
2

H−λQ+ω(E−Q)

The conformal flow has a variety of stationary states. Examples:

I Single-mode states u(t,z) = czNe−i|c|2t

I “Ground state”

u(t,z) =
c

1−pz
exp
(
− i|c|2t
(1−|p|2)2

)
, |p|< 1

This state saturates the inequality H ≤ Q2 which plays a key role in the
proof of its orbital stability (B-Hunik-Pelinovsky, 2018)

I Blaschke products

u(t,z) = c
N

∏
k=1

p̄k− z
1−pkz

e−i|c|2t , |pk|< 1
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Some open problems

Is the cubic conformal flow integrable?

Are there weakly turbulent solutions?

Are there higher dimensional invariant subspaces?

Classification of stationary states

What are the implications for the original PDEs?

I Time-periodic solutions (Bambusi-Paleari)

I Soliton resolution?
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