Detection of conductivity inclusions in a semilinear elliptic problem arising from cardiac electrophysiology

Marco Verani (MOX-Politecnico di Milano)
BANFF Workshop Reconstruction Methods for Inverse Problems, 25 June 2019

In collaboration with

Elena Beretta
Politecnico di Milano \& NYU Abu Dhabi
Luca Ratti
University of Helsinki

Outline of the presentation

1. Inverse problem and motivation
2. Phase-field approach and Reconstruction algorithm
3. Numerical results

Inverse problem and motivation

Problem formulation

Direct problem

For a fixed inclusion $\omega \subset \Omega$, introduce $K_{\omega}(x)=K_{\text {out }}+\left(K_{\text {in }}-K_{\text {out }}\right) \chi_{\omega}$ with $K_{\text {in }} \ll K_{\text {out }}$ and define y as the solution of

$$
\left\{\begin{aligned}
-\operatorname{div}\left(K_{\omega} \nabla y\right)+\chi_{\Omega \backslash \omega} y^{3} & =f \\
K_{\text {out }} \partial_{\nu} y & =0
\end{aligned} \quad \text { in } \Omega, \text { on } \partial \Omega\right.
$$

Problem formulation

Direct problem

For a fixed inclusion $\omega \subset \Omega$, introduce $K_{\omega}(x)=K_{\text {out }}+\left(K_{\text {in }}-K_{\text {out }}\right) \chi_{\omega}$ with $K_{\text {in }} \ll K_{\text {out }}$ and define y as the solution of

$$
\left\{\begin{array}{rlr}
-\operatorname{div}\left(K_{\omega} \nabla y\right)+\chi_{\Omega \backslash \omega} y^{3} & =f & \text { in } \Omega \\
K_{\text {out }} \partial_{\nu} y & =0 & \text { on } \partial \Omega
\end{array}\right.
$$

Inverse problem

Given a boundary measurement $y_{\text {meas }}$ on $\partial \Omega$, find the inclusion ω such that the solution y of the direct problem satisfies $\left.y\right|_{\partial \Omega}=y_{\text {meas }}$.

Motivation

The direct problem is a simplified version of the monodomain model for the electrical activity of the heart:

- y : transmembrane potential;
- K : conductivity coefficient;
- non-linear constitutive law for ionic current: $I_{\text {ion }}(y)=y^{3}$;
- f is an external source of current.

Motivation

The direct problem is a simplified version of the monodomain model for the electrical activity of the heart:

- y : transmembrane potential;
- K: conductivity coefficient;
- non-linear constitutive law for ionic current: $I_{\text {ion }}(y)=y^{3}$;
- f is an external source of current.

The inclusion ω models the presence of an ischemia: a region in the tissue not properly supplied with blood, where electric properties of the cell membrane are altered

Motivation

The direct problem is a simplified version of the monodomain model for the electrical activity of the heart:

- y : transmembrane potential;
- K: conductivity coefficient;
- non-linear constitutive law for ionic current: $I_{\text {ion }}(y)=y^{3}$;
- f is an external source of current.

The inclusion ω models the presence of an ischemia: a region in the tissue not properly supplied with blood, where electric properties of the cell membrane are altered

Long-term purpose

Identify the presence of ischemic regions from non invasive electrical measurements.

Phase-field approach and Reconstruction algorithm

Arbitrary inclusions

Assume ω of arbitrary shape.

$$
\omega \subset \Omega \text { is a finite-perimeter set, i.e. } u=\chi_{\omega} \in B V(\Omega)
$$

Rewrite the problem in terms of u

Forward problem

$$
\int_{\Omega} a(u) \nabla y \nabla \varphi+\int_{\Omega} b(u) y^{3} \varphi=\int_{\Omega} f \varphi,
$$

being $a(u)=1-(1-k) u$ and $b(u)=1-u \quad(k \ll 1)$.
Define the solution map $S: X_{0,1} \rightarrow H^{1}(\Omega), S(u)=y$, where

$$
X_{0,1}=\left\{v \in B V: v \in\{0,1\}, v=0 \text { a.e. } \in \Omega^{d_{0}}\right\}
$$

where $\Omega^{d_{0}}=\left\{x \in \Omega: d(x, \partial \Omega) \leq d_{0}\right\}$

Constrained minimization problem

Inverse problem

$$
\text { Find } u \in X_{0,1} \text { s.t. }\left.S(u)\right|_{\partial \Omega}=y_{\text {meas }}
$$

Goal: minimize the mismatch with the data

$$
\begin{gathered}
\min _{u \in X_{0,1}} J(u), \\
J(u)=\frac{1}{2} \int_{\partial \Omega}\left(S(u)-y_{\text {meas }}\right)^{2}
\end{gathered}
$$

Constrained minimization problem

Inverse problem

$$
\text { Find } u \in X_{0,1} \text { s.t. }\left.S(u)\right|_{\partial \Omega}=y_{\text {meas }}
$$

Goal: minimize the mismatch with the data

$$
\begin{gathered}
\min _{u \in X_{0,1}} J(u), \\
J(u)=\frac{1}{2} \int_{\partial \Omega}\left(S(u)-y_{\text {meas }}\right)^{2}
\end{gathered}
$$

The problem is ill-posed!

Tikhonov regularization

Tikhonov regularization of the functional via the Total Variation term:

$$
\min _{u \in X_{0,1}} J_{r e g}(u), \quad J_{r e g}(u)=\frac{1}{2} \int_{\partial \Omega}\left(S(u)-y_{\text {meas }}\right)^{2}+\alpha T V(u)
$$

where

$$
T V(u)=\sup \left\{\int_{\Omega} u \operatorname{div}(\phi) ; \quad \phi \in C_{0}^{1}\left(\Omega ; \mathbb{R}^{2}\right),\|\phi\|_{\infty} \leq 1\right\}
$$

Relaxation

Phase-field relaxation (cf. [Deckelnick, Elliott, Styles '16]): Let

$$
\mathcal{K}=\left\{v \in H^{1}(\Omega): 0 \leq v \leq 1 \text { a.e. in } \Omega, v=0 \text { a.e. in } \Omega^{d_{0}}\right\}
$$

and, for every $\varepsilon>0$ ($\varepsilon \simeq$ thickness of diffuse interface separating two sets on which the conductivity coefficient is constant), introduce the relaxed optimization problem:

$$
\begin{gathered}
\underset{u \in \mathcal{K}}{\arg \min } J_{\varepsilon}(u) \\
J_{\varepsilon}(u)=\frac{1}{2}\left\|S(u)-y_{\text {meas }}\right\|_{L^{2}(\partial \Omega)}^{2}+\alpha \int_{\Omega}\left(\varepsilon|\nabla u|^{2}+\frac{1}{\varepsilon} u(1-u)\right),
\end{gathered}
$$

where the solution map $S: \mathcal{K} \rightarrow H^{1}(\Omega), S(u)=y$, and y solves

Forward problem

$$
\int_{\Omega} a(u) \nabla y \nabla \varphi+\int_{\Omega} b(u) y^{3} \varphi=\int_{\Omega} f \varphi,
$$

being $a(u)=1-(1-k) u$ and $b(u)=1-u$.

Results:

Relaxation

Results:

Existence

$\forall \varepsilon>0$ there exists a minimizer of J_{ε} in \mathcal{K}.

Relaxation

Results:

Existence

$\forall \varepsilon>0$ there exists a minimizer of J_{ε} in \mathcal{K}.

Stability

Fix $\alpha, \varepsilon>0$. Let $\left\{y^{k}\right\} \subset L^{2}(\partial \Omega)$ such that $y^{k} \xrightarrow{L^{2}(\partial \Omega)} y_{\text {meas }}$ and let u_{ε}^{k} be a solution with data y^{k}. Then, up to a subsequence, $u_{\varepsilon}^{k} \xrightarrow{H^{1}} u_{\varepsilon}$, where u_{ε} is a solution with data $y_{\text {meas }}$.

Optimality conditions

Optimality conditions of the phase-field problem

A minimizer u_{ε} of J_{ε} satisfies the variational inequality:

$$
\begin{gathered}
J_{\varepsilon}^{\prime}\left(u_{\varepsilon}\right)\left[v-u_{\varepsilon}\right] \geq 0 \quad \forall v \in \mathcal{K} ; \\
J_{\varepsilon}^{\prime}(u)[\vartheta]=\int_{\Omega}(1-k) \vartheta \nabla S(u) \cdot \nabla p+\int_{\Omega} \vartheta S(u)^{3} p+2 \alpha \varepsilon \int_{\Omega} \nabla u \cdot \nabla \vartheta+\frac{\alpha}{\varepsilon} \int_{\Omega}(1-2 u) \vartheta,
\end{gathered}
$$

where p is the solution of the adjoint problem:

$$
\int_{\Omega} a(u) \nabla p \cdot \nabla \psi+\int_{\Omega} 3 b(u) S(u)^{2} p \psi=\int_{\partial \Omega}\left(S(u)-y_{\text {meas }}\right) \psi \quad \forall \psi \in H^{1}(\Omega) .
$$

Reconstruction Algorithm

Introduce the Parabolic Obstacle Problem (POP):
Find $u(\cdot, t) \in \mathcal{K}, t \geq 0$ s.t. $u(\cdot, 0)=u_{0}$ and

$$
\int_{\Omega} \partial_{t} u(\cdot, t)(v-u(\cdot, t))+J_{\varepsilon}^{\prime}(u(\cdot, t))[v-u(\cdot, t)] \geq 0 \quad \forall v \in \mathcal{K}
$$

Reconstruction Algorithm

Introduce the Parabolic Obstacle Problem (POP):
Find $u(\cdot, t) \in \mathcal{K}, t \geq 0$ s.t. $u(\cdot, 0)=u_{0}$ and

$$
\int_{\Omega} \partial_{t} u(\cdot, t)(v-u(\cdot, t))+J_{\varepsilon}^{\prime}(u(\cdot, t))[v-u(\cdot, t)] \geq 0 \quad \forall v \in \mathcal{K}
$$

Formally: take $v=u(\cdot, t-\Delta t)$, divide by Δt and let $\Delta t \rightarrow 0$:

$$
\left\|u_{t}\right\|^{2}+J_{\varepsilon}^{\prime}(u)\left[u_{t}\right] \leq 0, \quad \text { i.e. } \quad \frac{d}{d t} J_{\varepsilon}^{\prime}(u(\cdot, t)) \leq 0 .
$$

\rightsquigarrow Cost functional decreases along the evolution

Reconstruction Algorithm

Introduce the Parabolic Obstacle Problem (POP):
Find $u(\cdot, t) \in \mathcal{K}, t \geq 0$ s.t. $u(\cdot, 0)=u_{0}$ and

$$
\int_{\Omega} \partial_{t} u(\cdot, t)(v-u(\cdot, t))+J_{\varepsilon}^{\prime}(u(\cdot, t))[v-u(\cdot, t)] \geq 0 \quad \forall v \in \mathcal{K}
$$

Formally: take $v=u(\cdot, t-\Delta t)$, divide by Δt and let $\Delta t \rightarrow 0$:

$$
\left\|u_{t}\right\|^{2}+J_{\varepsilon}^{\prime}(u)\left[u_{t}\right] \leq 0, \quad \text { i.e. } \quad \frac{d}{d t} J_{\varepsilon}^{\prime}(u(\cdot, t)) \leq 0 .
$$

\rightsquigarrow Cost functional decreases along the evolution
We expect stationary solution u_{∞} (if it exists!) to satisfy the optimality condition

Reconstruction Algorithm

Introduce the Parabolic Obstacle Problem (POP):
Find $u(\cdot, t) \in \mathcal{K}, t \geq 0$ s.t. $u(\cdot, 0)=u_{0}$ and

$$
\int_{\Omega} \partial_{t} u(\cdot, t)(v-u(\cdot, t))+J_{\varepsilon}^{\prime}(u(\cdot, t))[v-u(\cdot, t)] \geq 0 \quad \forall v \in \mathcal{K}
$$

Formally: take $v=u(\cdot, t-\Delta t)$, divide by Δt and let $\Delta t \rightarrow 0$:

$$
\left\|u_{t}\right\|^{2}+J_{\varepsilon}^{\prime}(u)\left[u_{t}\right] \leq 0, \quad \text { i.e. } \quad \frac{d}{d t} J_{\varepsilon}^{\prime}(u(\cdot, t)) \leq 0 .
$$

\rightsquigarrow Cost functional decreases along the evolution
We expect stationary solution u_{∞} (if it exists!) to satisfy the optimality condition

Goal: discretize POP to obtain discrete Reconstruction Algorithm

Discrete direct problem

Let \mathcal{T}_{h} be a shape regular triangulation of Ω and define $V_{h} \subset H^{1}(\Omega)$:

$$
V_{h}=\left\{v_{h} \in C(\bar{\Omega}),\left.v_{h}\right|_{K} \in \mathbb{P}_{1}(K) \forall K \in \mathcal{T}_{h}\right\} ; \quad \mathcal{K}_{h}=V_{h} \cap \mathcal{K} .
$$

For every fixed $h>0$, we define the (well-posed) discrete solution map $S_{h}: \mathcal{K} \rightarrow V_{h}$, where $S_{h}(u)$ solves

$$
\int_{\Omega} a(u) \nabla S_{h}(u) \nabla v_{h}+\int_{\Omega} b(u) S_{h}(u)^{3} v_{h}=\int_{\Omega} f v_{h} \quad \forall v_{h} \in V_{h} .
$$

Discrete direct problem

Let \mathcal{T}_{h} be a shape regular triangulation of Ω and define $V_{h} \subset H^{1}(\Omega)$:

$$
V_{h}=\left\{v_{h} \in C(\bar{\Omega}),\left.v_{h}\right|_{K} \in \mathbb{P}_{1}(K) \forall K \in \mathcal{T}_{h}\right\} ; \quad \mathcal{K}_{h}=V_{h} \cap \mathcal{K} .
$$

For every fixed $h>0$, we define the (well-posed) discrete solution map $S_{h}: \mathcal{K} \rightarrow V_{h}$, where $S_{h}(u)$ solves

$$
\int_{\Omega} a(u) \nabla S_{h}(u) \nabla v_{h}+\int_{\Omega} b(u) S_{h}(u)^{3} v_{h}=\int_{\Omega} f v_{h} \quad \forall v_{h} \in V_{h} .
$$

Convergence I

Let $f \in L^{2}(\Omega)$. Then, for every $u \in \mathcal{K}, S_{h}(u) \rightarrow S(u)$ strongly in $H^{1}(\Omega)$.

Discrete direct problem

Let \mathcal{T}_{h} be a shape regular triangulation of Ω and define $V_{h} \subset H^{1}(\Omega)$:

$$
V_{h}=\left\{v_{h} \in C(\bar{\Omega}),\left.v_{h}\right|_{K} \in \mathbb{P}_{1}(K) \forall K \in \mathcal{T}_{h}\right\} ; \quad \mathcal{K}_{h}=V_{h} \cap \mathcal{K} .
$$

For every fixed $h>0$, we define the (well-posed) discrete solution map $S_{h}: \mathcal{K} \rightarrow V_{h}$, where $S_{h}(u)$ solves

$$
\int_{\Omega} a(u) \nabla S_{h}(u) \nabla v_{h}+\int_{\Omega} b(u) S_{h}(u)^{3} v_{h}=\int_{\Omega} f v_{h} \quad \forall v_{h} \in v_{h} .
$$

Convergence I

Let $f \in L^{2}(\Omega)$. Then, for every $u \in \mathcal{K}, S_{h}(u) \rightarrow S(u)$ strongly in $H^{1}(\Omega)$.

Convergence II

Let $\left\{h_{k}\right\},\left\{u_{k}\right\}$ be two sequences such that $h_{k} \rightarrow 0, u_{k} \in \mathcal{K}_{h_{k}}$ and $u_{k} \xrightarrow{L^{1}} u \in \mathcal{K}$. Then $S_{h_{k}}\left(u_{k}\right) \xrightarrow{H^{1}} S(u)$.

Discrete optimization problem

Define the discrete cost functional, $J_{\varepsilon, h}: \mathcal{K}_{h} \rightarrow \mathbb{R}$

$$
J_{\varepsilon, h}\left(u_{h}\right)=\frac{1}{2}\left\|S_{h}\left(u_{h}\right)-y_{\text {meas }, h}\right\|_{L^{2}(\partial \Omega)}^{2}+\alpha \int_{\Omega}\left(\varepsilon\left|\nabla u_{h}\right|^{2}+\frac{1}{\varepsilon} u_{h}\left(1-u_{h}\right)\right)
$$

$y_{\text {meas }, h}$ is the $L^{2}(\Omega)$-projection of the boundary datum $y_{\text {meas }}$ in the space of the traces of V_{h} functions.

Discrete optimization problem

Define the discrete cost functional, $J_{\varepsilon, h}: \mathcal{K}_{h} \rightarrow \mathbb{R}$

$$
J_{\varepsilon, h}\left(u_{h}\right)=\frac{1}{2}\left\|S_{h}\left(u_{h}\right)-y_{\text {meas }, h}\right\|_{L^{2}(\partial \Omega)}^{2}+\alpha \int_{\Omega}\left(\varepsilon\left|\nabla u_{h}\right|^{2}+\frac{1}{\varepsilon} u_{h}\left(1-u_{h}\right)\right)
$$

$y_{\text {meas }, h}$ is the $L^{2}(\Omega)$-projection of the boundary datum $y_{\text {meas }}$ in the space of the traces of V_{h} functions.

Existence of minimizers

For each $h>0$, there exists $u_{h} \in \mathcal{K}_{h}$ such that

$$
u_{h}=\operatorname{argmin}_{v_{h} \in \mathcal{K}_{h}} J_{\varepsilon, h}\left(v_{h}\right)
$$

Every sequence $\left\{u_{h_{k}}\right\}$ s.t. $\lim _{k \rightarrow \infty} h_{k}=0$ admits a subsequence that converges in $H^{1}(\Omega)$ to a minimum of the cost functional J_{ε}.

Discrete optimality condition

$$
u_{h} \in \mathcal{K}_{h}: \quad J_{\varepsilon, h}^{\prime}\left(u_{h}\right)\left[v_{h}-u_{h}\right] \geq 0 \quad \forall v_{h} \in \mathcal{K}_{h}
$$

Discrete optimality condition

$$
u_{h} \in \mathcal{K}_{h}: \quad J_{\varepsilon, h}^{\prime}\left(u_{h}\right)\left[v_{h}-u_{h}\right] \geq 0 \quad \forall v_{h} \in \mathcal{K}_{h}
$$

where

$$
\begin{aligned}
J_{\varepsilon, h}^{\prime}\left(u_{h}\right)\left[\vartheta_{h}\right]= & \int_{\Omega}(1-k) \vartheta_{h} \nabla S_{h}\left(u_{h}\right) \cdot \nabla p_{h}+\int_{\Omega} \vartheta_{h} S_{h}\left(u_{h}\right)^{3} p_{h}+2 \alpha \varepsilon \int_{\Omega} \nabla u_{h} \cdot \nabla \vartheta_{h} \\
& +\frac{\alpha}{\varepsilon} \int_{\Omega}\left(1-2 u_{h}\right) \vartheta_{h},
\end{aligned}
$$

with p_{h} finite element solution of discrete adjoint problem

Discrete optimality condition

$$
u_{h} \in \mathcal{K}_{h}: \quad J_{\varepsilon, h}^{\prime}\left(u_{h}\right)\left[v_{h}-u_{h}\right] \geq 0 \quad \forall v_{h} \in \mathcal{K}_{h}
$$

where

$$
\begin{aligned}
J_{\varepsilon, h}^{\prime}\left(u_{h}\right)\left[\vartheta_{h}\right]= & \int_{\Omega}(1-k) \vartheta_{h} \nabla S_{h}\left(u_{h}\right) \cdot \nabla p_{h}+\int_{\Omega} \vartheta_{h} S_{h}\left(u_{h}\right)^{3} p_{h}+2 \alpha \varepsilon \int_{\Omega} \nabla u_{h} \cdot \nabla \vartheta_{h} \\
& +\frac{\alpha}{\varepsilon} \int_{\Omega}\left(1-2 u_{h}\right) \vartheta_{h},
\end{aligned}
$$

with p_{h} finite element solution of discrete adjoint problem

Convergence to continuous optimality condition

Let $\left\{h_{k}\right\}$ s.t. $h_{k} \rightarrow 0$ and u_{k} corresp. solution of the discrete variational inequality. Then there exists a subsequence of $\left\{u_{k}\right\}$ that converges a.e. and in $H^{1}(\Omega)$ to a solution u of the continuous optimality condition.

Discrete Reconstruction Algorithm

Continuous parabolic obstacle problem (POP):

$$
\left\{\begin{array}{rlrl}
\int_{\Omega} \partial_{t} u(\cdot, t)(v-u(\cdot, t))+J_{\varepsilon}^{\prime}(u(\cdot, t))[v-u(\cdot, t)] & \geq 0 & \forall v \in \mathcal{K}, \quad t \in(0,+\infty) \\
u(\cdot, 0) & =u_{0} & & \text { an initial guess in } \mathcal{K}
\end{array}\right.
$$

Discrete Reconstruction Algorithm

Continuous parabolic obstacle problem (POP):

$$
\left\{\begin{array}{rlrl}
\int_{\Omega} \partial_{t} u(\cdot, t)(v-u(\cdot, t))+J_{\varepsilon}^{\prime}(u(\cdot, t))[v-u(\cdot, t)] & \geq 0 & \forall v \in \mathcal{K}, \quad t \in(0,+\infty) \\
u(\cdot, 0) & =u_{0} & & \text { an initial guess in } \mathcal{K}
\end{array}\right.
$$

Time discretization via a semi-implicit scheme:

$$
\left\{\begin{aligned}
& u_{h}^{0}=u_{0} \in \mathcal{K}_{h} \quad \text { (a prescribed initial datum) } \\
& u_{h}^{n+1} \in \mathcal{K}_{h}: \tau_{n}^{-1} \int_{\Omega}\left(u_{h}^{n+1}-u_{h}^{n}\right)\left(v_{h}-u_{h}^{n+1}\right)+\int_{\Omega}(1-k) \nabla S_{h}\left(u_{h}^{n}\right) \cdot \nabla p_{h}^{n}\left(v_{h}-u_{h}^{n+1}\right) \\
&+\int_{\Omega} S_{h}\left(u_{h}^{n}\right)^{3} p_{h}^{n}\left(v_{h}-u_{h}^{n+1}\right)+2 \alpha \varepsilon \int_{\Omega} \nabla \mathbf{u}_{h}^{\mathbf{n}+1} \cdot \nabla\left(v_{h}-u_{h}^{n+1}\right) \\
&+\alpha \frac{1}{\varepsilon} \int_{\Omega}\left(1-2 u_{h}^{n}\right)\left(v_{h}-u_{h}^{n+1}\right) \geq 0 \quad \forall v_{h} \in \mathcal{K}_{h}, n=0,1, \ldots
\end{aligned}\right.
$$

Discrete Reconstruction Algorithm

Time discretization via a semi-implicit scheme:

$$
\left\{\begin{aligned}
& u_{h}^{0}=u_{0} \in \mathcal{K}_{h} \quad \quad \text { (a prescribed initial datum) } \\
& u_{h}^{n+1} \in \mathcal{K}_{h}: \tau_{n}^{-1} \int_{\Omega}\left(u_{h}^{n+1}-u_{h}^{n}\right)\left(v_{h}-u_{h}^{n+1}\right)+\int_{\Omega}(1-k) \nabla S_{h}\left(u_{h}^{n}\right) \cdot \nabla p_{h}^{n}\left(v_{h}-u_{h}^{n+1}\right) \\
&+\int_{\Omega} S_{h}\left(u_{h}^{n}\right)^{3} p_{h}^{n}\left(v_{h}-u_{h}^{n+1}\right)+2 \alpha \varepsilon \int_{\Omega} \nabla \mathbf{u}_{h}^{n+1} \cdot \nabla\left(v_{h}-u_{h}^{n+1}\right) \\
&+\alpha \frac{1}{\varepsilon} \int_{\Omega}\left(1-2 u_{h}^{n}\right)\left(v_{h}-u_{h}^{n+1}\right) \geq 0 \quad \forall v_{h} \in \mathcal{K}_{h}, \quad n=0,1, \ldots
\end{aligned}\right.
$$

Discrete Reconstruction algorithm

- Set $n=0$ and $u_{h}^{0}=u_{0}$, the initial guess for the inclusion;
- while $\left\|u_{h}^{n}-u_{h}^{n-1}\right\|_{L^{\infty}(\Omega)}>t o l$

1. compute $S\left(u_{h}^{n}\right)$ solving the discrete direct problem;
2. compute p_{h}^{n} solving the discrete adjoint problem;
3. update u_{h}^{n+1} according to the discrete POP (e.g. via Primal-Dual Active Set algorithm);
4. update $n=n+1$;

Properties of the discrete reconstruction algorithm

Discrete Energy dicrease

For each $n>0$, there exists a positive constant \mathcal{B}_{n} such that, if $\tau_{n} \leq \mathcal{B}_{n}$ it holds:

$$
\begin{aligned}
\left\|u_{h}^{n+1}-u_{h}^{n}\right\|_{L^{2}}^{2}+J_{\varepsilon, h}\left(u_{h}^{n+1}\right) \leq J_{\varepsilon, h}\left(u_{h}^{n}\right) \quad n>0 . \\
\mathcal{B}_{n}=\mathcal{B}_{n}\left(\Omega, h, k,\left\|p_{h}^{n}\right\|_{H^{1}},\left\|y_{h}^{n}\right\|_{H^{1}},\left\|y_{h}^{n+1}\right\|_{H^{1}}\right)
\end{aligned}
$$

Properties of the discrete reconstruction algorithm

Discrete Energy dicrease

For each $n>0$, there exists a positive constant \mathcal{B}_{n} such that, if $\tau_{n} \leq \mathcal{B}_{n}$ it holds:

$$
\begin{aligned}
& \left\|u_{h}^{n+1}-u_{h}^{n}\right\|_{L^{2}}^{2}+J_{\varepsilon, h}\left(u_{h}^{n+1}\right) \leq J_{\varepsilon, h}\left(u_{h}^{n}\right) \quad n>0 . \\
& \mathcal{B}_{n}=\mathcal{B}_{n}\left(\Omega, h, k,\left\|p_{h}^{n}\right\|_{H^{1}},\left\|y_{h}^{n}\right\|_{H^{1}},\left\|y_{h}^{n+1}\right\|_{H^{1}}\right)
\end{aligned}
$$

Convergence to discrete optimality conditions

There exist timesteps $\left\{\tau_{n}\right\}$ s.t. the sequence $\left\{u_{h}^{n}\right\}$ has a converging subsequence to u_{h} satisfying the discrete optimality condition.

Numerical results

Numerical results

$$
\varepsilon=1 /(8 \pi), h=0.04, \tau=0.01 / \varepsilon, \alpha=10^{-3}, k=10^{-2}
$$

(a) Circular inclusion; 587 iterations

(b) Elliptical inclusion; 1497 iterations

Numerical results

(a) Rectangular inclusion; 1272 iterations

(b) Two inclusions; 4670 iterations

Numerical results - asymptotics

Asymptotics as $\varepsilon \rightarrow 0$

(b) $\varepsilon=\frac{1}{8 \pi}: N_{t o t}=1500$

(c) $\varepsilon=\frac{1}{16 \pi}: N_{\text {tot }}=3514$

Numerical results - robustness

Initial guess

(a) Arbitrary; 661 iterations

(b) Sublevel of the topological gradient of $J ; 489$ iterations

Extra: reconstruction from noisy data

Different noise level, $\alpha=10^{-3}$

(a) Noise level: 1\%; 430 iterations

(b) Noise level: 5\%; 560 iterations

(c) Noise level: 10\%; 1120 iterations

Extra: reconstruction from noisy data

Different regularization parameters, noiselevel $=10 \%$

Shape Derivative approach: numerical results

Comparison with the shape gradient

(a) Shape gradient algorithm

(b) Phase field, $\varepsilon=\frac{1}{16 \pi}$, mesh adaptation

Conclusions and further developments

- We presented a phase field based algorithm to reconstruct inclusions in semilinear elliptic problem.
- We introduced discrete reconstruction algorithm and discussed convergence properties.
- Numerical tests show efficacy of the approach.

Conclusions and further developments

- Consider reconstrucion problem governed by Monodomain model \rightsquigarrow system of a parabolic semilinear equation coupled with nonlinear ODE)

$$
\left\{\begin{array}{rrr}
\partial_{t} u-\nabla \cdot(M \nabla u)+f(u, w) & =0 & \text { in } \Omega \times(0, T), \\
M \partial_{\nu} u & =0 & \text { on } \partial \Omega \times(0, T), \\
\left.u\right|_{t=0} & =u_{0} & \text { in } \Omega, \\
\partial_{t} w+g(u, w) & =0 & \text { in } \Omega \times(0, T), \\
\left.w\right|_{t=0} & =w_{0} & \text { in } \Omega .
\end{array}\right.
$$

Challenge: reduce computational cost of the iterative reconstruction algorithm (each iteration requires solution of two parabolic eqns) \rightsquigarrow a posteriori error estimates to control time and space discretization

Time step adaptivity for direct problem ($M=I$)
$\rightsquigarrow c f$. Luca Ratti's poster

References

[1] E. Beretta, L. Ratti, M. Verani, Detection of conductivity inclusions in a semilinear elliptic problem arising from cardiac electrophysiology, Communications in Mathematical Sciences, 2018.
[2] L. Ratti, M. Verani, A posteriori error estimates for the monodomain model in cardiac electrophysiology, arxiv 1901.07468, submitted.

Constrained minimization problem

Inverse problem

$$
\text { Find } u \in X_{0,1} \text { s.t. }\left.S(u)\right|_{\partial \Omega}=y_{\text {meas }}
$$

Goal: minimize the mismatch with the data

$$
\begin{gathered}
\min _{u \in X_{0,1}} J(u), \\
J(u)=\frac{1}{2} \int_{\partial \Omega}\left(S(u)-y_{\text {meas }}\right)^{2}
\end{gathered}
$$

Continuity of the forward operator: $F:\left.u \in X_{0,1} \rightarrow S(u)\right|_{\partial \Omega} \in L^{2}(\partial \Omega)$ If $\left\{u_{n}\right\} \subset X_{0,1}$ s.t. $u_{n} \xrightarrow{L^{1}} u \in X_{0,1}$, then $\left.\left.S\left(u_{n}\right)\right|_{\partial \Omega} \xrightarrow{L^{2}(\partial \Omega)} S(u)\right|_{\partial \Omega}$.

Issue: F is a compact operator \Rightarrow The problem is ill-posed: lack of stability

Convergence

Consider $\left\{\varepsilon_{k}\right\}$ s.t. $\varepsilon_{k} \rightarrow 0$. Then, $J_{\varepsilon_{k}}$ converge to $J_{\text {reg }}$ in the sense of the Γ-convergence with respect to the L^{1} norm.
As a consequence, the minimizers $\left\{u_{\varepsilon_{k}}\right\} \subset \mathcal{K}$ of $J_{\varepsilon_{k}}$ are s.t. $u_{\varepsilon_{k}} \xrightarrow{L^{1}} u$, $u \in X_{0,1}$ minimizer of $J_{\text {reg }}$.

