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Inverse problem and motivation



Problem formulation

Direct problem

For a fixed inclusion ω ⊂ Ω, introduce Kω(x) = Kout + (Kin − Kout)χω
with Kin << Kout and define y as the solution of{

−div(Kω∇y) + χΩ\ωy
3 = f in Ω

Kout∂νy = 0 on ∂Ω

Inverse problem

Given a boundary measurement ymeas on ∂Ω, find the inclusion ω such

that the solution y of the direct problem satisfies y |∂Ω = ymeas .
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Motivation

The direct problem is a simplified version of the monodomain model for

the electrical activity of the heart:

• y : transmembrane potential;

• K : conductivity coefficient;

• non-linear constitutive law for ionic current: Iion(y) = y3;

• f is an external source of current.

The inclusion ω models the presence of an

ischemia: a region in the tissue not

properly supplied with blood, where electric

properties of the cell membrane are altered

Long-term purpose

Identify the presence of ischemic regions from non invasive electrical

measurements.
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Phase-field approach and

Reconstruction algorithm



Arbitrary inclusions

Assume ω of arbitrary shape.

ω ⊂ Ω is a finite-perimeter set, i.e. u = χω ∈ BV (Ω)

Rewrite the problem in terms of u

Forward problem∫
Ω

a(u)∇y∇ϕ+

∫
Ω

b(u)y3ϕ =

∫
Ω

f ϕ,

being a(u) = 1− (1− k)u and b(u) = 1− u (k << 1).

Define the solution map S : X0,1 → H1(Ω), S(u) = y , where

X0,1 = {v ∈ BV : v ∈ {0, 1}, v = 0 a.e. ∈ Ωd0}

where Ωd0 = {x ∈ Ω : d(x , ∂Ω) ≤ d0}
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Constrained minimization problem

Inverse problem

Find u ∈ X0,1 s.t. S(u)|∂Ω = ymeas

Goal: minimize the mismatch with the data

min
u∈X0,1

J(u),

J(u) =
1

2

∫
∂Ω

(S(u)− ymeas)2

The problem is ill-posed!
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Tikhonov regularization

Tikhonov regularization of the functional via the Total Variation term:

min
u∈X0,1

Jreg (u), Jreg (u) =
1

2

∫
∂Ω

(S(u)− ymeas)2 + αTV (u),

where

TV (u) = sup

{∫
Ω

udiv(φ); φ ∈ C 1
0 (Ω;R2), ‖φ‖∞ ≤ 1

}
.
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Relaxation

Phase-field relaxation (cf. [Deckelnick, Elliott, Styles ’16]): Let

K = {v ∈ H1(Ω) : 0 ≤ v ≤ 1 a.e. in Ω, v = 0 a.e. in Ωd0}

and, for every ε > 0 (ε ' thickness of diffuse interface separating two

sets on which the conductivity coefficient is constant), introduce the

relaxed optimization problem:

arg min
u∈K

Jε(u);

Jε(u) =
1

2
‖S(u)− ymeas‖2

L2(∂Ω) + α

∫
Ω

(
ε|∇u|2 +

1

ε
u(1− u)

)
,

where the solution map S : K → H1(Ω), S(u) = y , and y solves

Forward problem∫
Ω

a(u)∇y∇ϕ+

∫
Ω

b(u)y3ϕ =

∫
Ω

f ϕ,

being a(u) = 1− (1− k)u and b(u) = 1− u.
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Relaxation

Results:

Existence

∀ε > 0 there exists a minimizer of Jε in K.

Stability

Fix α, ε > 0. Let {yk} ⊂ L2(∂Ω) such that yk L2(∂Ω)−−−−→ ymeas and let ukε

be a solution with data yk . Then, up to a subsequence, ukε
H1

−→ uε,

where uε is a solution with data ymeas .
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Optimality conditions

Optimality conditions of the phase-field problem

A minimizer uε of Jε satisfies the variational inequality:

J′ε(uε)[v − uε] ≥ 0 ∀v ∈ K;

J′ε(u)[ϑ] =

∫
Ω

(1− k)ϑ∇S(u) · ∇p +

∫
Ω
ϑS(u)3p + 2αε

∫
Ω
∇u · ∇ϑ+

α

ε

∫
Ω

(1− 2u)ϑ,

where p is the solution of the adjoint problem:∫
Ω
a(u)∇p · ∇ψ +

∫
Ω

3b(u)S(u)2pψ =

∫
∂Ω

(S(u)− ymeas)ψ ∀ψ ∈ H1(Ω).
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Reconstruction Algorithm

Introduce the Parabolic Obstacle Problem (POP):

Find u(·, t) ∈ K, t ≥ 0 s.t. u(·, 0) = u0 and∫
Ω

∂tu(·, t)(v − u(·, t)) + J ′ε(u(·, t))[v − u(·, t)] ≥ 0 ∀v ∈ K

Formally: take v = u(·, t −∆t), divide by ∆t and let ∆t → 0:

‖ut‖2 + J ′ε(u)[ut ] ≤ 0, i.e.
d

dt
J ′ε(u(·, t)) ≤ 0.

 Cost functional decreases along the evolution

We expect stationary solution u∞ (if it exists!) to satisfy the optimality

condition

Goal: discretize POP to obtain discrete Reconstruction Algorithm
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Discrete direct problem

Let Th be a shape regular triangulation of Ω and define Vh ⊂ H1(Ω):

Vh = {vh ∈ C (Ω̄), vh|K ∈ P1(K ) ∀K ∈ Th}; Kh = Vh ∩ K.

For every fixed h > 0, we define the (well-posed) discrete solution map

Sh : K → Vh, where Sh(u) solves∫
Ω

a(u)∇Sh(u)∇vh +

∫
Ω

b(u)Sh(u)3vh =

∫
Ω

fvh ∀vh ∈ Vh.

Convergence I

Let f ∈ L2(Ω). Then, for every u ∈ K, Sh(u)→ S(u) strongly in

H1(Ω).

Convergence II

Let {hk}, {uk} be two sequences such that hk → 0, uk ∈ Khk and

uk
L1

−→ u ∈ K. Then Shk (uk)
H1

−→ S(u).
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Discrete optimization problem

Define the discrete cost functional, Jε,h : Kh → R

Jε,h(uh) =
1

2
‖Sh(uh)− ymeas,h‖2

L2(∂Ω) + α

∫
Ω

(
ε|∇uh|2 +

1

ε
uh(1− uh)

)
ymeas,h is the L2(Ω)-projection of the boundary datum ymeas in the space

of the traces of Vh functions.

Existence of minimizers

For each h > 0, there exists uh ∈ Kh such that

uh = argminvh∈Kh
Jε,h(vh).

Every sequence {uhk} s.t. limk→∞ hk = 0 admits a subsequence that

converges in H1(Ω) to a minimum of the cost functional Jε.
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Discrete optimality condition

uh ∈ Kh : J ′ε,h(uh)[vh − uh] ≥ 0 ∀vh ∈ Kh

where

J′ε,h(uh)[ϑh] =

∫
Ω

(1− k)ϑh∇Sh(uh) · ∇ph +

∫
Ω
ϑhSh(uh)3ph + 2αε

∫
Ω
∇uh · ∇ϑh

+
α

ε

∫
Ω

(1− 2uh)ϑh,

with ph finite element solution of discrete adjoint problem

Convergence to continuous optimality condition

Let {hk} s.t. hk → 0 and uk corresp. solution of the discrete variational

inequality. Then there exists a subsequence of {uk} that converges a.e.

and in H1(Ω) to a solution u of the continuous optimality condition.
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Discrete Reconstruction Algorithm

Continuous parabolic obstacle problem (POP):
∫

Ω
∂tu(·, t)(v − u(·, t)) + J′ε(u(·, t))[v − u(·, t)] ≥ 0 ∀v ∈ K, t ∈ (0,+∞)

u(·, 0) = u0 an initial guess in K

Time discretization via a semi-implicit scheme:

u0
h = u0 ∈ Kh (a prescribed initial datum)

un+1
h ∈ Kh : τ−1

n

∫
Ω

(un+1
h − unh)(vh − un+1

h ) +

∫
Ω

(1− k)∇Sh(unh) · ∇pnh(vh − un+1
h )

+

∫
Ω
Sh(unh)3pnh(vh − un+1

h ) + 2αε

∫
Ω
∇un+1

h · ∇(vh − un+1
h )

+ α
1

ε

∫
Ω

(1− 2unh)(vh − un+1
h ) ≥ 0 ∀vh ∈ Kh, n = 0, 1, . . .

Discrete Reconstruction algorithm

• Set n = 0 and u0
h = u0, the initial guess for the inclusion;

• while
∥∥unh − un−1

h

∥∥
L∞(Ω)

> tol

1. compute S(un
h) solving the discrete direct problem;

2. compute pn
h solving the discrete adjoint problem;

3. update un+1
h according to the discrete POP (e.g. via Primal-Dual

Active Set algorithm);

4. update n = n + 1;
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Properties of the discrete reconstruction algorithm

Discrete Energy dicrease

For each n > 0, there exists a positive constant Bn such that, if

τn ≤ Bn it holds:∥∥un+1
h − unh

∥∥2

L2 + Jε,h(un+1
h ) ≤ Jε,h(unh) n > 0.

Bn = Bn(Ω, h, k, ‖pn
h‖H1 , ‖yn

h ‖H1 ,
∥∥yn+1

h

∥∥
H1 )

Convergence to discrete optimality conditions

There exist timesteps {τn} s.t. the sequence {unh} has a converging

subsequence to uh satisfying the discrete optimality condition.
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Numerical results



Numerical results

ε = 1/(8π), h = 0.04, τ = 0.01/ε, α = 10−3, k = 10−2

(a) Circular inclusion; 587 iterations (b) Elliptical inclusion; 1497 iterations
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Numerical results

(a) Rectangular inclusion; 1272 iterations (b) Two inclusions; 4670 iterations
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Numerical results - asymptotics

Asymptotics as ε→ 0

(a) ε = 1
4π

: Ntot = 358 (b) ε = 1
8π

: Ntot = 1500 (c) ε = 1
16π

: Ntot = 3514
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Numerical results - robustness

Initial guess

(a) Arbitrary; 661 iterations (b) Sublevel of the topological gradient of

J; 489 iterations
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Extra: reconstruction from noisy data

Different noise level, α = 10−3

(a) Noise level: 1%; 430

iterations

(b) Noise level: 5%; 560

iterations

(c) Noise level: 10%; 1120

iterations
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Extra: reconstruction from noisy data

Different regularization parameters, noiselevel = 10%

(a) α = 10−3; 1120 iterations(b) α = 3 · 10−3; 751

iterations

(c) α = 5 · 10−3; 462

iterations

19



Shape Derivative approach: numerical results

Comparison with the shape gradient

(a) Shape gradient algorithm (b) Phase field, ε = 1
16π

, mesh adaptation
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Conclusions and further developments

• We presented a phase field based algorithm to reconstruct inclusions

in semilinear elliptic problem.

• We introduced discrete reconstruction algorithm and discussed

convergence properties.

• Numerical tests show efficacy of the approach.
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Conclusions and further developments

• Consider reconstrucion problem governed by Monodomain model  
system of a parabolic semilinear equation coupled with nonlinear
ODE) 

∂tu −∇ · (M∇u) + f (u,w) = 0 in Ω× (0,T ),

M∂νu = 0 on ∂Ω× (0,T ),

u|t=0 = u0 in Ω,

∂tw + g(u,w) = 0 in Ω× (0,T ),

w |t=0 = w0 in Ω.

Challenge: reduce computational cost of the iterative reconstruction

algorithm (each iteration requires solution of two parabolic eqns)  

a posteriori error estimates to control time and space discretization

Time step adaptivity for direct

problem (M = I )

 cf. Luca Ratti’s poster
22
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Constrained minimization problem

Inverse problem

Find u ∈ X0,1 s.t. S(u)|∂Ω = ymeas

Goal: minimize the mismatch with the data

min
u∈X0,1

J(u),

J(u) =
1

2

∫
∂Ω

(S(u)− ymeas)2

Continuity of the forward operator: F : u ∈ X0,1 → S(u)|∂Ω ∈ L2(∂Ω)

If {un} ⊂ X0,1 s.t. un
L1

−→ u ∈ X0,1, then S(un)|∂Ω
L2(∂Ω)−−−−→ S(u)|∂Ω.

Issue: F is a compact operator ⇒ The problem is ill-posed: lack of

stability
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Convergence

Consider {εk} s.t. εk → 0. Then, Jεk converge to Jreg in the sense of

the Γ−convergence with respect to the L1 norm.

As a consequence, the minimizers {uεk} ⊂ K of Jεk are s.t. uεk
L1

−→ u,

u ∈ X0,1 minimizer of Jreg .
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