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N-body problem

The N-body problem is a system of ODEs:

mi ẍi = ∂xi U(x) = −α
∑
j 6=i

mimj(xi − xj)

|xi − xj |α+2 , i = 1, · · · ,N.

Each body has mass mi , position xi ∈ R3, and velocity ẋi .
The self-potential

U(x) =
∑
i<j

mimj

|xi − xj |α
, α > 0

α = 1: Newtonian gravitation;
α ≥ 2: “strong force”: Lennard-Jones potential which
models interaction between a pair of neutral atoms or
molecules ULJ(r) = − A

r6 + B
r12 , A,B > 0.
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Conservation of N-body problem

The N-body problem enjoys conservation of energy

E(x, ẋ) :=
1
2

N∑
i=1

mi |ẋi |2 − U(x) (1)

Angular momentum

A(x, ẋ) :=
N∑

i=1

mixi × ẋi (2)

Linear momentum

M(x, ẋ) :=
N∑

i=1

mi ẋi (3)

Usually fix center of mass:
∑N

i=1 mixi = 0
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Global existence and singularity

U is a real-analytic function on (R3)N \∆:

∆ij = {x = (x1, · · · , xN) ∈ (R3)N |xi = xj},

∆ =
⋃
i<j

∆ij .

Given x(0) ∈ (R3)N \∆, ẋ(0) ∈ (R3)N , there exists a
unique solution x(t) defined on [0, σ), where σ is maximal.
If σ <∞, x(t) is singular at σ;
If σ =∞, x(t) exists globally.
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Singularity of the N-body problem

Theorem (Painlevé, 1895)

If x(t) experiences a singularity at t = σ, then

d(x(t),∆)→ 0, as t → σ.

if x(t) approaches a finite point in ∆, σ is collision
singularity;
otherwise, σ is non-collision singularity.
α = 1, N = 5, first non-collision singularity example by Xia
(1992)
When α > 2, only collision singularity.
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Saari’s Improbability Theorem 0 < α < 2

Theorem (Saari, 1971-1973)
The set of initial conditions for Newtonian N-body problem
leading to collisions has Lebesgue measure zero in the phase
space.

Fleischer and Knauf (2018) extended Saari’s improbability
theorem to 0 < α < 2.
Saari and Xia (1996): it is very likely that the total
singularity set has zero Lebesgue measure.

α ≥ 2, collision set has positive Lebesgue measure.
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Global existence and singularity

Our goal: characterize the set of initial conditions yielding
global solutions or singular solutions under some energy
threshold constraints.
The idea was motivated from PDE.
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Motivation from PDE

Nonlinear dispersive equations, e.g. Klein-Gordon, NLS.
scattering, blow-up, solitary waves
Global dynamics from initial data: energy below ground
state, by the sign of a threshold functional K :

K (initial data) ≥ 0⇒ scattering of the solution;
K (initial data) < 0⇒ finite time blow-up of the solution.

Extensions to slightly above ground state. Below first
excited energy, etc.
Kenig-Merle, Payne-Sattinger, Shatah, Duyckaerts-Merle,
Ibrahim-Masmoudi-Nakanishi, Nakanishi-Schlag,
Akahori-Ibrahim-Kikuchi-Nawa and many others...
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Ground state for N-body problem

The Lagrange-Jacobi identity for I(x) :=
∑N

i=1 mi |xi |2,

d2

dt2 I(x(t)) = 4[E(x, ẋ)− (
α

2
− 1)U(x)]

Definition (Ground state energy)

Let V (x, ẋ) := E(x, ẋ)− (α/2− 1)U(x),

E? := inf{E(x, ẋ)|V (x, ẋ) = 0}.

when α ≥ 2, E? = 0
when all bodies are at infinity with zero velocity⇒ the
ground state.
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Singularity below the ground state for α ≥ 2

If E = E(x(0), ẋ(0)) < E? = 0, then

d2

dt2 I(x(t)) ≤ 4E < 0

⇒ I(t) ≤ 2Et2 + İ(0)t + I(0)

When α ≥ 2, every solution below the ground state energy
is singular.
We want to go beyond the zero energy.
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Relative equilibrium

A solution x(t) = (x1(t), · · · , xN(t)) of the N-body problem
is called a relative equilibrium if there exists O(t) ∈ SO(3)
such that

xi(t) = O(t)xi(0),

for all i = 1, · · · ,N.
normal form of O(t) is

exp(ωJ̃ t) =

 cos(ωt) sin(ωt) 0
− sin(ωt) cos(ωt) 0

0 0 1

 , J̃ =

 0 1 0
−1 0 0
0 0 0
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Relative equilibrium and Central configuration

A R.E. with frequency ω and initial configuration q satisfies

∇(
ω2

2
I(q) + U(q)) = 0. (4)

Effective potential

Ueff(x) := −(
ω2

2
I(x) + U(x)).

Critical points of Ueff are known as central configurations.
Let

Kω(x) := −x · ∇Ueff(x) = ω2I(x)− αU(x).

here,

Kω(x) = − d
dλ

(Ueff(λx))|λ=1.
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Excited energy

The energy of a ω-relative equilibrium is

Eω(q) :=
ω2

2
I(q)− U(q).

Definition (Excited energy)

E∗(ω) := inf{Eω(x) : Kω(x) = 0}.

When α > 2, E∗(ω) is strictly positive.
E∗(ω) is achieved by central configuration.
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Dichotomy below the excited energy

Theorem (Dichotomy below the excited energy)

For α > 2, let x(t) be a solution of the N-body problem, if there
exists t∗ > 0 so that for t > t∗,

x(t) stays in K+(ω), then x(t) exists globally;
x(t) stays in K−(ω), then x(t) has a singularity.
Moreover, all singularities are collision singularities.

K+(ω) = {(x, ẋ) : E(x, ẋ) < E∗(ω),Kω(x) ≥ 0},

K−(ω) = {(x, ẋ) : E(x, ẋ) < E∗(ω),Kω(x) < 0}.

The problem is that Kω is not sign-definite, and it may
change the sign infinitely many times.
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Dichotomy for the 2-body problem

Theorem (Dichotomy for the 2-body problem)
Let m1 + m2 = 1, and m1x1 + m2x2 = 0,

K+(ω) = {(x, ẋ) : E(x, ẋ) < E∗(ω), |A(x, ẋ)| ≥ A∗(ω),Kω(x) ≥ 0}
K−(ω) = {(x, ẋ) : E(x, ẋ) < E∗(ω), |A(x, ẋ)| ≥ A∗(ω),Kω(x) < 0}

then K±(ω) are invariant. Solutions in K+(ω) exist globally and
solutions in K−(ω) experiences a singularity.

E∗(ω) = m1m2α
2

2−α (1
2 −

1
α)(α

2
2+αω

α−2
α+2 )

2α
α−2

A∗(ω) = m1m2α
2

2+αω
α−2
α+2
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The two-body problem and Kepler problem

Let x = x1 − x2, the Kepler problem for α > 2
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Refinement of characterization for N ≥ 3

Let K = {(x, ẋ) : E(x, ẋ) < E∗(ω), |A(x, ẋ)| 6= 0}
K+

1 = {(x, ẋ) ∈ K : |A(x, ẋ)| ≥ ωI(x),Kω(x) ≥ 0}
K−1 = {(x, ẋ) ∈ K : |A(x, ẋ)| ≥ ωI(x),Kω(x) < 0}
K+

2 = {(x, ẋ) ∈ K : |A(x, ẋ)| < ωI(x),Kω(x) ≥ 0}
K−2 = {(x, ẋ) ∈ K : |A(x, ẋ)| < ωI(x),Kω(x) < 0}

Kω

|A| − ωI

0

K+
1K−1

K−2 K+
2
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Theorem (Refinement of characterization for N ≥ 3)

(a) K+
1 is empty.

(b) If x(t) starts in K−2 , and enters K−1 , then it stays in K−1 and
experiences a collision singularity.

(c) If x(t) starts in K−2 , and never enters K−1 , then it stays in
K+

2 ∪ K
−
2 .

(c1) If there exists time t1, so that x(t) stays in K−
2 after t1, then

it experiences a collision;
(c2) If there exists time t1, so that x(t) stays in K+

2 after t2, then it
exists globally;

(c3) If there are infinitely many transitions between K+
2 and K−

2 ,
then it exists globally.

(d) If x(t) starts in K+
2 (resp. K−1 ), and stays in K+

2 (resp. K−1 ),
then it exists globally (resp. experiences a collision).

(e) If x(t) starts in K+
2 (resp. K−1 ), and enters K−2 , then see

(b)(c).
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Non-invariance of K±(ω) for N ≥ 3: Example 1

Example (Example for the non-invariance of K+(ω))

K+(ω) = {(x, ẋ) : E(x, ẋ) < E∗(ω),Kω(x) ≥ 0},

Kω(x) =
ω2

M

∑
i<j

mimj r2
ij − α

∑
i<j

mimj

rαij
.

Homothetic motion: take an equilateral triangle configuration x0

with initial velocity ẋ0 = 0 and (
√

3|x0
i |)

2+α ≥ αM
ω2 for i = 1,2,3.

( (x0,0) ∈ K+(ω)).
By the attracting forces of the 3 bodies, all of which point to the
center of mass (the origin), the 3 bodies will encounter a total
collision in finite time.
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Non-invariance of K±(ω) for N ≥ 3: Example 2

Example (Example for the non-invariance of K−(ω))

Similarly, take an equilateral triangle configuration x0 and initial
velocity ẋ0 = vx0, where v > 0. We can choose
(x0, ẋ0) ∈ K−(ω) and E(x0, ẋ0) > 0. Since

E(x, ẋ) =
1
2

3∑
i=1

mi |ẋi |2 + U(x), (5)

is conserved and U(x) < 0, the three bodies will keep going
away (|ẋ| 6= 0) and never come back, thus enter the set K+(ω).
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Defining the Hill’s lunar problem

A model for “earth”, “moon”, “sun”
Consider a uniform rotating frame with frequency one with
reference to a fixed inertial frame.
Use Jacobi coordinates and make appropriate
assumptions on the masses and the distances, one gets
the Hill’s Lunar Problem. (cf. Hill (1878), Meyer-Schmidt
(1982) )
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Defining the Hill’s lunar problem: Cntd.

The planar Hill’s equation with homogenous gravitational
potential is given by {

ẍ − 2ẏ = −Vx

ÿ + 2ẋ = −Vy ,
(6)

where

V (x , y) = −α + 2
2

x2 − α + 2
rα

, r =
√

x2 + y2, α > 0 (7)

is known as the effective potential.
(x , y) can be thought of as the position of the moon.
First integral: the energy

E(x , y , ẋ , ẏ) :=
1
2

(ẋ2 + ẏ2) + V (x , y). (8)
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Contour plot of V (x , y)
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Figure: The contour plot of V (x , y) with α = 1. V (x , y) has two critical
points L1 := (−α 1

α+2 ,0) and L2 := (α
1

α+2 ,0).
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Defining the ground state

Let I := 1
2(x2 + y2) be the moment of inertia. Then

d2I
dt2 = ẋ2 + ẏ2 + 2(xẏ − ẋy)− xVx − yVy . (9)

Let

K (x , y , ẋ , ẏ) := ẋ2 + ẏ2 + 2(xẏ − ẋy)− xVx − yVy , (10)

and
W (x , y) := −xVx − yVy = (α + 2)x2 − α + 2

rα
, (11)
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Defining the ground state

Consider the following variational problem in R4:

inf{E(x , y , ẋ , ẏ)|W (x , y) = 0}. (12)

Lemma
When α ≥ 2, we have

inf{E |W = 0} = inf{E |K = 0,W = 0}
= inf{E |K ≥ 0,W ≤ 0}
= E(Li ,0) := E∗

Let Q = (α
1

α+2 ,0,0,0), define ±Q to be the ground states.
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Dichotomy below the ground state

Define K = {Γ = (x , y , ẋ , ẏ)|E(Γ) < E∗} and set

K+ = {Γ ∈ K|W (Γ) > 0}
K− = {Γ ∈ K|W (Γ) ≤ 0}

(13)

Theorem (Dichotomy below the ground state)
For the Hill’s lunar problem with α ≥ 2 the sets K+ and K− are
invariant. Solutions in K+ exist globally and solutions in K2 are
singular.
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Figure: V = E∗ (blue) and W = 0
(orange)
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Numerical simulations for different α

Red indicate the fate is collision. Both energies are below E∗.
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Trichotomy at the ground state energy threshold

Let

K+ = {Γ ∈ (x , y , ẋ , ẏ)|E(Γ) = E∗,W (Γ) > 0}
K− = {Γ ∈ (x , y , ẋ , ẏ)|E(Γ) = E∗,W (Γ) ≤ 0}

(14)

Theorem
The sets K+ and K− are invariant. Moreover,

Solutions in K+ exist for all time.
Solutions in K− either have a finite time collision or
approach the ground state as t →∞.
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Above the ground state

Symplectic coordinates q = (x , y) and
p = (px ,py ) = (ẋ − y , ẏ + x), the Hamiltonian, i.e. the energy is

E(x , y ,px ,py ) =
1
2

[(px + y)2 + (py − x)2] + V (x , y).

The Hill’s equations (6) in Symplectic canonical form is

q̇ =
∂E
∂p

, ṗ = −∂E
∂q

. (15)

That is, (
q̇
ṗ

)
= J∇E , J =

(
0 I2
−I2 0

)
.
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The eigenvalues of the linearized operator A := J∇2E(Q)
are ±k , ±iω, decompose R4 = Eu⊕Es⊕Ec .

k =
1√
2

√√
36 + 36α + 29α2 + 10α3 + α4 + (α2 + 3α− 2),

and

ω =
1√
2

√√
36 + 36α + 29α2 + 10α3 + α4 − (α2 + 3α− 2).
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Ideas

Solutions on the center-stable manifold remain close to
±Q, “trapped orbits”
Solutions do not remain close to the ground state for all
positive times are ejected from any small neighborhood of
it after some positive time, “non-trapped”

1 Distance function WRT ground states, eigenmode
dominance

2 Ejection Lemma
3 Variational estimates
4 One-pass Theorem
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Decomposition near the ground state

Write ψ = Q + X , where X is the perturbation, decompose X
as follows:

X = λ+(t)ξ+ + λ−(t)ξ− + γ(t), (16)

where

ξ+ ∈ Eu, ξ− ∈ Es, γ(t) ∈ Ec , Ω(γ(t), ξ+) = Ω(γ(t), ξ−) = 0.
(17)

One has λ± = ±Ω(X , ξ∓) and we can derive the differential
equations for λ±(t).

dλ+
dt

(t) = kλ+(t) + Ω(N(X ), ξ−), (18)

dλ−
dt

(t) = −kλ−(t) + Ω(N(X ), ξ+). (19)

Y. Deng, S. Ibrahim A PDE approach to the N-body Problem



The general N body problem
The restricted 3body problem: Hill’s type lunar problem

Linearized energy norm

Lemma

The function γ(t) in the decomposition satisfies

Ω(γ,Aγ) ∼ |γ|2.

|X |2E :=
k
2

(λ2
+(t) + λ2

−(t)) +
1
2

Ω(γ,Aγ). (20)

Lemma

We have |X (t)| ∼ |X (t)|E .
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Distance function with respect to ground states

There exists δE > 0 with the following property: for any solution
ψ = ±(Q + X ) and any time t ∈ Imax (ψ) for which |X (t)|E ≤ 4δE ,

|E(ψ(t))−E(Q) +
k
2

(λ+(t) +λ−(t))2−|X (t)|2E | ≤
|X (t)|2E

10
. (21)

Let χ be a smooth function on R such that χ(r) = 1 for |r | ≤ 1
and χ(r) = 0 for |r | ≥ 2. We define

dQ(ψ(t)) :=
√
|X (t)|2E + χ(|X (t)|E/2δE )C(ψ(t)),

where

C(ψ(t)) := E(ψ(t))− E(Q) +
k
2

(λ+(t) + λ−(t))2 − |X (t)|2E .
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Distance function, eigenmode dominance

Lemma

Assume that there exists an interval I on which

supt∈IdQ(ψ(t)) ≤ δE .

Then, all of the following hold for all t ∈ I:
(i) 1

2 |X (t)|2E ≤ dQ(ψ(t))2 ≤ 3
2 |X |

2
E ,

(ii) dQ(ψ(t))2 = E(ψ(t))− E(Q) + 2kλ2
1(t),

(iii) d
dt dQ(ψ(t))2 = 4k2λ1(t)λ2(t) + 2kλ1(t)Ω(N(X ), ξ+ + ξ−).

(iv) if E(ψ) < E∗ + 1
2dQ(ψ(t))2 holds for all t ∈ I, then

dQ(ψ(t)) ∼ |λ1(t)| for all t ∈ I.
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Ejection Lemma

Lemma (Ejection Lemma)
There exists constants 0 < δX ≤ δE and A∗,B∗,C∗ with the
property: If ψ(t) is a local solution to (15) on [0,T ] satisfying

R0 := dQ(ψ(0)) ≤ δX , E(ψ) < E∗ +
1
2

R2
0 , (22)

then we can extend ψ(t) as long as dQ(ψ(t)) ≤ δX .
Furthermore, if there exists some t0 ∈ (0,T ) such that

dQ(ψ(t)) ≥ R0, ∀0 < t < t0, (23)

and let
TX := inf{t ∈ [0, t0] : dQ(ψ(t)) = δX}

where TX = t0 if dQ(ψ(t)) < δX on [0, t0], then for all t ∈ [0,TX ] :
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Ejection Lemma: Cntd

Lemma (Ejection Lemma: Cntd)

(i) A∗ektR0 ≤ dQ(ψ(t)) ≤ B∗ektR0,
(ii) |X (t)| ∼ sλ1(t) ∼ sλ2(t) ∼ ektR0,
(iii) |λ−(t)|+ |γ(t)| . R0 + dQ(ψ(t))2,
where s = 1 or −1. Moreover, dQ(ψ(t)) is increasing on the
region t ∈ [0,TX ].
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Variational estimates

Lemma

For the strong force α ≥ 2, for any δ > 0, there exist
ε(δ), κ(δ) > 0 such that for any Γ ∈ R4 satisfying

E(Γ) < E∗ + ε(δ), dQ(Γ) ≥ δ, (24)

one has either

W (Γ) ≤ −κ(δ) and K (Γ) ≤ −κ(δ),

or
W (Γ) ≥ κ(δ).
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Variational estimates
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Figure: The black curve is the zero velocity curve for E(Γ) = E∗ + c,
i.e. V (x , y) = E∗ + c. When c = ε(δ) is small enough, the value of
|W | is uniformly away from 0, provided dQ(Γ) > δ.
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One-pass Theorem

Conjecture (One-pass theorem)
There exists constants ε∗,R∗ with the property: for any
ε ∈ (0, ε∗], R ∈ (

√
2ε,R∗] and any solution ψ of the HLP (15) on

an interval [0,Tmax) satisfying

E(ψ) < E∗ + ε, dQ(ψ(0)) < R,

define Ttrap := sup{t ≥ 0|dQ(ψ(t)) < R}, then
1 if Ttrap = Tmax, then ψ is “trapped”;
2 if Ttrap < Tmax, then dQ(ψ(t)) ≥ R for all t ∈ (Ttrap,Tmax).

global existence
finite time collision
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Thank you for listening!
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